Skip to main content

Preclinical Development of Bortezomib (VELCADE™)

Rationale for Clinical Studies

  • Chapter
Book cover Proteasome Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The first three clinical studies of bortezomib tested regimens of differing dose-intensities: once weekly for 4 wk on a 6 wk cycle (least intensive), twice weekly for 2 wk of a 3 wk cycle, and twice weekly for 4 wk of a 6 wk cycle (most intensive). From these studies, the intermediate-intensity regimen has been advanced, because it is the best tolerated but still achieves a high level of proteasome activity. Patients on this regimen treated with 1.0–1.50 mg/m2bortezomib had a reduction in proteasome activity to about 40% of baseline but recovered most activity within the 72 h period between doses. Doselimiting toxicities for this regimen were peripheral sensory neuropathy (PSN) and diarrhea. Patients with preexisting damage from prior neurotoxic chemotherapy may be more likely to develop PSN, and this possibility is being investigated in ongoing trials. Diarrhea is also adequately managed with loperamide. Notably, hematologic events in the early phase I trials were uncommon—thrombocytopenia was not dose-limiting; febrile neutropenia was rare; and hepatic, renal, and cardiotoxicity have not been noted. Given this favorable side effect profile, bortezomib may be particularly effective in combination-treatment regimens. In preclinical studies, bortezomib has shown at least an additive effect with CPT-11, gemcitabine, and docetaxel, and trials are in progress to determine the optimum dosing schedules for these combinations. In these ongoing trials, no unexpected or additive toxicities have been observed yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. CancerRes 2001;61:3071–3076.

    CAS  Google Scholar 

  2. Berenson JR, Ma HM, Vescio R. The role of nuclear factor-KB in the biology and treatment of multiple myeloma. Semin Oncol 2001;28:626–633.

    Article  PubMed  CAS  Google Scholar 

  3. Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol 1999;105:752–757.

    Article  PubMed  CAS  Google Scholar 

  4. Delic J, Masdehors P, Omura S, et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alphainitiated apoptosis. Br J Cancer 1998;77:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  5. Orlowski RZ, Eswara JR, Lafond-Walker A, Greyer MR, Orlowski M, Dang CV. Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 1998;58:4342–4348.

    PubMed  CAS  Google Scholar 

  6. MacLaren AP, Chapman RS, Wyllie AH, Watson CJ. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ 2001;8:210–218.

    Article  PubMed  CAS  Google Scholar 

  7. Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 2000;14:65–77.

    PubMed  CAS  Google Scholar 

  8. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–758.

    Article  PubMed  CAS  Google Scholar 

  9. Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 2000;6:3719–3728.

    PubMed  CAS  Google Scholar 

  10. Almond JB, Snowden RT, Hunter A, Dinsdale D, Cain K, Cohen GM. Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia 2001;15:1388–1397.

    Article  PubMed  CAS  Google Scholar 

  11. Kumatori A, Tanaka K, Inamura N, et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 1990;87:7071–7075.

    Article  PubMed  CAS  Google Scholar 

  12. Palermo A, Mulligan G, D’Cruz C, et al. Coordinate regulation of proteasome genes in cancer. In: Proceedings of the 2001 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2001:7.

    Google Scholar 

  13. LeBlanc R, Catley LP, Hideshima T, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002;62:4996–5000.

    PubMed  CAS  Google Scholar 

  14. Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA. Proteasomes play an essential role in thymocyte apoptosis. EMBO J 1996;15:3835–3844.

    PubMed  CAS  Google Scholar 

  15. Sadoul R, Fernandez PA, Quiquerez AL et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J 1996;15:3845–3852.

    PubMed  CAS  Google Scholar 

  16. Theuer J, Dechend R, Muller DN et al. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats. BMC Cardiovasc Disord 2002;2:3.

    Article  PubMed  Google Scholar 

  17. Chen C, Edelstein LC, Gelinas C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bc1-xL. Mol Cell Biol 2000;20:2687–2695.

    Article  PubMed  Google Scholar 

  18. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680–1683.

    Article  PubMed  CAS  Google Scholar 

  19. Bancroft CC, Chen Z, Dong G, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways. Clin Cancer Res 2001;7:435–442.

    PubMed  CAS  Google Scholar 

  20. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 1996;87:1104–1112.

    PubMed  CAS  Google Scholar 

  21. Naujokat C, Sezer O, Zinke H, Leclere A, Hauptmann S, Possinger K. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cip1 in human immature leukemic cells. Eur J Haematol 2000;65:221–236.

    Article  PubMed  CAS  Google Scholar 

  22. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitorinduced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000;75:2288–2297.

    Article  PubMed  CAS  Google Scholar 

  23. Fan XM, Wong BC, Wang WP, et al. Inhibition of proteasome function induced apoptosis in gastric cancer. Int J Cancer 2001;93:481–488.

    Article  PubMed  CAS  Google Scholar 

  24. Adams J, Behnke M, Chen S, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998;8:333–338.

    Article  PubMed  CAS  Google Scholar 

  25. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    PubMed  CAS  Google Scholar 

  26. Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999;5:2638–2645.

    PubMed  CAS  Google Scholar 

  27. Shah SA, Potter MW, McDade TP, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001;82:110–122.

    Article  PubMed  CAS  Google Scholar 

  28. Sunwoo JB, Chen Z, Dong G, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-KB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001;7:1419–1428.

    PubMed  CAS  Google Scholar 

  29. Ogiso Y, Tomida A, Lei S, Omura S, Tsuruo T. Proteasome inhibition circumvents solid tumor resistance to topoisomerase II-directed drugs. Cancer Res 2000;60:2429–2434.

    PubMed  CAS  Google Scholar 

  30. Pham L, Tamayo A, Lo P, Yoshimura L, Ford RJ. Antitumor activity of the proteasome inhibitor PS-341 in mantle cell lymphoma B cells. Blood 2001;98:465a.

    Google Scholar 

  31. Feinman R, Gangurde P, Miller S et al. Proteasome inhibitor PS-341 inhibits constitutive NF-κB activation and bypasses the anti-apoptotic bc -2 signal in human multiple myeloma cells. Blood 2001;98:640a.

    Google Scholar 

  32. Herrmann JL, Briones F, Jr, Brisbay S, Logothetis CJ, McDonnell TJ. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 1998;17:2889–2899.

    Article  PubMed  CAS  Google Scholar 

  33. An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000;14:1276–1283.

    Article  PubMed  CAS  Google Scholar 

  34. Oyaizu H, Adachi Y, Okumura T et al. Proteasome inhibitor 1 enhances paclitaxel-induced apoptosis in human lung adenocarcinoma cell line. Oncol Rep 2001;8:825–829.

    PubMed  CAS  Google Scholar 

  35. Soligo D, Servida F, Delia D et al. The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 2001;113:126–135.

    Article  PubMed  CAS  Google Scholar 

  36. Li QQ, Yunmbam MK, Zhong X et al. Lactacystin enhances cisplatin sensitivity in resistant human ovarian cancer cell lines via inhibition of DNA repair and ERCC-1 expression. Cell Mol Biol (Noisyle-grand) 2001;47 Online Pub:OL61–OL72.

    Google Scholar 

  37. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 2001;100:11–17.

    Article  PubMed  CAS  Google Scholar 

  38. Cusack JC Jr, Liu R, Houston M et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001;61:3535–3540.

    PubMed  CAS  Google Scholar 

  39. Williams S, Logothetis CJ, Papandreou C, McConkey DJ. Preclinical evaluation of PS-341-based combination chemotherapy in prostate cancer. In: Proceedings of the American Association for Cancer Research, 2001:7.

    Google Scholar 

  40. Gatto SR, Scappini B, Verstovsek S et al. In vitro effects of PS-341 alone and in combination with STI571 in BCR-ABL positive cell lines both sensitive and resistant to STI571. Blood 2001;98:101a.

    Google Scholar 

  41. Pink M, Pien CS, Worland P, Adams J, Kauffman MG. PS-341 enhances chemotherapeutic effect in human xenograft models. In: Proceedings of the American Association for Cancer Research, 2002;43:158.

    Google Scholar 

  42. Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98:795–804.

    Article  PubMed  CAS  Google Scholar 

  43. Sayers TJ, Brooks A, Sekd N, Murphy WJ, Elliott P. The proteasome inhibitor PS-341 sensitizes tumor cells to TRAIL-mediated apoptosis. In: Proceedings of the 2001 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2001;7.

    Google Scholar 

  44. Mimnaugh EG, Neckers L. Biologic rationale for the combination of an Hsp90 antagonist with a proteasome inhibitor. In: Proceedings of the 2001 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2001:7.

    Google Scholar 

  45. Pajonk F, Pajonk K, McBride WH. Apoptosis and radiosensitization of Hodgkin cells by proteasome inhibition. Int J Radiat Oncol Biol Phys 2000;47:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  46. Ng B, Kramer E, Devitt ML et al. Proteasome inhibitor, PS-341, enhances in vitro radiosensitivity of human breast cancer cells treated with radiotherapy or radioimmunotherapy. In: Proceedings of the 2001 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2001:7.

    Google Scholar 

  47. Russo SM, Tepper JE, Baldwin AS et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-κB. Int J Radiat Oncol Biol Phys 2001;50:183–193.

    Article  PubMed  CAS  Google Scholar 

  48. Pervan M, Pajonk F, Sun JR, Withers HR, McBride WH. Molecular pathways that modify tumor radiation response. Am J Clin Oncol 2001;24:481–485.

    Article  PubMed  CAS  Google Scholar 

  49. Kurland JF, Meyn RE. Protease inhibitors restore radiation-induced apoptosis to Bcl-2- expressing lymphoma cells. Int J Cancer 2001;96:327–333.

    Article  PubMed  CAS  Google Scholar 

  50. Chandra J, Niemer I, Gilbreath J et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood 1998;92:4220–4229.

    PubMed  CAS  Google Scholar 

  51. McConkey DJ, Pahler JC, Szanto S, Faderl S, Keating M. Efficacy and mechanisms of proteasome inhibitor-induced apoptosis in chronic lymphocytic leukemia. In: Proceedings of the 2001 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2001:7.

    Google Scholar 

  52. Ma MH, Parker KM, Manyak S et al. Proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma cells to chemotherapeutic agents and overcomes chemoresistance through inhibition of the NF-kappaB pathway. Blood 2001;98:437a.

    Google Scholar 

  53. Williams SA, Papandreou C, McConkey D. Preclinical effects of proteasome inhibitor PS-341 in combination chemotherapy for prostate cancer. In: Proceedings of the American Society of Clinical Oncology-37th Annual Meeting, 2001,20:169b.

    Google Scholar 

  54. Gumerlock PH, Moisan LP, Lau AH, Mack PC, Lara PN, Gandara DR. Docetaxel followed by PS-341 results in phosphorylation and stabilization of p27 and increases response in non-small cell lung carcinoma (NSCLC). Clin Cancer Res 2001;7:157.

    Google Scholar 

  55. Pienta KJ. Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol 2001;28:3–7.

    Article  PubMed  CAS  Google Scholar 

  56. Chadebech P, Brichese L, Baldin V, Vidal S, Valette A. Phosphorylation and proteasome-dependent degradation of Bc1–2 in mitotic-arrested cells after microtubule damage. Biochem Biophys Res Commun 1999;262:823–827.

    Article  PubMed  CAS  Google Scholar 

  57. Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002;7:9–16.

    Article  PubMed  CAS  Google Scholar 

  58. Steiner P, Neumeier H, Lightcap ES, et al. Generation of PS-341-adapted human multiple myeloma cells as experimental tools for analysis of proteasome function in cancer. Blood 2001;98:310a.

    Google Scholar 

  59. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 1999;5:412–417.

    Article  PubMed  Google Scholar 

  60. Wang CY, Guttridge DC, Mayo MW, Baldwin AS, Jr. NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999;19:5923–5929.

    PubMed  CAS  Google Scholar 

  61. Cusack JC, Liu R, Baldwin AS. NF-kappa B and chemoresistance: potentiation of cancer drugs via inhibition of NF-kappa B. Drug Resist Updat 1999;2:271–273.

    Article  PubMed  CAS  Google Scholar 

  62. Shain KH, Landowski TH, Dalton WS. The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 2000;12:557–563.

    Article  PubMed  CAS  Google Scholar 

  63. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999;93:1658–1667.

    PubMed  CAS  Google Scholar 

  64. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myelomaderived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993;82:3712–3720.

    PubMed  CAS  Google Scholar 

  65. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001;20:4519–4527.

    Article  PubMed  CAS  Google Scholar 

  66. Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 2001;28:607–612.

    Article  PubMed  CAS  Google Scholar 

  67. Landowski TH, Dalton WS. Myeloma cell adhesion to fibronectin activates NF-κB and induces the expression of genes contributing to cell adhesion-mediated drug resistance. Blood 2001;98:377a.

    Google Scholar 

  68. Oikawa T, Sasaki T, Nakamura M et al. The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 1998;246:243–248.

    Article  PubMed  CAS  Google Scholar 

  69. Rottman J, Csizmadia V, Ozkaynak E, Kadambi V, Ganley K, Cardoza K. Investigative cardiovascular study of the proteasome inhibitor PS-341 in the mouse. Presented at the 42nd Annual Meeting of the Society of Toxicology, March 9–13, 2003, Salt Lake City, UT.

    Google Scholar 

  70. Lightcap ES, McCormack TA, Pien CS, Chau V, Adams J, Elliott PJ. Proteasome inhibition measurements: clinical application. Clin Chem 2000;46:673–683.

    PubMed  CAS  Google Scholar 

  71. Csizmadia V, Rottman J, Bouchard P, Raczynski A, Juedes M, White P. The proteasome inhibitor PS-341 induces COX-2 in murine and human endothelial cells. Presented at the 42nd Annual Meeting of the Society of Toxicology, March 9–13, 2003, Salt Lake City, UT.

    Google Scholar 

  72. Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-κB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 1996;87:4340–4347.

    PubMed  CAS  Google Scholar 

  73. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor KB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001;194:1861–1874.

    Article  PubMed  CAS  Google Scholar 

  74. Rath PC, Aggarwal BB. Antiproliferative effects of IFN-α correlate with the downregulation of nuclear factor-KB in human Burkitt lymphoma Daudi cells. J Interferon Cytokine Res 2001;21:523–528.

    Article  PubMed  CAS  Google Scholar 

  75. Wolchok JD, Goodman AR, Vilcek J. Activation of NF-κB may be necessary but is not sufficient for induction of H-2 antigens by TNF in J558L murine myeloma cells. J Leukoc Biol 1994;55:7–12.

    PubMed  CAS  Google Scholar 

  76. Borset M, Hjorth-Hansen H, Johnsen AC, et al. Apoptosis, proliferation and NF-κB activation induced by agonistic Fas antibodies in the human myeloma cell line OH-2: amplification of Fas-mediated apoptosis by tumor necrosis factor. Eur J Haematol 1999;63:345–353.

    Article  PubMed  CAS  Google Scholar 

  77. Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS. Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bc -2. Blood 1999;93:3044–3052.

    PubMed  CAS  Google Scholar 

  78. Mori N, Fujimori M, Ikeda S, et al. Constitutive activation of NF-κB in primary adult T-cell leukemia cells. Blood 1999;93:2360–2368.

    PubMed  CAS  Google Scholar 

  79. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000;14:399–402.

    Article  PubMed  CAS  Google Scholar 

  80. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000;164:2200–2206.

    PubMed  CAS  Google Scholar 

  81. Munzert G, Kreitmeier S, Bergmann L. Normal structure of NFKB2, C-REL and BCL-3 gene loci in lymphoproliferative and myeloproliferative disorders. Leuk Lymphoma 2000;38:395–400.

    Article  PubMed  CAS  Google Scholar 

  82. Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-KB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001;98:2301–2307.

    Article  PubMed  CAS  Google Scholar 

  83. Lindholm PF, Bub J, Kaul S, Shidham VB, Kajdacsy-Balla A. The role of constitutive NF-κB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis 2001;18:471–479.

    Article  Google Scholar 

  84. Gasparian AV, Yao YJ, Kowalczyk D, et al. The role of IKK in constitutive activation of NF-κB transcription factor in prostate carcinoma cells. J Cell Sci 2002;115:141–151.

    PubMed  CAS  Google Scholar 

  85. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997;17:3629–3639.

    PubMed  CAS  Google Scholar 

  86. Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-KB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997;100:2952–2960.

    Article  PubMed  CAS  Google Scholar 

  87. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD. Constitutive activation of IKB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999;18:7389–7394.

    Article  PubMed  CAS  Google Scholar 

  88. Bours V, Dejardin E, Goujon-Letawe F, Merville MP, Castronovo V. The NF-κB transcription factor and cancer: high expression of NF-κB- and IKB-related proteins in tumor cell lines. Biochem Pharmacol 1994;47:145–149.

    Article  PubMed  CAS  Google Scholar 

  89. Reuning U, Wilhelm O, Nishiguchi T, et al. Inhibition of NF-κB-Rel A expression by antisense oligodeoxynucleotides suppresses synthesis of urokinase-type plasminogen activator (uPA) but not its inhibitor PAI-1. Nucleic Acids Res 1995;23:3887–3893.

    Article  PubMed  CAS  Google Scholar 

  90. Grundker C, Schulz K, Gunthert AR, Emons G. Luteinizing hormone-releasing hormone induces nuclear factor KB-activation and inhibits apoptosis in ovarian cancer cells. J Clin Endocrinol Metab 2000;85:3815–3820.

    Article  PubMed  CAS  Google Scholar 

  91. Lind DS, Hochwald SN, Malaty J, et al. Nuclear factor-κ B is upregulated in colorectal cancer. Surgery 2001;130:363–369.

    Article  PubMed  CAS  Google Scholar 

  92. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-KB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999;5:119–127.

    PubMed  CAS  Google Scholar 

  93. Arlt A, Vorndamm J, Muerkoster S, et al. Autocrine production of interleukin 1β3 confers constitutive nuclear factor kB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 2002;62:910–916.

    PubMed  CAS  Google Scholar 

  94. Mukhopadhyay T, Roth JA, Maxwell SA. Altered expression of the p50 subunit of the NF-κB transcription factor complex in non-small cell lung carcinoma. Oncogene 1995;11:999–1003.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adams, J., Elliott, P.J., Bouchard, P. (2004). Preclinical Development of Bortezomib (VELCADE™). In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics