Skip to main content

Interactions Between Gasotransmitters

  • Chapter

Summary

It is well established that nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have signaling roles in the body. There are important similarities among them in their actions and generation, but there are also intriguing differences. The mechanism of action of H2S still has not been fully elucidated. It is becoming increasingly clear that there are important interactions among the gasotransmitters. There is clear evidence of links between the NO- and CO-generating systems. So far, this is most apparent in the control of the cardiovascular system, and knowledge of the function of NO has led to new therapeutic interventions. There is also a suggestion of synergy between NO and H2S that is not yet fully understood. Interactions between CO and H2S have not yet been explored, and more research is required in this area. Interactions in the immune system also require more research, and increased understanding of this area could lead to novel therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  PubMed  CAS  Google Scholar 

  2. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 2002;16:1792–1798.

    Article  PubMed  CAS  Google Scholar 

  3. Ingi T, Cheng J, Ronnett GV. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signalling system. Neuron 1996;6:835–842.

    Article  Google Scholar 

  4. Durante W, Kroll MH, Christodoulides N, et al. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res 1997;80:557–564.

    Article  PubMed  CAS  Google Scholar 

  5. Coceani F. Carbon monoxide and dilation of blood vessels. Science 1993; 260:739.

    Article  PubMed  CAS  Google Scholar 

  6. Linderholm H, Lundström P. Endogenous carbon monoxide production and blood loss at delivery. Acta Obstet Gynaecol Scand 1969;48:362–370.

    Article  CAS  Google Scholar 

  7. Frydman RB, Tomaro ML, et al. Specificity of heme oxygenase: a study with synthetic hemins. Biochemistry 1981;20:5177–5182.

    Article  PubMed  CAS  Google Scholar 

  8. Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 2000;267:129–133.

    Article  PubMed  CAS  Google Scholar 

  9. Abe K, Kimura H. The possible role of hydrogen sulphide as an endogenous neuromodulator. J Neurosci 1996;16:1066–1071

    PubMed  CAS  Google Scholar 

  10. Bradley KK, Buxton IL, et al. Nitric oxide relaxes human myometrium by a cGMP-independent mechanism. Am J Physiol 1998;275:C1668-C1673.

    PubMed  CAS  Google Scholar 

  11. Buxton ILO, Kaiser RA, Malmquist NA, et al. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. Br J Pharmacol 2001;134:206–214.

    Article  PubMed  CAS  Google Scholar 

  12. Wu L, Cao K, Lu Y, et al. Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide. J Clin Invest 2002;110:691–700.

    PubMed  CAS  Google Scholar 

  13. Feelisch M. The biochemical pathways of nitric oxide formation from nitrovasodilators: appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions. J Cardiovasc Pharmacol 1991;17:S25-S33.

    Article  CAS  Google Scholar 

  14. Kim YM, Bergonia HA, Muller C, et al. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 1995;270:5710–5713.

    Article  PubMed  CAS  Google Scholar 

  15. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517–554.

    Article  PubMed  CAS  Google Scholar 

  16. McMillan K, Bredt DS, Hirsch DJ, et al. Cloned, expressed rat cerebellar NOS containing stoichiometric amounts of heme which binds CO. Proc Nat! Acad Sci USA 1992;89:11,141–11,145.

    Article  CAS  Google Scholar 

  17. Willis D, Tomlinson A, Frederick R, et al. Modulation of heme oxygenase activity in rat brain and spleen by inhibitors and donors of nitric oxide. Biochem Biophys Res Commun 1995;214:1152–1156.

    Article  PubMed  CAS  Google Scholar 

  18. Motterlini R, Foresti R, Intaglietta M, et al. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol 1996;270:H107-H114.

    PubMed  CAS  Google Scholar 

  19. Henningsson R, Alm P, Ekstrom P, et al. Heme oxygenase and carbon monoxide: regulatory roles in islet hormone release. A biochemical, immunohistochemical, and confocal microscopic study. Diabetes 1999;48:66–76.

    Article  PubMed  CAS  Google Scholar 

  20. Vesely MJJ, Exon DJ, et al. Heme oxygenase-1 induction in skeletal muscle cells: hemin and sodium nitroprusside are regulators in vitro. Am J Physiol Cell Physiol 1998;275:C1087-C1094.

    CAS  Google Scholar 

  21. Leffler CW, Nasjletti A, Johnson RA, et al. Contributions of prostacyclin and nitric oxide to carbon monoxide-induced cerebrovascular dilation in piglets. Am J Physiol Heart Circ Physiol 2001;280: H1490-H1495.

    PubMed  CAS  Google Scholar 

  22. Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATp channel opener. EMBO J 2001;20:6008–6016.

    Article  PubMed  CAS  Google Scholar 

  23. Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 2002;137: 139–145.

    Article  PubMed  CAS  Google Scholar 

  24. Sidhu R, Singh M, Samir G, et al. L-Cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol Toxicol 2001:88:198–203.

    Article  Google Scholar 

  25. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997;237:527–531.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao W, Wang R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 2002;283:H474-H480.

    PubMed  CAS  Google Scholar 

  27. Li J, Liu XJ, Furchgott RF. Blockade of nitric oxide-induced relaxation of rabbit aorta by cysteine and homocysteine. Chung Kuo Yao Li Hsueh Pao 1997;18:11–20.

    PubMed  Google Scholar 

  28. Deves R, Boyd CAR. Transporters for cationic amino acids in animal cells: discovery, structure and function. Physiol Rev 1998;78:487–545.

    PubMed  CAS  Google Scholar 

  29. Zerangue N, Kavanaugh MP. Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol 1996;493:419–423.

    PubMed  CAS  Google Scholar 

  30. Li H, Marshall ZM, Whorton AR. Stimulation of cystine uptake by nitric oxide: regulation of endothelial cell glutathione levels. Am J Physiol 1999;276:C803-C811.

    PubMed  CAS  Google Scholar 

  31. Taoka S, Ohja S, Shan X, et al. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem 1998;273:25,179–25,184.

    Article  CAS  Google Scholar 

  32. Willis D, Moore AR, Frederick R, et al. Herne oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 1996;2:87–90.

    Article  PubMed  CAS  Google Scholar 

  33. Willis D. Expression and modulatory effects of heme oxygenase in acute inflammation in the rat. Inflamm Res 1995;44:S218-S220.

    Article  PubMed  CAS  Google Scholar 

  34. Foresti R, Sarathchandra P, Clark JE, et al. Peroxynitnte induces haem oxygenase- 1 in vascular endothelial cells: a link to apoptosis. Biochem J 1999;339:729–736.

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi S, Takamiya R, Yamaguchi T, et al. Induction ot heme oxygenase- I suppresses venuiar leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res 1999;85:663–671.

    Article  PubMed  CAS  Google Scholar 

  36. Clark JE, Foresti R, Sarathchandra P, et al. Heme oxygenase- 1 -derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 2000;278:H643-H651.

    PubMed  CAS  Google Scholar 

  37. Clark JE, Foresti R, Green CJ, et al. Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J 2000;348:615–619.

    Article  PubMed  CAS  Google Scholar 

  38. Foresti R, Goatly H, Green CJ, et al. Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol 2001;281: H1976-H1984.

    PubMed  CAS  Google Scholar 

  39. Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeo-stasis. Free Radic Res 1999;31:459–75.

    Article  PubMed  CAS  Google Scholar 

  40. Motterlini R, Green CJ, Foresti R. Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 2002;4:615–624.

    Article  PubMed  CAS  Google Scholar 

  41. Hartsfield CL, Alam J, Cook JL, et al. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol 1997;273:L980-L988.

    PubMed  CAS  Google Scholar 

  42. Sammut IA, Foresti R, Clark JE, et al. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1. Br J Pharmacol 1998;125:1437–1444

    Article  PubMed  CAS  Google Scholar 

  43. Nicholls P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J 1961;81:374–383.

    PubMed  CAS  Google Scholar 

  44. Boev VM, Nikonorov AA, Perepelkin SV , et al. Ettects or nyarogen suifiae containing gas condensate on the hepatic microsomal monooxygenase system. Gigiena Sanitariia 1997;5:5–6.

    Google Scholar 

  45. Mian R, Shelton-Rayner G, Harkin B, et al. Observing a fictitious stressful event: haematological changes, including circulating leukocyte activation. Stress 2003;6:41–47.

    Article  PubMed  Google Scholar 

  46. McLaren GW, Macdonald DW, Georgiou C, et al. Leukocyte coping capacity: a novel technique tor measuring the stress response in vertebrates. Exp Physiol 2003;88:541–546.

    Article  PubMed  CAS  Google Scholar 

  47. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Yharmacol oxicol 1992;32:109–134.

    Article  CAS  Google Scholar 

  48. Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999;39:93–109.

    Article  PubMed  CAS  Google Scholar 

  49. Bao L, Vlek C, Paces V, et al. Identification and tissue distribution of human cystathionine betasynthase mRNA isoforms. Arch Biochem Biophys 1998;350:95–103.

    Article  PubMed  CAS  Google Scholar 

  50. Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem 1969;244:6388–6394.

    PubMed  CAS  Google Scholar 

  51. Chen YH, Yet SF, Perella MA. Role of heme oxygenase-1 in the regulation of blood pressure and cardiac function. Exp Biol Med 2003;228:447–453.

    CAS  Google Scholar 

  52. Otterbein LE, Choi AMK. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol 2000;279:L1029-L1037.

    CAS  Google Scholar 

  53. Baranano DE, Snyder SH. Neural roles for heme oxygenase: contrasts to nitnc oxiae syntnase. Proc Natl Acad Sci USA 2001;98:10,996–11,002.

    Article  CAS  Google Scholar 

  54. Morita T, Kourembanas S. Endothelial cell expression or vasoconstrictors anu grow th factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 1995;96:2676–2682.

    Article  PubMed  CAS  Google Scholar 

  55. Motterlini R, Gonzales A, Foresti R, et al. Heme oxygenase- 1 -derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ Res 1998;83:568–577.

    Article  PubMed  CAS  Google Scholar 

  56. Soares MP, Lin Y, Anrather J, et al. Expression of heme oxygenase-1 can determine cardiac xenogratt survival. Nat Med 1998;4:1073–1077.

    Article  PubMed  CAS  Google Scholar 

  57. Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by neme oxygenase- 1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185–4194.

    PubMed  CAS  Google Scholar 

  58. Borger DR, Essig DA. Induction of HSP 32 gene in nypoxic caraiomyocytes is attenuated by LICa11e11 with N-acetyl cysteine. Am J Physiol 1998;274:H965-H973.

    PubMed  CAS  Google Scholar 

  59. Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997;272:5375–5381.

    Article  PubMed  CAS  Google Scholar 

  60. Caudill TK, Resta TC, Kanagy NL, et al. Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. Am J Physiol 1998;275:R1025-R1030.

    PubMed  CAS  Google Scholar 

  61. Brouard S, Otterbein LE, Anrather J, et al. Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis. J Exp Med 2001:92:1015–1026.

    Google Scholar 

  62. Morse D, Choi AM. Heme oxygenase-1:the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 2002;27:8–16.

    PubMed  CAS  Google Scholar 

  63. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  64. Curtis MJ, Pabla R. Nitric oxide supplementation or synthesis block-which is the better approach to treatment of heart disease? Trends Pharmacol Sci 1997;18:239–244.

    PubMed  CAS  Google Scholar 

  65. Palacin M, Estevez R, Bertran J, et al. Molecular biology of mammalian plasma membrane amino acid transporters. Physiolog Rev 1992;78:969–1054

    Google Scholar 

  66. Hare JM, Comerford ML. Role of nitric oxide in the regulation of myocardial function. Prog Lipid Res 1995;38:155–166.

    CAS  Google Scholar 

  67. Xie YW, Wolin MS. Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration: involvement in response to hypoxia/reoxygenation. Circulation 1996;94:2582586.

    Article  Google Scholar 

  68. Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischaemia-reperfusion: the roles of P13-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  69. Taimor G, Hofstaetter B, Piper HM. Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischaemia. Cardiovasc Res 2000:45:588–594.

    Article  PubMed  CAS  Google Scholar 

  70. Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 2002:54:619–634.

    Article  PubMed  CAS  Google Scholar 

  71. Hartsfield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 2002;4:301–307.

    Article  PubMed  CAS  Google Scholar 

  72. Zakhary R, Gaine SP, Dinerman JL, et al. Heme oxygenase 2:endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sc TJSA 1996;93:795–798

    Article  CAS  Google Scholar 

  73. Prabhakar NR. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 1999;115:161–168.

    Article  PubMed  CAS  Google Scholar 

  74. Jung F, Palmer LA, Zhou N, et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 2000;86:319–325.

    Article  PubMed  CAS  Google Scholar 

  75. Liu Y, Christou H, Morita T, et al. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5 enhancer. J Biol Chem 1998:273:15.257–15.262.

    Google Scholar 

  76. Huang LE, Willmore WG, Gu J, et al. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide: implications for oxygen sensing and signaling. J Biol Chem 1999;274.903R-9044.

    Article  Google Scholar 

  77. Maulik N, Engelman DT, Watanabe M, et al. Nitric oxide/carbon monoxide: a molecular switch for myocardial preservation during ischemia. Circulation 1996;94:398–406.

    Article  Google Scholar 

  78. Chen K, Maines MD. Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38. Cell Mol Biol 2000;46:609–617.

    PubMed  CAS  Google Scholar 

  79. Wang LJ, Lee TS, Lee FY, et al. Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol 1998;152:711–720.

    PubMed  CAS  Google Scholar 

  80. Ishikawa K, Navab M, Leitinger N, et al. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 1997:100:1209–1216

    Article  PubMed  CAS  Google Scholar 

  81. Siow RC, Sato H, Mann GE. Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardinvase Res 1999:41:385–394.

    Article  CAS  Google Scholar 

  82. Marks G, Brien J, Nakatsu K, et al. Does carbon monoxide have a physiological function? Trends Pharmacol Sci 1991;12:185–188.

    Article  PubMed  CAS  Google Scholar 

  83. Cox DA, Cohen ML. Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol Rev 1996;48:3–19.

    PubMed  CAS  Google Scholar 

  84. Jay MT, Chirico S, Siow RCM, et al. Modulation of vascular tone: effects on L-arginine transport and oxide synthesis. Exp Physiol 1997;82:349–360.

    PubMed  CAS  Google Scholar 

  85. Schmidt HHHW, Lohmann SM, Walter U. The nitric oxide cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1993;1178:153–175.

    Article  PubMed  CAS  Google Scholar 

  86. Yet SF, Pellaconi A, Patterson C, et al. Induction of heme oxygenase-1 expression in vascular smooth muscle cells: a link to endotoxic shock. J Biol Chem 1997:272:4295–4301

    Article  PubMed  CAS  Google Scholar 

  87. Weiss G, Wernerfelmayer G, Werner ER, et al. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969–976.

    Article  PubMed  CAS  Google Scholar 

  88. Darley-Usmar V, White R. Disruption of vascular signalling by the reaction of nitric oxide with superoxide: implications for cardiovascular disease. Exp Physiol 1997;82:305–316.

    PubMed  CAS  Google Scholar 

  89. Buttery LD, Springall DR, Chester AH, et al. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 1996;75:77–85.

    PubMed  CAS  Google Scholar 

  90. Luoma JS, Yla-Herttuala S. Expression of inducible nitric oxide synthase in macrophages and smooth muscle cells in various types of human atherosclerotic lesions. Virchows Arch 1999;434:561–568.

    Article  PubMed  CAS  Google Scholar 

  91. Brandonisio O, Panaro MA, Sisto M, et al. Interactions between Leishmania parasites and host cells. Parasitologia 2000;42:183–190.

    CAS  Google Scholar 

  92. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 1991;3:65–70.

    Article  PubMed  CAS  Google Scholar 

  93. Moilanen E, Vapaatalo H. Nitric oxide in inflammation and immune response. Ann Med 1995;27:359

    Article  PubMed  CAS  Google Scholar 

  94. Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 1999;39:191–220

    Article  PubMed  CAS  Google Scholar 

  95. Hickey MJ. Role of inducible nitric oxide synthase in the regulation ot leucocyte recruitment. Clin Sei 2001;100:1–12.

    Article  CAS  Google Scholar 

  96. Mian R, Marshall JM. Effect of acute systemic hypoxia on vascular permeability and leucocyte adherence in the anaesthetised rat. Cardiovasc Res 1993;27:1531–1537.

    Article  PubMed  CAS  Google Scholar 

  97. Nablo BJ, Chen TY, Schoenfisch MH. Sol-gel derived nitric-oxide releasing materials that reduce bacterial adhesion. J Am Chem Soc 2001;123:9712,9713.

    Google Scholar 

  98. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide mediates anti-inflammatory effects via the p38 mitogen activated protein kinase pathway. Nat Med 2000;6:422–428.

    Article  PubMed  CAS  Google Scholar 

  99. Thom SR, Ohnishi ST, Ischiropoulos H. Nitric oxide released by platelets inhibits neutrophil B2 integrin function following acute carbon monoxide poisoning. Toxicol Appl Pharmacol 1994;128:105–110.

    Article  PubMed  CAS  Google Scholar 

  100. Guidotti TL. Hydrogen sulphide. Occup Med 1996;46:367–371

    Article  CAS  Google Scholar 

  101. Setko NP, Zheludeva GN, Mazaeva SG. Reaction of the immune system of the body to combined effects of chemical agents. Gigiena Sanitariia 1989;3:24–26.

    Google Scholar 

  102. Ellard DR, Castle PC, Mian R. The effect of a short term mental stressor on leukocyte activation. Int J Psychophysiol 2001;41:93–100.

    Article  PubMed  CAS  Google Scholar 

  103. Bokoch GM. Microbial killing: hold the bleach and pass the salt. Nat Immunol 2002;3:340–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carson, R.J., Seyffarth, G., Mian, R., Maddock, H. (2004). Interactions Between Gasotransmitters. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics