Skip to main content

Introduction

  • Chapter
The GMO Handbook
  • 1756 Accesses

Abstract

The rationale for accelerated research in biotechnology has several thrusts; two are to understand the living biological system for advancement of science and to find newer applications for commercialization. Equally motivating factors include satisfying human curiosity about the nature of cell cultures and living things and exploiting the opportunities that biotechnology offers to eliminate long-threatening diseases, improve crop productivity to maintain an adequate supply of food for humans and animals, and generally improve the quality of life (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pace, N. (1997) A molecular news of microbial diversity and biosphere. Science 276, 734.

    Article  CAS  Google Scholar 

  2. Drewes, J. (1993) Into the 21st century. Biotechnology (NY) 11, S16-S20.

    Article  Google Scholar 

  3. Hielman, I. (2000) Biotech regulation under attack. Chem. Eng. NewsMay 22, p. 28.

    Article  Google Scholar 

  4. Primrose, S. B. (1986) The use of genetically engineered microorganism in the production of drugs. J. Appl. Bacteriol. 61, 99–116.

    Article  CAS  Google Scholar 

  5. Raveria, P., Parker, I., and Apsual, M. (1996). Can we use experimental methods in predicting the GMO. Ecology 11, 1670.

    Google Scholar 

  6. Conference of the Parties to the Convention on Biological Diversity, Cartagena Protocol on Biosafety, Dec. 19,2003. Available at http://www.biodiv.org/biosafety/default.aspx. Accessed January 20, 2004.

  7. Snow, A. and Moram-Palma, P. (1997) Commercialization of transgenic plants: potential ecological risk. Bioscience 47, 86s.

    Article  Google Scholar 

  8. Budd, R. (1993). 100 years of biotechnology. Biotechnology (NY) 11, S14-S15.

    Article  Google Scholar 

  9. Budd, R. (1991) Biotechnology in the 20th century. Soc. Stud. Sci. 21, 415–457.

    Article  Google Scholar 

  10. Anderson, W. (1992) Human gene therapy. Science 256, 808–813.

    Article  CAS  Google Scholar 

  11. Bailey, J. E. (1991) Towards a science of metabolic engineering. Science 272, 1668–1675.

    Article  Google Scholar 

  12. Wilcox, G. and Studnicka, G. (1998) Expression of foreign proteins in microbes. Biotechnol. Appl. Biochem. 10, 500–509.

    Google Scholar 

  13. Johnson, I. S. (1983) Human insulin from recombinant DNA technology. Science 219, 632–637.

    Article  CAS  Google Scholar 

  14. Ratafia, M. (1987) Worldwide opportunities in genetically engineered vaccines. Biotechnology 5, 1155–1158.

    Google Scholar 

  15. Pastan, I. and FitzGerald, D. (1991) Recombinant toxin for cancer treatment. Science 254, 1173–1177.

    Article  CAS  Google Scholar 

  16. Hodgson, J. (1991) Making monoclonal antibodies in microbes. Biotechnology (NY) 9, 421–425.

    Article  CAS  Google Scholar 

  17. Meiri, H. and Altman, A. (1998) Agricultural and agricultural biotechnology development towards the 21st century. In Agricultural Biotechnology(Altman, A., ed.). Marcel Dekker, New York, pp. 1–17.

    Google Scholar 

  18. Wilcox, G. and Studnicka, G. (1988) Expression of foreign proteins in microbes. Biotech Appl. Biochem. 10, 500–509.

    CAS  Google Scholar 

  19. Murray, F. and Gaiannakas, K. (2001) Agricultural biotechnology and industry structure. AgBio Forurn 4, 137–151.

    Google Scholar 

  20. James, C. (2002) Global status of transgenic crops. ISAAA Briefs No. 27 Available at www.Isaaa.org. Accessed January 19, 2004.

    Google Scholar 

  21. Raybould, A. F. (1999) Transgenic and agriculture going with the flow. Trends Plant Sci. 4, 247.

    Article  Google Scholar 

  22. Talbot, W. (1990) Manufacture of biopharmaceutical proteins by mammalian cell culture system. Biotechnol. Adv. 8, 729–739.

    Article  Google Scholar 

  23. Jaenisch, R. (1988) Transgenic animals. Science 240, 1468–1474.

    Article  CAS  Google Scholar 

  24. Duvick, N. D. (1999) How much caution in the fields. Science 286, 418.

    Article  CAS  Google Scholar 

  25. Liu, M. A. (1998) Vaccine development. Nat. Med. 4, 515.

    Article  CAS  Google Scholar 

  26. Jefrey, M. (1999) Immunotherapy of cancer. Ann. NY Acad. Sci. 866, 67.

    Google Scholar 

  27. UN Environment Program. (1995) UNEP International Technological Guidelines for Safety in

    Google Scholar 

  28. Biotechnology. Available at http://www.unep.org/unep/program/natres/biodiv/irp/unepgds.htm.

  29. Accessed January 20, 2004.

    Google Scholar 

  30. Qaim, M and Zilberman, D. (2003). Yield effects of genetically modified crops in developing countries. Science 299, 900–1001.

    Article  CAS  Google Scholar 

  31. Potrykus, I. (1991) Gene transfers in plants: an assessment. Biotechnology (NY) 8, 535–542.

    Article  Google Scholar 

  32. Sprent, J. (1986) Benefits of Rhizobium to agriculture. Trends Biotechnol. 4, 124–129.

    Article  Google Scholar 

  33. Meesun, R. and Warren, G. (1989) Insect control with genetically engineered crops. Annu. Rev. Entomol. 34, 372–381.

    Google Scholar 

  34. Pollack, A. (2000) Opportunity for agricultural biotech. Science 288, 615.

    Article  Google Scholar 

  35. Kelly, P. D. (1992) Are isolated genes useful? Biotechnology (NY) 10, 52–55.

    Article  CAS  Google Scholar 

  36. Waldmann, T. (1991) Monoclonal antibodies in diagnosis and therapy. Science 252,1657–1662.

    Article  CAS  Google Scholar 

  37. Fuxa, J. (1991) Insect control with baculovirus. Biotechnol. Adv. 9, 425–442.

    Article  CAS  Google Scholar 

  38. Graham, F. L. (1990) Adenoviruses as expression vectors and recombinant vaccines. Trends Biotechnol. 8, 85–87.

    Article  CAS  Google Scholar 

  39. Drahos, D. J. (1991) Field-testing of genetically engineered microbes. Biotechnol. Adv. 9, 157–171.

    Article  CAS  Google Scholar 

  40. Glick, B. and Skof, Y. (1986) Environmental implications of recombinant DNA technology. Biotechnol. Adv. 4, 261–277.

    Article  CAS  Google Scholar 

  41. Mulligan, R. C. (1993) The basic science of gene therapy. Science 260, 926–936.

    Article  CAS  Google Scholar 

  42. First, N., Schell, J., and Vasil, I. (1998) Prospects and limitations of agricultural biotechnologies: an update. In Agricultural Biotechnology(Altman, A., ed.). Marcel Dekker, New York, pp. 743–748.

    Google Scholar 

  43. Chen, T. and Powers, D. (1990) Transgenic fish. Trends Biotechnol. 8, 209–215.

    Article  CAS  Google Scholar 

  44. Carver, A. (1996) Transgenic on trial. Scrip. Mag. 11, 51–53.

    Google Scholar 

  45. Jayraman, K. S. (1982) Foreign labs shut. Nature 296, 104.

    Google Scholar 

  46. Wadman, M. (1999) US group sues over approval of Bt crops. Nature 397, 636.

    Article  Google Scholar 

  47. Macer, D. (1994) Perception of risks and benefits of vitro fertilization genetic engineering and biotechnology. Soc. Science. Med. 38, 23–33.

    Article  CAS  Google Scholar 

  48. Losey, J., Rayyor, L., and Carton, M. (1999) Transgenic pollen harms monarch butterfly. Nature 399,214.

    Article  CAS  Google Scholar 

  49. Morrison, M. (1996) Do ruminal bacteria exchange genetic material? Dairy Sci. 79, 1476.

    Article  CAS  Google Scholar 

  50. Larkin, S. (1996) Immunoassay usage in ag and food safety sectors. Genet. Eng. News 16, 12–13.

    Google Scholar 

  51. Clarke, T. (2003) Corn could make cotton pest Bt resistant. Nature Sci. Update Dec 4, 2002. Available at: http://www.nature.com/nsu/021202/021202–2.html. Accessed January 21, 2004.

    Google Scholar 

  52. Jaenisch, R. (1988) Transgenic animals. Science 240, 1468–1474.

    Article  CAS  Google Scholar 

  53. Barton, J. H. (1991) Patenting life. Sci. Am. 264, 40–46.

    Article  CAS  Google Scholar 

  54. Gregory, G., Raiser, G., and Small, A. (2003) Agricultural Biotechnology’s Complementary Intellectual Assets Review of Economics and Statistics. Rev. Econ. Stat. 85, 349–363.

    Article  Google Scholar 

  55. Dunhill, J. and Paul E. (1990) Impact of genetically modified crops. Agriculture 9, 280.

    Google Scholar 

  56. Kestrel, D., Taylor, M., Maryanski, J., Flamm, E., and Kahl, L. (1992) The safety of foods developed by biotechnology. Science 256, 1747–1749.

    Article  Google Scholar 

  57. Van Brunt, J. (1986) Fermentation economics. Biotechnology (NY) 4, 395–401.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parekh, S.R., Gregg, A. (2004). Introduction. In: Parekh, S.R. (eds) The GMO Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-801-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-801-4_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-482-1

  • Online ISBN: 978-1-59259-801-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics