Skip to main content

Modulation of Multiple Types of Ion Channels by Carbon Monoxide in Nonvascular Tissues and Cells

  • Chapter
Signal Transduction and the Gasotransmitters
  • 227 Accesses

Summary

Carbon monoxide (CO) is a gasotransmitter. Once generated in cells, CO affects specific cellular functions depending on cell types and specific targets in the cells. Ion channels couple membrane excitability and metabolism to cellular functions. The interaction of CO and ion channels constitutes an important mechanism for the biological effect of CO. CO has been reported to alter the expression or function of K+ channels, Ca2+ channels, Na+ channels, and other types of nonselective ion channels in different tissues. Different types of K+ channels are the main target of CO in various tissues including visceral smooth muscle cells. Modulation of Ca2+ channel function by CO has been controversial, especially in chemosensitive cells of the carotid body. The diversity of effects of CO on ion channels is best exemplified in neurons. Future studies need to establish more specifically the role of endogenous CO in the regulation of the ion channel, the molecular mechanisms for the CO-induced changes in ion channel function and expression, and the correlation of the effects of CO on ion channels with specific cellular functions. Pathophysiological implications of the effects of CO on ion channels should also be intensively investigated to elucidate the pathological role of abnormal CO metabolism and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang R. Two’s company, three’s a crowd—can H2S be the third endogenous gaseous transmitter? FASEB J 2002;16:1792–1798.

    Article  PubMed  CAS  Google Scholar 

  2. Brüne B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987;32:497–504.

    PubMed  Google Scholar 

  3. Rattan S, Chakder S. Inhibitory effect of CO on internal anal sphincter: heme oxygenase inhibitor inhibits NANC relaxation. Am J Physiol 1993;265:G799–G804.

    PubMed  CAS  Google Scholar 

  4. Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185–4194.

    PubMed  CAS  Google Scholar 

  5. Abraham NG, Alam J, Nath K. Herne Oxygenase in Biology and Medicine. Kluwer Academic/Plenum: New York, 2002.

    Book  Google Scholar 

  6. Wang R. Carbon Monoxide and Cardiovascular Functions. CRC Press: Boca Raton, FL, 2001.

    Book  Google Scholar 

  7. Trischmann U, Klockner U, Isenberg G, et al. Carbon monoxide inhibits depolarization-induced Ca rise and increases cyclic GMP in visceral smooth muscle cells. Biochem Pharmacol 1991;41:237–241.

    Article  PubMed  CAS  Google Scholar 

  8. Wang R, Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 1997;272:8222–8226.

    Article  PubMed  CAS  Google Scholar 

  9. Farrugia G, Irons WA, Rae JL, et al. Activation of whole cell currents in isolated human jejunal circular smooth muscle cells by carbon monoxide. Am J Physiol 1993;264: G1184–G1189.

    PubMed  CAS  Google Scholar 

  10. Farrugia G, Miller SM, Rich A, et al. Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum. Am J Physiol 1998;274: G350–G358.

    PubMed  CAS  Google Scholar 

  11. Wang R, Wang ZZ, Wu L. Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 1997; 121:927–934.

    Article  PubMed  CAS  Google Scholar 

  12. Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998;76:1–15.

    Article  PubMed  Google Scholar 

  13. Jaggar JH, Leffler CW, Cheranov SY, et al. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 2002;91:610–617.

    Article  PubMed  CAS  Google Scholar 

  14. Xue L, Farrugia G, Miller SM, et al. Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc Natl Acad Sci USA 2000;97:1851–1855.

    Article  PubMed  CAS  Google Scholar 

  15. Farrugia G, Szurszewski JH. Herne oxygenase, carbon monoxide, and interstitial cells of Cajal. Microsc Res Tech 1999;47:321–324.

    Article  PubMed  CAS  Google Scholar 

  16. Werkstrom V, Ny L, Persson K, et al. Carbon monoxide-induced relaxation and distribution of haem oxygenase isoenzymes in the pig urethra and lower oesophagogastric junction. Br J Pharmacol 1997120:312–318.

    Google Scholar 

  17. Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol 1996;117:1600–1606.

    Article  PubMed  CAS  Google Scholar 

  18. Rich A, Farrugia G, Rae JL. Carbon monoxide stimulates a potassium-selective current in rabbit corneal epithelial cells. Am J Physiol 1994;267:C435–C442.

    PubMed  CAS  Google Scholar 

  19. Lu M, Zhu Y, Balazy M, Reddy KM, et al. Effect of angiotensin II on the apical K+ channel in the thick ascending limb of the rat kidney. J Gen Physiol 1996;108:537–547.

    Article  PubMed  CAS  Google Scholar 

  20. Liu H, Mount DB, Nasjletti A, Wang W. Carbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb. J Clin Invest 1999;103:963–970.

    Article  PubMed  CAS  Google Scholar 

  21. Riesco-Fagundo AM, Perez-Garcia MT, Gonzalez C, et al. O2 modulates large-conductance Ca2+-dependent K+ channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism. Circ Res 2001;89:430–436.

    Article  PubMed  CAS  Google Scholar 

  22. Linden DJ, Narasimhan K, Gurfel D. Protoporphyrins modulate voltage-gated Ca current in AtT-20 pituitary cells. J Neurophysiol 1993;70:2673–2677.

    PubMed  CAS  Google Scholar 

  23. Overholt JL, Bright GR, Prabhakar NR. Carbon monoxide and carotid body chemoreception. Adv Exp Med Biol 1996;410:341–344.

    Article  PubMed  CAS  Google Scholar 

  24. Prabhakar NR. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 1999;115:161–168.

    Article  PubMed  CAS  Google Scholar 

  25. Mokashi A, Roy A, Rozanov C, et al. High pCO does not alter pHi, but raises [Ca2+]i in cultured rat carotid body glomus cells in the absence and presence of CdCl2. Brain Res 1998;803:194–197.

    Article  PubMed  CAS  Google Scholar 

  26. Roy A, Rozanov C, Iturriaga R, et al. Acid-sensing by carotid body is inhibited by blockers of voltagesensitive Ca2+ channels. Brain Res 1997;769:396–399.

    Article  PubMed  CAS  Google Scholar 

  27. Rozanov C, Roy A, Mokashi A, et al. Chemosensory response to high pCO is blocked by cadmium, a voltage-sensitive calcium channel blocker. Brain Res 1999;833:101–107.

    Article  PubMed  CAS  Google Scholar 

  28. Lopez-Lopez JR, Gonzalez C. Time course of K+ current inhibition by low oxygen in chemoreceptor cells of adult rabbit carotid body: effects of carbon monoxide. FEBS Lett 1992;299:251–254.

    Article  PubMed  CAS  Google Scholar 

  29. Lin H, McGrath JJ. Carbon monoxide effects on calcium levels in vascular smooth muscle. Life Sci 1988;43:1813–1816.

    Article  PubMed  CAS  Google Scholar 

  30. Kwon S, Chung S, Ahn D, et al. Mechanism of carbon monoxide-induced relaxation in the guinea pig ileal smooth muscle. J Vet Med Sci 2001;63:389–393.

    Article  PubMed  CAS  Google Scholar 

  31. Verma AD, Hirsch J, Glatt CE, et al. Carbon monoxide: a putative neural messenger. Science 1993;259:381–384.

    Article  PubMed  CAS  Google Scholar 

  32. Zhuo MS, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993;260:1946–1950.

    Article  PubMed  CAS  Google Scholar 

  33. Lamar CA, Mahesh VB, Brann DW. Regulation of gonadotrophin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide? Endocrinology 1996;137:790–793.

    Article  PubMed  CAS  Google Scholar 

  34. Pineda J, Kogan JH, Aghajanian GK. Nitric oxide and carbon monoxide activate locus coeruleus neurons through a cGMP-dependent protein kinase: involvement of a nonselective cationic channel. J Neurosci 1996;16:1389–1399.

    PubMed  CAS  Google Scholar 

  35. Leinders-Zufall T, Shepherd GM, Zufall F. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide. J Neurophysiol 1995;74:1498–1508.

    PubMed  CAS  Google Scholar 

  36. Carratu MR, Renna G, Giustino A, De et al. Changes in peripheral nervous system activity produced in rats by prenatal exposure to carbon monoxide. Arch Toxicol 1993;67:297–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, R. (2004). Modulation of Multiple Types of Ion Channels by Carbon Monoxide in Nonvascular Tissues and Cells. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics