Skip to main content

Natural Product and Synthetic Proteasome Inhibitors

  • Chapter
Proteasome Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The ubiquitin—proteasome pathway has emerged as a major player in regulation several important signaling processes such as cell proliferation and inflammation. As a result, proteasome inhibitors are being intensely pursued as both molecular probes of proteasome biology and as therapeutic agents. Thus far, many proteasome inhibitors have been synthesized or isolated from natural sources, some of which are in clinical trial for cancer therapy. In this chapter, we discuss recent developments of both natural and synthetic proteasome inhibitors. Particular attention is focused on comparisons of the kinetic and/or biologic data for various proteasome inhibitors. Finally, we describe the design of novel proteasome inhibitors that target specific subunits of the proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz AL, et al. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 1999;50:57–74.

    Article  PubMed  CAS  Google Scholar 

  2. Lee DH, et al. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403.

    Article  PubMed  CAS  Google Scholar 

  3. Myung J, et al. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 2001;21:215–273.

    Article  Google Scholar 

  4. Kisselev AF, et al. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–758.

    Article  PubMed  CAS  Google Scholar 

  5. Cardozo C. Catalytic components of the bovine pituitary multicatalytic proteinase complex (proteasome). Enzyme Protein 1993;47:296–305.

    PubMed  CAS  Google Scholar 

  6. Orlowski M. The multicatalytic proteinase complex (proteasome) and intracellular protein degradation: diverse functions of an intracellular particle. J Lab Clin Med 1993;121:187–189.

    PubMed  CAS  Google Scholar 

  7. Wilk S, et al. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 1983;40:842–849.

    Article  PubMed  CAS  Google Scholar 

  8. Figueiredo-Pereira ME, et al. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J Neurochem 1994;63:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  9. Orlowski M. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 1990;29:10289–10297.

    Article  PubMed  CAS  Google Scholar 

  10. Groll M, et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997;386:463–471.

    Article  PubMed  CAS  Google Scholar 

  11. Löwe J, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 1995;268:533–539.

    Article  PubMed  Google Scholar 

  12. Rock KL, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78:761–771.

    Article  PubMed  CAS  Google Scholar 

  13. Wilk S, et al. Synthetic inhibitors of the multicatalytic proteinase complex (proteasome). Enzyme Protein 1993;47:306–313.

    PubMed  CAS  Google Scholar 

  14. Vinitsky A, et al. Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J Biol Chem 1994;269:29860–29866.

    PubMed  CAS  Google Scholar 

  15. Lynas JF, et al. Inhibitors of the chymotrypsin-like activity of proteasome based on di- and tri-peptidyl alpha-keto aldehydes (glyoxals). Bioorg Med Chem Lett 1998;8:373–378.

    Article  PubMed  CAS  Google Scholar 

  16. Lum RT, et al. Selective inhibition of the chymotrypsin-like activity of the 20S proteasome by 5-methoxy-1-indanone dipeptide benzamides. Bioorg Med Chem Lett 1998;8:209–214.

    Article  PubMed  CAS  Google Scholar 

  17. Lum RT, et al. A new structural class of proteasome inhibitors that prevent NF-kappa B activation. Biochem Pharmacol 1998;55:1391–1397.

    Article  PubMed  CAS  Google Scholar 

  18. Iqbal M, et al. Potent inhibitors of proteasome. J Med Chem 1995;38:2276–2277.

    Article  PubMed  CAS  Google Scholar 

  19. Iqbal M, et al. Potent α-ketocarbonyl and boronic ester derived inhibitors of proteasome. Bioorg Med Chem Lett 1996;6:287–290.

    Article  CAS  Google Scholar 

  20. Chatterjee S et al. P’-extended alpha-ketoamide inhibitors of proteasome. Bioorg Med Chem Leu 1999;9:2603–2606.

    Article  CAS  Google Scholar 

  21. Fevig JM, et al. Rational design of boropeptide thrombin inhibitors: beta, beta-dialkyl-phenethylglycine P2 analogs of DuP 714 with greater selectivity over complement factor I and an improved safety profile. Bioorg Med Chem Lett 1998;8:301–306.

    Article  PubMed  CAS  Google Scholar 

  22. Adams J, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998;8:333–338.

    Article  PubMed  CAS  Google Scholar 

  23. Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002;7:9–16.

    Article  PubMed  CAS  Google Scholar 

  24. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  25. Spaltenstein A, et al. Design and synthesis of novel protease inhibitors. Tripeptide a′,β3′-epoxyketones as nanomolar inactivators of the proteasome. Tet Lett 1996;37:1343–1346.

    Article  CAS  Google Scholar 

  26. Bromme D, et al. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin 02 in comparison with cathepsins S and L. Biochem J 1996;315:85–89.

    PubMed  CAS  Google Scholar 

  27. Palmer JT, et al. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 1995;38:3193–3196.

    Article  PubMed  CAS  Google Scholar 

  28. Bogyo M, et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc Natl Acad Sci USA 1997;94:6629–6634.

    Article  PubMed  CAS  Google Scholar 

  29. Bogyo M, et al. Substrate binding and sequence preference of the proteasome revealed by active-sitedirected affinity probes. Chem Biol 1998;5:307–320.

    Article  PubMed  CAS  Google Scholar 

  30. Kessler BM, et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem Biol 2001;8:913–929.

    Article  PubMed  CAS  Google Scholar 

  31. Omura S, et al. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells [letter]. J Antibiot (Tokyo) 1991;44:113–116.

    Article  CAS  Google Scholar 

  32. Omura S, et al. Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells [Letter]. J Antibiot (Tokyo) 1991;44:117–118.

    Article  CAS  Google Scholar 

  33. Fenteany G, et al. A beta-lactone related to lactacystin induces neurte outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc Natl Acad Sci USA 1994;91:3358–3362.

    Article  PubMed  CAS  Google Scholar 

  34. Katagiri M, et al. The neuritogenesis inducer lactacystin arrests cell cycle at both G0/G1 and G2 phases in neuro 2a cells [Letter]. J Antibiot (Tokyo) 1995;48:344–346.

    Article  CAS  Google Scholar 

  35. Corey EJ, et al. Total synthesis and biological activity of lactacystin, omuralide and analogs. Chem Pharm Bull 1999;47:1–10.

    Article  PubMed  CAS  Google Scholar 

  36. Fenteany G, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268:726–731.

    Article  PubMed  CAS  Google Scholar 

  37. Dick LR, et al. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem 1996;271:7273–7276.

    Article  PubMed  CAS  Google Scholar 

  38. Dick LR, et al. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 1997;272:182–188.

    Article  PubMed  CAS  Google Scholar 

  39. Ostrowska H, et al. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem Biophys Res Commun 1997;234:729–732.

    Article  PubMed  CAS  Google Scholar 

  40. Ostrowska H, et al. Separation of cathepsin A-like enzyme and the proteasome: evidence that lactacystin/ beta-lactone is not a specific inhibitor of the proteasome. Int J Biochem Cell Biol 2000;32:747–757.

    Article  PubMed  CAS  Google Scholar 

  41. Hanada M, et al. Epoxomicin, a new antitumor agent of microbial origin. J Antibiot 1992;45:1746–1752.

    Article  PubMed  CAS  Google Scholar 

  42. Sin N, et al. Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 1999;9:2283–2288.

    Article  PubMed  CAS  Google Scholar 

  43. Meng L, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc Natl Acad Sci USA 1999;96:10403–10408.

    Article  PubMed  CAS  Google Scholar 

  44. Groll M, et al. Crystal structure of epoxomicin:20S proteasome reveals molecular basis for selectivity of a′,β′-epoxyketone proteasome inhibitors. J Am Chem Soc 2000;122:1237–1238.

    Article  CAS  Google Scholar 

  45. Elofsson M, et al. Towards subunit specific proteasome inhibitors: synthesis and evaluation of peptide a′,ββ′-epoxyketones. Chem Biol 1999;6:811–822.

    Article  PubMed  CAS  Google Scholar 

  46. Sugawara K et al. Eponemycin, a new antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. J Antibiot 1990;43:8–18.

    Article  PubMed  CAS  Google Scholar 

  47. Meng L, et al. Eponemycin exerts its antitumor effect through inhibition of proteasome function. Cancer Res 1999;59:2798–2801.

    PubMed  CAS  Google Scholar 

  48. Koguchi Y, et al. TMC-89A and B, new proteasome inhibitors from Streptomyces sp. TC 1087. J Antibiot (Tokyo) 2000;53:967–972.

    Article  CAS  Google Scholar 

  49. Koguchi Y, et al. TMC-86A, B and TMC-96, new proteasome inhibitors from Streptomyces sp. TC 1084 and Saccharothrix sp. TC 1094. II. Physico-chemical properties and structure determination. J Antibiot (Tokyo) 2000;53:63–65.

    Article  CAS  Google Scholar 

  50. Koguchi Y, et al. TMC-95A, B, C, and D, novel proteasome inhibitors produced byApiosporamontagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot (Tokyo) 2000;53:105–109.

    Article  CAS  Google Scholar 

  51. Kohno J, et al. Structures of TMC-95A-D: novel proteasome inhibitors from Apiospora montagnei sacc. TC 1093. J Org Chem 2000;65:990–995.

    Article  PubMed  CAS  Google Scholar 

  52. Groll M, Koguchi Y, Huber R, Kohno J. Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 2001;311:543–548.

    Article  PubMed  CAS  Google Scholar 

  53. Sekizawa R, et al. Isolation and structural determination of phepropeptins A, B, C, and D, new proteasome inhibitors, produced by Streptomyces sp. J Antibiot (Tokyo) 2001;54:874–881.

    Article  CAS  Google Scholar 

  54. Pahl HL, et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 1996;183:1829–1840.

    Article  PubMed  CAS  Google Scholar 

  55. Kroll M, et al. The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chem Biol 1999;6:689–698.

    Article  PubMed  CAS  Google Scholar 

  56. Nam S, et al. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 2001;276:13322–13330.

    Article  PubMed  CAS  Google Scholar 

  57. Myung J, et al. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell 2001;7:411–420.

    Article  PubMed  CAS  Google Scholar 

  58. Loidl G, et al. Bivalency as a principle for proteasome inhibition. Proc Nall Acad Sci USA 1999;96:5418–5422.

    Article  CAS  Google Scholar 

  59. Loidl G, et al. Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 1999;6:197–204.

    Article  PubMed  CAS  Google Scholar 

  60. Nazif T, et al. Global analysis of proteasomal substrate specificity using positional- scanning libraries of covalent inhibitors. Proc Natl Acad Sci USA 2001;98:2967–2972.

    Article  PubMed  CAS  Google Scholar 

  61. Harding CV, et al. Novel dipeptide aldehydes are proteasome inhibitors and block the MHC-I antigenprocessing pathway. J Immunol 1995;155:1767–1775.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, K.B., Crews, C.M. (2004). Natural Product and Synthetic Proteasome Inhibitors. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics