Skip to main content

Dietary Treatments for Epilepsy Other Than the Ketogenic Diet

  • Chapter
Epilepsy and the Ketogenic Diet

Part of the book series: Nutrition and Health ((NH))

Abstract

The prospect that epilepsy might be controlled, at least partially, by dietary intake is radical but highly appealing. The ketogenic diet (KD) is the best-known and most wellstudied dietary treatment for epilepsy, but it is by no means the only nutritional intervention touted to reduce seizures. As noted by Sieveking (quoted in ref. 1, p. 1366), numerous food substances to cure epilepsy have been tried over the course of human history. However, aside from the KD, no dietary treatment has met widespread acceptance or success. Human consumption of several specific substances can be shown to later incorporate into neuronal membranes and affect their function. Therefore, at least theoretically, dietary approaches to a disorder of neuronal hyperexcitability such as epilepsy could be feasible. However, aside from the KD, the role of diet in epilepsy has received scant attention.

There is nothing in the world that can pass the human mouth that hasn’t at some time been advocated as a remedy against epilepsy. E. H. Sieveking, 1858

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonnen AEH. Alternative and folk remedies. In: Engel JJ, Pedley TA (eds.). Epilepsy: A Comprehensive Textbook. Lippincott-Raven, Philadelphia, 1997, pp. 1365–1378.

    Google Scholar 

  2. Murphy PA. Treating Epilepsy Naturally. Keats, Chicago, 2002.

    Google Scholar 

  3. Blusztajn JK. Choline, a vital amine. Science 1998;281:794–795.

    PubMed  CAS  Google Scholar 

  4. Meck WH, Smith RA, Williams CL. Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol 1988;21:339–353.

    PubMed  CAS  Google Scholar 

  5. Schenk F, Brandner C. Indirect effect of pen- and postnatal choline treatment on place-learning abilities in rat. Psychobiology 1995;35:302–313.

    Google Scholar 

  6. Meck WH, Williams CL. Perinatal choline supplementation increases the threshold for chunking in spatial memory. NeuroReport 1997;8:3053–3059.

    PubMed  CAS  Google Scholar 

  7. Meck WH, Williams CL. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. NeuroReport 1997;8:2831–2835.

    PubMed  CAS  Google Scholar 

  8. Tees RC. The influences of sex, rearing environment, and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats. Dev Psychobiol 1999;35:328–342.

    PubMed  CAS  Google Scholar 

  9. Thomas JD, La Fiette MH, Quinn VRE, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol 2000;22:703–711.

    PubMed  CAS  Google Scholar 

  10. Fundaro A, Paschero A. Behavioural effects of chronic manipulations of dietary choline in senescent rats. Prog Neuropsychopharmacol Biol Psychiatr 1990;14:949–960.

    CAS  Google Scholar 

  11. Yang Y, Cermak JM, Tandon P, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK, Holmes GL. Protective effects of prenatal choline supplementation on seizure-induced memory impairment. J Neurosci 2000;20(RC109):1–6.

    Google Scholar 

  12. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983;9:315–335.

    PubMed  CAS  Google Scholar 

  13. Liu Z, Gatt A, Mikati MA, Holmes GL. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 1995;19:191–204.

    Google Scholar 

  14. Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res 2002;48:3–13.

    PubMed  CAS  Google Scholar 

  15. Nadler JV. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981;29:2031–2042.

    PubMed  CAS  Google Scholar 

  16. Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 1992;65:227–236.

    CAS  Google Scholar 

  17. Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 1993;34:420–435.

    PubMed  CAS  Google Scholar 

  18. Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB 1998;12:349–357.

    CAS  Google Scholar 

  19. Cermak JM, Blusztajn JK, Meck WH, Williams CL, Fitzgerald CM, Rosene DL, Loy R. Prenatal availability of choline alters the development of acetylcholinesterase in rat hippocampus. Dev Neurosci 1999;21:84–104.

    Google Scholar 

  20. Ikarashi Y, Kuribara H, Shiobara T, Takahashi A, Ishimaru H, Maruyama Y. Learning and memory in mice treated with choline oxidase, a hydrolytic enzyme for choline. Pharmacol Biochem Behav 2000;65:519–522.

    PubMed  CAS  Google Scholar 

  21. Semba K, Fibiger HC, Organization of central cholinergic systems. Prog Brain Res 1989;79:37–63.

    PubMed  CAS  Google Scholar 

  22. Albright CD, Tsai AY, Friedrich CB, Mar MH, Zeisel SH. Choline availability alters embryonic development of the hippocampus and septum in the rat. Dev Brain Res 1999;113:13–20.

    CAS  Google Scholar 

  23. Fibiger HC. Cholinergic mechanisms in learning, memory, and dementia: a review of the evidence. Trends Neurosci 1991;14:220–223.

    PubMed  CAS  Google Scholar 

  24. Jones DNC, Barnes JC, Kirkby DL, Higgins GA. Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J Neurosci 1995;15:7282–7292.

    PubMed  CAS  Google Scholar 

  25. Loy R, Heyer D, Williams CL, Meck WH. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol 1991;295:373–382.

    PubMed  CAS  Google Scholar 

  26. Williams CL, Meck WH, Heyer D, Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res 1998;794:225–238.

    PubMed  CAS  Google Scholar 

  27. Montoya D, Swartzwelder HS. Prenatal choline supplementation alters hippocampal N-methyl-Daspartate receptor-mediated neurotransmission in adult rats. Neurosci Lett 2000;296:85–88.

    PubMed  CAS  Google Scholar 

  28. Guo-Ross SX, Jones KH, Shetty AK, Wilson WA, Swartzwelder HS. Prenatal dietary choline availability alters postnatal neurotoxic vulnerability in the adult rat. Neurosci Lett 2003;341:161–163.

    PubMed  CAS  Google Scholar 

  29. Jones JP, Meck WH, Williams CL, Wilson WA, Swartzwelder HS. Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Dev Brain Res 1999;118:159–167.

    CAS  Google Scholar 

  30. Kurlak L, Stephenson T. Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates. Arch Dis Child (Fetal Neonat Ed) 1999;80:F148–F154.

    CAS  Google Scholar 

  31. Innis SM. The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci 2000;22:474–480.

    PubMed  CAS  Google Scholar 

  32. Uauy R, Mena P. Lipids and neurodevelopment. Nutr Rev 2001;59(8 [Pt 2]):S34–558.

    PubMed  CAS  Google Scholar 

  33. Gibson R. Long-chain polyunsaturated fatty acids and infant development. Lancet 1999;354:1919–1920.

    PubMed  CAS  Google Scholar 

  34. Neuringer M, Anderson G, Connor W. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr 1988;8:517–541.

    PubMed  CAS  Google Scholar 

  35. Carlson SE, Werkman SH. A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until nine months. Lipids 1996;31:91–97.

    PubMed  Google Scholar 

  36. Enslen M, Milon H, Malnoe A. Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behavior in rats. Lipids 1991;26:203–208.

    PubMed  CAS  Google Scholar 

  37. Carrie I, Clement I, Clement M, De Javel D, Frances H, Bourre JM. Learning deficits in first generation OF1 mice deficient in (n-3) polyunsaturated fatty acids do not result from visual alteration. Neurosci Lett 1999;266:69–72.

    PubMed  CAS  Google Scholar 

  38. McGahon B, Martin DSD, Horrobin DF, Lynch MA. Age-related changes in synaptic function: analysis of the effect of dietary supplementation with ω-3 fatty acids. Neurosci 1999;94:305–314.

    CAS  Google Scholar 

  39. Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 1999;56:565–570.

    PubMed  CAS  Google Scholar 

  40. Takeuchi T, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res 2002;131:193–203.

    PubMed  CAS  Google Scholar 

  41. Crawford M. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 1993;57 (Suppl):703S–710S.

    PubMed  CAS  Google Scholar 

  42. Raiten D, Talbot D, Waters J. Assessment of nutrient requirements for infant formulas. Am J Clin Nutr 1998;115:2089–2110.

    Google Scholar 

  43. Lucas A, Stafford M, Morley R, Abbott R, Stephenson T, MacFadyen U, Elias-Jones A, Clements H. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet 1999;354:1948–1954.

    PubMed  CAS  Google Scholar 

  44. Salvati S, Attorri L, Avellino C, DiBiase A, Sanchez M. Diet, lipids and brain development. Dev Neurosci 2000;22:481–487.

    PubMed  CAS  Google Scholar 

  45. Yavin E, Glozman S, Green P. Docosahexaenoic acid sources for the developing brain during intrauterine life. Nutr Health 2001;15:219–224.

    PubMed  CAS  Google Scholar 

  46. Ahmad A, Moriguchi T, Salem N Jr. Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol 2002;26:210–218.

    PubMed  Google Scholar 

  47. Haubner LY, Stockard JE, Saste MD, Benford VJ, Phelps CP, Chen LT, Barness L, Weiner D, Carver JD. Maternal dietary docosahexanoic acid content affects the rat pup auditory system. Brain Res Bull 2002;58:1–5.

    PubMed  CAS  Google Scholar 

  48. Fewtrell MS, R. Morley R, Abbott RA, Singhal A, Isaacs EB, Stephenson T, MacFadyen U, Lucas A. Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 2002;110 (1 Pt 1):72–83.

    Google Scholar 

  49. Ordway RW, Singer JJ, Walsh JV Jr. Direct regulation of ion channels by fatty acids. Trends Neurosci 1991;14:96–100.

    PubMed  CAS  Google Scholar 

  50. Hwang D, Rhee SH. Receptor-mediated signaling pathways: potential targets of modulation by dietary fatty acids. Am J Clin Nutr 1999;70:545–556.

    PubMed  CAS  Google Scholar 

  51. Kang JX, Xiao Y-F, Leaf A. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A 1995;92:3997–4001.

    PubMed  CAS  Google Scholar 

  52. Leaf A, Kang JX, Xiao Y-F, Billman GE, Voskuyl RA. The antiarrhythmic and anticonvulsant effects of dietary n-3 fatty acids. J Membr Biol 1999;172:1–11.

    PubMed  CAS  Google Scholar 

  53. Meves H. Modulation of ion channels by arachidonic acid. Prog Neurobiol 1994;43:175–186.

    PubMed  CAS  Google Scholar 

  54. Bazan N, Packard MG, Teather L, Allan G. Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem Int 1996;2:225–231.

    Google Scholar 

  55. Leaf A, Kang JX, Xiao Y-F, Billman GE, Voskuyl RA. Functional and electrophysiologic effects of polyunsaturated fatty acids on excitable tissues: heart and brain. Prostaglandins Leukotrienes Essent Fatty Acids 1999;60:307–312.

    CAS  Google Scholar 

  56. Vreugdenhil M, Bruehl C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996;93:12559–12563.

    PubMed  CAS  Google Scholar 

  57. Poling J, Vicini S, Rogawski MA, Salem N Jr. Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc. Neuropharmacology 1996;35:969–982.

    PubMed  CAS  Google Scholar 

  58. Keros S, McBain C. Arachadonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J Neurosci 1997;17:3476–3487.

    PubMed  CAS  Google Scholar 

  59. Horimoto N, Nabekura J, Ogawa T. Arachadonic acid activation of potassium channels in rat visual cortex neurons. Neuroscience 1997;77:661–671.

    PubMed  CAS  Google Scholar 

  60. Nishikawa M, Kimura S, Akaike N. Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurons of rat cerebral cortex. J Physiol (Lond) 1994;475:83–93.

    CAS  Google Scholar 

  61. Hamano H, Nabekura J, Nishikawa M, Ogawa T. Docosahexanoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol 1996;75:1264–1270.

    PubMed  CAS  Google Scholar 

  62. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 2000;19:1784–1793.

    PubMed  CAS  Google Scholar 

  63. Voskuyl RA. Is marine fat anti-epileptogenic? Nutr Health 2002;16:51–53.

    PubMed  Google Scholar 

  64. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology 2003;44:1–7.

    PubMed  CAS  Google Scholar 

  65. Talley EM, Sirois JE, Lei Q, Bayliss DA. Two-pore domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 2003;9:46–56.

    PubMed  CAS  Google Scholar 

  66. Fraser DD, Hoehn K, Weiss S, MacVicar BA. Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron 1993;11:633–644.

    PubMed  CAS  Google Scholar 

  67. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia 1999;40:1471–1483.

    PubMed  CAS  Google Scholar 

  68. Woods BT, Chiu T-M. Fatty acid elevation and brain seizure activity [letter]. Trends Neurosci 1991;14:405.

    PubMed  CAS  Google Scholar 

  69. Stafstrom CE. Effects of fatty acids and ketones on neuronal excitability: implications for epilepsy and its treatment. In: Mostofsky DI, Yehuda S, Salem N Jr. (eds.). Fatty Acids-Physiological and Behavioral Functions. Humana, Totowa, NJ, 2001, pp. 273–290.

    Google Scholar 

  70. Young C, Gean P-W, Chiou L-C, Shen Y-Z. Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 2000;37:90–94.

    PubMed  CAS  Google Scholar 

  71. Xiao Y-F, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res 1999;846:112–121.

    PubMed  CAS  Google Scholar 

  72. Valencia P, Carver JD, Wyble LE, Benford VJ, Gilbert-Barness E, Weiner DA, Phelps C. The fatty acid composition of maternal diet affects the response to excitotoxic neural injury in neonatal rat pups. Brain Res Bull 1998;45:637–640.

    PubMed  CAS  Google Scholar 

  73. Yehuda S, Carasso RL, Mostofsky DI. Essential fatty acid preparation (SR-3) raises the seizure threshold in rats. Eur J Pharmacol 1994;254:193–198.

    PubMed  CAS  Google Scholar 

  74. Voskuyl RA, Vreugdenhil M, Kang JX, Leaf A. Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharmacol 1998;341:145–152.

    PubMed  CAS  Google Scholar 

  75. Voskuyl RA, Vreugdenhil M. Effects of essential fatty acids on voltage-regulated ionic channels and seizure thresholds in animals. In: Mostofsky DI, Yehuda S, Salem N Jr (eds.). Fatty Acids-Physiological and Behavioral Functions. Humana, Totowa, NJ, 2001, pp. 63–78.

    Google Scholar 

  76. Stafstrom CE, Sarkisian M. A diet enriched in polyunsaturated fatty acids does not protect against flurothyl seizures in the immature brain. Epilepsia 1997;38 (Suppl 8):34.

    Google Scholar 

  77. Cunnane SC, Musa K, Ryan MA, Whiting S, Fraser DD. Potential role of polyunsaturates in seizure protection achieved with the ketogenic diet. Prostaglandins Leukotrienes Essent Fatty Acids 2002;67:131–135.

    CAS  Google Scholar 

  78. Appleton DB, DeVivo DC. An animal model for the ketogenic diet. Epilepsia 1974;15:211–217.

    PubMed  CAS  Google Scholar 

  79. Huttenlocher PR, Wilbourn AJ, Signore JM. Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology 1971;21:1097–1103.

    PubMed  CAS  Google Scholar 

  80. Dekaban AS. Plasma lipids in epileptic children treated with the high fat diet. Arch Neurol 1966;15:177–184.

    PubMed  CAS  Google Scholar 

  81. Schwartz RM, Eaton J, Bower BD, Aynsley-Green A. Ketogenic diets in the treatment of epilepsy: short term clinical effects. Dev Med Child Neurol 1989;31:145–151.

    PubMed  CAS  Google Scholar 

  82. Alexander GJ, Kopeloff LM. Induced hypercholesterolemia and decreased susceptibility to seizures in experimental animals. Exp Neurol 1971;32:134–140.

    PubMed  CAS  Google Scholar 

  83. Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res 1976:10:536–540.

    PubMed  CAS  Google Scholar 

  84. Bough KJ, Eagles DA. A ketogenic diet increases the resistance to pentylenetetrazole-induced seizures in the rat. Epilepsia 1999;40:138–143.

    PubMed  CAS  Google Scholar 

  85. Dell CA, Likhodii SS, Musa K, Ryan MA, Burnham WM, Cunnane SC. Lipid and fatty acid profiles in rats consuming different high-fat ketogenic diets. Lipids 2001;36:373–378.

    PubMed  CAS  Google Scholar 

  86. Bourre JM, Bonneil M, Clement M, Dumont O, Durand G, Lafont H, Nalbone G, Piciotti M. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukotrienes Essent Fatty Acids 1993;48:5–15.

    CAS  Google Scholar 

  87. Jumpsen J, Lien EL, Goh YK, Clandinin MT. Small changes of dietary (n-6) and (n-3)/fatty acid content ratio alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cell in rats. J Nutr 1997;127:724–731.

    PubMed  CAS  Google Scholar 

  88. Leaf A. Health claims: Omega-3 fatty acids and cardiovascular disease. Nutr Rev 1992;50:150–154.

    PubMed  CAS  Google Scholar 

  89. Schlanger S, Shinitzky M, Yam D. Diet enriched with omega-3 fatty acids alleviates convulsion symptoms in epilepsy patients. Epilepsia 2002;43:103–104.

    PubMed  CAS  Google Scholar 

  90. DeToledo JC, Lowe MR. Epilepsy, demonic possessions, and fasting: another look at translations of Mark 9:16. Epilepsy Behav 2003;4:338–339.

    PubMed  CAS  Google Scholar 

  91. Ramsey JJ, Harper M-E, Weindruch R. Restriction of energy intake, energy expenditure, and aging. Free Radical Biol Med 2000;29:946–968.

    CAS  Google Scholar 

  92. Prolla TA, Mattson MP. Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 2001;24(11) Suppl.:S21–S31.

    PubMed  CAS  Google Scholar 

  93. Koubova J, Guarante L. How does calorie restriction work? Genes Dev 2003;17:313–321.

    PubMed  CAS  Google Scholar 

  94. Greene AE, Todorova MT, McGowan R, Seyfried TN. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 2001;42:1371–1378.

    PubMed  CAS  Google Scholar 

  95. Greene AE, Todorova MT, Seyfried TN. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003;86:529–537.

    PubMed  CAS  Google Scholar 

  96. Schwechter EM, Veliskova J, Velisek L. Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 2003;53:91–101.

    PubMed  CAS  Google Scholar 

  97. Marinella MA. Generalized seizures associated with low-calorie dieting. Ann Emerg Med 2000;35:405.

    PubMed  CAS  Google Scholar 

  98. Kaufman MA, Bhargava A. Dietary weight reduction and seizures. Neurology 1990;40:1905–1906.

    PubMed  CAS  Google Scholar 

  99. Mattson MP, Duan W, Lee J, Guo Z. Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanisms. Mech Ageing Dev 2001;122:757–778.

    PubMed  CAS  Google Scholar 

  100. Bruce-Keller A., Umberger G, McFall R, Mattson MP. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Neurology 1999;45:8–15.

    CAS  Google Scholar 

  101. Wu A, Sun X, Liu Y. Effects of caloric restriction on cognition and behavior in developing mice. Neurosci Lett 2003;339:166–168.

    PubMed  CAS  Google Scholar 

  102. Nunes ML, Teixeira GC, Fabris I, Gonçalves RA. Evaluation of the nutritional status in institutionalized children and its relationship to the development of epilepsy. Nutr Neurosci 1999;2:139–145.

    Google Scholar 

  103. DeBassio WA, Kemper TL, Tonkiss J, Galler JR. Effect of prenatal protein deprivation on postnatal granule cell generation in the hippocampal dentate gyms. Brain Res Bull 1996;41:379–383.

    PubMed  CAS  Google Scholar 

  104. Fukuda MTH, Francolin-Silva AL, Sebastiao SS. Early postnatal protein malnutrition affects learning and memory in the distal but not the proximal cue version of the Morris water maze. Behav Brain Res 2002;133:271–277.

    PubMed  CAS  Google Scholar 

  105. Morgane PJ, Molder DJ, Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 2002;26:471–483.

    PubMed  CAS  Google Scholar 

  106. Bronzino JD, Austin-LaFrance RJ, Morgane PJ, Galler JR. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability: I. Synaptic transmission measures. Exp Neurol 1991;112:206–215.

    PubMed  CAS  Google Scholar 

  107. Sharma SK, Selvamurthy W, Maheshwari MC, Singh TP. Kainic acid induced epileptogenesis in developing normal and undernourished rats-a computerized EEG analysis. Indian J Med Res (B) 1990;92:456–466.

    CAS  Google Scholar 

  108. Nunes ML, Liptakova S, Veliskova J, Sperber E, Moshe S. Malnutrition increases dentate granule cell proliferation in immature rats following status epilepticus. Epilepsia 2000;41 (Suppl 6):S48–S52.

    PubMed  Google Scholar 

  109. Hackett R, Iype T. Malnutrition and childhood epilepsy in developing countries. Seizure 2001;10:554–558.

    PubMed  CAS  Google Scholar 

  110. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000;130:1007S–1015S.

    PubMed  CAS  Google Scholar 

  111. Chapman AG. Glutamate and epilepsy. J Nutr 2000;130:1043S–1045S.

    PubMed  CAS  Google Scholar 

  112. Shovic A, Bart RD, Stalcup AM. “We think your son has Lennox-Gastaut syndrome”-a case study of monosodium glutamate’s possible effect on a child. J Am Diet Assoc 1997;97:793–794.

    PubMed  CAS  Google Scholar 

  113. Dzhala V, Desfreres L, Melyan Z, Ben-Ari Y, Khazipov R. Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol 1999;46:95–102.

    PubMed  CAS  Google Scholar 

  114. Zagnoni PG, Albano C. Psychostimulants and epilepsy. Epilepsia 2002;43 (Suppl 2):28–31.

    PubMed  Google Scholar 

  115. Gordon E, Devinsky O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 2001;42:1266–1272.

    PubMed  CAS  Google Scholar 

  116. Huang Z, Xiao B, Wang X, Li Y, Deng H. Betel nut indulgence as a cause of epilepsy. Seizure 2003;12:406–408.

    PubMed  Google Scholar 

  117. Spinella M. Herbal medicines and epilepsy: the potential for benefit and adverse effects. Epilepsy Behav 2001;2:524–532.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stafstrom, C.E., Holmes, G.L. (2004). Dietary Treatments for Epilepsy Other Than the Ketogenic Diet. In: Stafstrom, C.E., Rho, J.M. (eds) Epilepsy and the Ketogenic Diet. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-808-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-808-3_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-477-7

  • Online ISBN: 978-1-59259-808-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics