Skip to main content

Structures of the Yeast Proteasome Core Particle in Complex with Inhibitors

  • Chapter
Proteasome Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 226 Accesses

Abstract

Intracellular proteolysis is an essential process (1). The ubiquitin—proteasome pathway represents a strictly controlled complex enzymatic machinery for nonlysosomal protein degradation in eukaryotic cells. Thus, it is particularly important for the turnover of many critical proteins controlling a vast array of biologic pathways, including proliferation, differentiation, and inflammation (2–4). The system functions in two steps: first, a protein substrate is marked by covalent addition of a poly-ubiquitin chain; second, the poly-ubiquitinated substrate is degraded by a 2500-kDa proteolytic complex called the 26S proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hershko A, et al. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.

    Article  PubMed  CAS  Google Scholar 

  2. Bochtler M, et al. The proteasome. Annu Rev Biophys Biomol Struct 1999;28:295–317.

    Article  PubMed  CAS  Google Scholar 

  3. Coux O, et al. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996;65:801–847.

    Article  PubMed  CAS  Google Scholar 

  4. Kloetzel PM. The proteasome system: a neglected tool for improvement of novel therapeutic strategies? Gene Ther 1998;5:1297–1298.

    Article  PubMed  CAS  Google Scholar 

  5. Löwe J, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 1995;268:533–539.

    Article  PubMed  Google Scholar 

  6. Groll M, et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997;386:463–471.

    Article  PubMed  CAS  Google Scholar 

  7. Orlowski M. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 1990;29:10289–10297.

    Article  PubMed  CAS  Google Scholar 

  8. Kisselev AF, et al. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 1999;274:3363–3371.

    Article  PubMed  CAS  Google Scholar 

  9. Adams J, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998;8:333–338.

    Article  PubMed  CAS  Google Scholar 

  10. Elofsson M, et al. Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide aloha’ ‚beta’ -epoxvketones. Chem Biol 1999;6:811–822.

    Article  PubMed  CAS  Google Scholar 

  11. Loidl G, et al. Bivalency as a principle for proteasome inhibition. Proc Natl Acad Sci USA 1999;96;5418–5422.

    Article  PubMed  CAS  Google Scholar 

  12. Fenteany G, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268:726–731.

    Article  PubMed  CAS  Google Scholar 

  13. Meng L, et al. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res 1999;59:2798–2801.

    PubMed  CAS  Google Scholar 

  14. Meng L, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 1999;96:10403–10408.

    Article  PubMed  CAS  Google Scholar 

  15. Vinitsky A, et al. Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J Biol Chem 1994;269:29860–29866.

    PubMed  CAS  Google Scholar 

  16. Rock KL, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78:761–771.

    Article  PubMed  CAS  Google Scholar 

  17. Craiu A, et al. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 1997;272:13437–13445.

    Article  PubMed  CAS  Google Scholar 

  18. Dick LR, et al. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 1997;272:182–188.

    Article  PubMed  CAS  Google Scholar 

  19. Loidl G, et al. Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 1999;6:197–204.

    Article  PubMed  CAS  Google Scholar 

  20. Groll M, et al. Crystal structure of epoxomicin:20S proteasome reveals a molecular basis for selectivity of alpha’ ‚beta’ -epoxyketone proteasome inhibitors. J Am Chem Soc 2000;122:1237–1238.

    Article  CAS  Google Scholar 

  21. Andre P, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci USA 1998;95:13120–13124.

    Article  PubMed  CAS  Google Scholar 

  22. Schmidtke G, et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem 1999;274:35734–35740.

    Article  PubMed  CAS  Google Scholar 

  23. Bogyo M, et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc Natl Acad Sci USA 1997;94:6629–6634.

    Article  PubMed  CAS  Google Scholar 

  24. Nazif T, et al. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc Nail Acad Sci USA 2001;98:2967–2972.

    Article  CAS  Google Scholar 

  25. Groll M, et al. Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome. Chem Biol 2002;9:1–20.

    Article  Google Scholar 

  26. Groettrup M, et al. Peptide antigen production by the proteasome: complexity provides efficiency. Immunol Today 1996;17:429–435.

    Article  PubMed  CAS  Google Scholar 

  27. Koguchi Y, et al. TMC-95A, B, C, and D, novel proteasome inhibitors produced byApiosporamontagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot (Tokyo) 2000;53:105–109.

    Article  CAS  Google Scholar 

  28. Kohno J, et al. Structures of TMC-95A-D: novel proteasome inhibitors from Apiospora montagnei sacc. TC 1093. J Org Chem 2000;65:990–995.

    Article  PubMed  CAS  Google Scholar 

  29. Groll M, et al. Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 2001;311:543–548.

    Article  PubMed  CAS  Google Scholar 

  30. Kaiser M, et al. The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew Chem Int Ed 2002;41:780–783.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groll, M., Huber, R. (2004). Structures of the Yeast Proteasome Core Particle in Complex with Inhibitors. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics