Skip to main content

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Hemolytic disease of the newborn (HDN) is characterized by the destruction of fetal red blood cells by maternal immunoglobulin G (IgG) directed against antigens present on fetal erythrocytes. These paternally inherited antigens are not present on maternal cells and can stimulate the maternal immune system to produce antibodies when antepartum or intrapartum fetomaternal hemorrhage occurs. Maternal sensitization often occurs during the first pregnancy with a fetus that expresses the erythrocyte antigens and although this fetus is at low risk of HDN, future antigen-positive fetuses are at substantial risk of developing the disease. Transplacental passage of the resulting antibodies into the fetal circulation often leads to hemolysis that can range from mild to extreme depending on several factors including, among others, the antibody concentration, the transfer rate of immunoglobulin from the maternal to the fetal circulation, the antibody specificity, the functional maturity of the fetal spleen, and the IgG subclass (Fig. 1) (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hadley AG. A comparison of in vitro tests for predicting the severity of haemolytic disease of the fetus and newborn. Vox Sang 1998; 74 (suppl 2): 375–383.

    Article  PubMed  CAS  Google Scholar 

  2. Urbaniak SJ, Greiss MA. RhD haemolytic disease of the fetus and the newborn. Blood Rev 2000; 14 (1): 44–61.

    Article  PubMed  CAS  Google Scholar 

  3. Kliegman RM, Stoll BJ. Blood disorders. In: Behrman RE, Kliegman RM, Jenson HB, eds. Nelson Textbook of Pediatrics. Philadelphia: W.B. Saunders, 2000, pp. 520–527.

    Google Scholar 

  4. Luban NL. Hemolytic disease of the newborn: progenitor cells and late effects. N Engl J Med 1998; 338 (12): 830–831.

    Article  PubMed  CAS  Google Scholar 

  5. Hadley AG. In vitro assays to predict the severity of hemolytic disease of the newborn. Transfus Med Rev 1995; 9: 302–313.

    Article  PubMed  CAS  Google Scholar 

  6. ACOG Educational Bulletin. Management of isoimmunization in pregnancy. Int J Gynecol Obstet 1996; 55: 183–190.

    Article  Google Scholar 

  7. Chavez GF, Mulinare J, Edmonds LD. Epidemiology of Rh hemolytic disease of the newborn in the United States. JAMA 1991; 265 (24): 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  8. Ortho Clinical Diagnostics. Rho(D) Immune Globulin (Human) RhoGAM, Package Insert. 2001. Raritan, NJ: Ortho Clinical Diagnostics.

    Google Scholar 

  9. Bennett PR, Le Van KC, Colin Y, et al. Prenatal determination of fetal RhD type by DNA amplification. N Engl J Med 1993; 329 (9): 607–610.

    Article  PubMed  CAS  Google Scholar 

  10. Oepkes D. Invasive versus non-invasive testing in red-cell alloimmunized pregnancies. Eur J Obstet Gynecol Reprod Biol 2000; 92 (l): 83–89.

    Article  PubMed  CAS  Google Scholar 

  11. Harman CR. Percutaneous fetal blood sampling. In: Creasy RK, Resnik R, eds. Maternal—fetal Medicine. Philadelphia: W.B. Saunders, 1999, pp. 341–363.

    Google Scholar 

  12. Forestier F, Daffos F, Catherine N, et al. Developmental hematopoiesis in normal human fetal blood. Blood 1991, 77: 2360–2362.

    PubMed  CAS  Google Scholar 

  13. Engelfriet CP, Reesink HW, Arbolla L, et al. What is the best technique for the detection of red cell antibodies? Vox Sang 1995; 69: 292–300.

    Article  Google Scholar 

  14. Contreras M, Garner SF, de Silva M. Prenatal testing to predict the severity of hemolytic disease of the fetus and newborn. Curr Opin Hematol 1996; 3 (6): 480–484.

    Article  PubMed  CAS  Google Scholar 

  15. Technical Manual of the American Association of Blood Banks, 14th ed. Bethesda: American Association of Blood Banks, 2002.

    Google Scholar 

  16. Gall SA, Miller JM Jr. Rh isoimmunization: a 24 year experience at Duke University Medical Center. Am J Obstet Gynecol 1981; 140 (8): 902–908.

    PubMed  CAS  Google Scholar 

  17. Judd WJ, Luban NL, Ness PM, Silberstein LE, Stroup M, Widmann FK. Prenatal and perinatal immunohematology: recommendations for serologic management of the fetus, newborn infant, and obstetric patient. Transfusion 1990; 30 (2): 175–183.

    Article  PubMed  CAS  Google Scholar 

  18. Moise KJ, Jr., Perkins JT, Sosler SD, et al. The predictive value of maternal serum testing for detection of fetal anemia in red blood cell alloimmunization. Am J Obstet Gynecol 1995; 172 (3): 1003–1009.

    Article  PubMed  Google Scholar 

  19. Moore BP. Automation in the blood transfusion laboratory. I. Antibody dectection and quantitation in the technicon autoanalyzer. Can Med Assoc J 1969; 100 (8): 381–387.

    PubMed  CAS  Google Scholar 

  20. Nicolaides KH, Rodeck CH. Maternal serum anti-D antibody concentration and assessment of rhesus isoimmunization. Br Med J 1992; 304 (6835): 1155–1156.

    Article  CAS  Google Scholar 

  21. Bowell P, Wainscoat JS, Peto TE, Gunson HH. Maternal anti-D concentrations and outcome in rhesus haemolytic disease of the newborn. Br Med J (Clin Res Ed) 1982; 285 (6338): 327–329.

    Article  CAS  Google Scholar 

  22. Buggins AG, Thilaganathan B, Hambley H, Nicolaides KH. Predicting the severity of rhesus alloimmunization: monocyte-mediated chemiluminescence versus maternal anti-D antibody estimation. Br J Haematol 1994; 88 (1): 199–200.

    Article  PubMed  CAS  Google Scholar 

  23. Engelfriet CP, Ouwehand WH. ADCC and other cellular bioassays for predicting the clinical significance of red cell alloantibodies. Baillieres Clin Haematol 1990; 3 (2): 321–337.

    Article  PubMed  CAS  Google Scholar 

  24. Urbaniak SJ, Greiss MA, Crawford RJ, Fergusson MJ. Prediction of the outcome of rhesus haemolytic disease of the newborn: additional information using an ADCC assay. Vox Sang 1984; 46 (5): 323–329.

    Article  PubMed  CAS  Google Scholar 

  25. Hadley AG, Kumpel BM, Leader KA, Poole GD, Fraser ID. Correlation of serological, quantitative and cell-mediated functional assays of maternal alloantibodies with the severity of haemolytic disease of the newborn. Br J Haematol 1991; 77 (2): 221–228.

    Article  PubMed  CAS  Google Scholar 

  26. Garner SF, Wiener E, Contreras M, et al. Mononuclear phagocyte assays, autoanalyzer quantitation and IgG subclasses of maternal anti-RhD in the prediction of the severity of haemolytic disease in the fetus before 32 weeks gestation. Br J Haematol 1992; 80 (1): 97–101.

    Article  PubMed  CAS  Google Scholar 

  27. Hadley AG, Garner SF, Taverner JM. AutoAnalyzer quantification, monocyte-mediated cytotoxicity and chemiluminescence assays for prediciting the severity of haemolytic disease of the newborn. Transfus Med 1993; 3: 195–200.

    Google Scholar 

  28. Garner SF, Gorick BD, Lai WY, et al. Prediction of the severity of haemolytic disease of the newborn: quantitative IgG anti-D subclass determinations explain the correlation with functional assay results. Vox Sang 1995; 68 (3): 169–176.

    Article  PubMed  CAS  Google Scholar 

  29. Oepkes D, van Kamp IL, Simon MJ, Mesman J, Overbeeke MA, Kanhai HH. Clinical value of an antibody-dependent cell-mediated cytotoxicity assay in the management of Rh D alloimmunization. Am J Obstet Gynecol 2001; 184 (5): 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  30. Nance SJ, Nelson JM, Horenstein J, Arndt PA, Platt LD, Garratty G. Monocyte monolayer assay: an efficient noninvasive technique for predicting the severity of hemolytic disease of the newborn. Am J Clin Pathol 1989; 92 (1): 89–92.

    PubMed  CAS  Google Scholar 

  31. Zupanska B, Brojer E, Richards Y, Lenkiewicz B, Seyfried H, Howell P. Serological and immunological characteristics of maternal anti-Rh(D) antibodies in predicting the severity of haemolytic disease of the newborn. Vox Sang 1989; 56 (4): 247–253.

    Article  PubMed  CAS  Google Scholar 

  32. Sacks DA, Nance SJ, Garratty G, Petrucha RA, Horenstein J, Fotheringham N. Monocyte monolayer assay as a predictor of severity of hemolytic disease of the fetus and newborn. Am J Perinatol 1993; 10 (6): 428–431.

    PubMed  CAS  Google Scholar 

  33. Lucas GF, Hadley AG, Nance SJ, Garratty G. Predicting hemolytic disease of the newborn: a comparison of the monocyte monolayer assay and the chemiluminescence test. Transfusion 1993; 33: 484–487.

    Article  PubMed  CAS  Google Scholar 

  34. Hadley AG, Kumpel BM, Merry AH. The chemiluminescent response of human monocytes to red cells sensitized with monoclonal anti-Rh(D) antibodies. Clin Lab Haematol 1988; 10 (4): 377–384.

    PubMed  CAS  Google Scholar 

  35. Filbey D, Garner SF, Hadley AG, Shepard SL. Quantitative and functional assessment of anti-RhD: a comparative study of non-invasive methods in antenatal prediction of Rh hemolytic disease. Acta Obstet Gynecol Scand 1996; 75 (2): 102–107.

    Article  PubMed  CAS  Google Scholar 

  36. Engelfriet CP, Reesink HW. Laboratory procedures for the prediction of the severity of haemolytic disease of the newborn. Vox Sang 1995; 69 (1): 61–69.

    Article  Google Scholar 

  37. Benzie RJ, Doran TA, Harkins JL, Owen VM, Porter CJ. Composition of the amniotic fluid and maternal serum in pregnancy. Am J Obstet Gynecol 1974; 119 (6): 798–810.

    PubMed  CAS  Google Scholar 

  38. Rosenthal P, Blanckaert N, Kabra PM, Thaler MM. Liquid-chromatographic determination of bilirubin and its conjugates in rat serum and human amniotic fluid. Clin Chem 1981; 27 (10): 1704–1707.

    PubMed  CAS  Google Scholar 

  39. The Merck Manual of Diagnosis and Therapy. 17th ed. Whitehouse Station, NJ: Merck, 1999.

    Google Scholar 

  40. Ashwood ER. Clinical chemistry of pregnancy. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. Philadelphia: W.B. Saunders, 1999, pp. 1736–1775.

    Google Scholar 

  41. Liley AW. Liquor amnii analysis in the management of the pregnancy complicated by rhesus sensitization. Am J Obstet Gynecol 1963; 82: 1359–1370.

    Google Scholar 

  42. Liley AW. Errors in the assessment of hemolytic disease from amniotic fluid. Am J Obstet Gynecol 1963; 86: 485–494.

    PubMed  CAS  Google Scholar 

  43. Queenan JT. Current management of the Rh-sensitized patient. Clin Obstet Gynecol 1982; 25 (2): 293–301.

    Article  PubMed  CAS  Google Scholar 

  44. MacKenzie IZ, Bowell PJ, Castle BM, Selinger M, Ferguson JF. Serial fetal blood sampling for the management of pregnancies complicated by severe rhesus (D) isoimmunization. Br J Obstet Gynaecol 1988; 95 (8): 753–758.

    Article  PubMed  CAS  Google Scholar 

  45. Nicolaides KH, Rodeck CH, Mibashan RS, Kemp JR. Have Liley charts outlived their usefulness? Am J Obstet Gynecol 1986; 155 (1): 90–94.

    PubMed  CAS  Google Scholar 

  46. Steyn DW, Pattinson RC, Odendaal HJ. Amniocentesis: still important in the management of severe rhesus incompatibility. S Afr Med J 1992; 82 (5): 321–324.

    PubMed  CAS  Google Scholar 

  47. Sikkel E, Vandenbussche FP, Oepkes D, Meerman RH, Le Cessie S, Kanhai HH. Amniotic fluid delta OD 450 values accurately predict severe fetal anemia in D-alloimmunization. Obstet Gynecol 2002; 100 (1): 51–57.

    Article  PubMed  Google Scholar 

  48. Hochberg CJ, Witheiler AP, Cook H. Accurate amniotic fluid bilirubin analysis from the “bloody tap:” a preliminary report. Am J Obstet Gynecol 1976; 126 (5): 531–534.

    PubMed  CAS  Google Scholar 

  49. Foster K, Hankins K, Gronowski AM. The effect of blood contamination on delta 450 bilirubin measurement: a comparison of different corrective methods. 2003. Unpublished work.

    Google Scholar 

  50. Spinnato JA, Ralston KK, Greenwell ER, Marcell CA, Spinnato JA III. Amniotic fluid bilirubin and fetal hemolytic disease. Am J Obstet Gynecol 1991; 165 (4 Ptl): 1030–1035.

    PubMed  CAS  Google Scholar 

  51. Queenan JT, Tomai TP, Ural SH, King JC. Deviation in amniotic fluid optical density at a wavelength of 450 nm in Rh-immunized pregnancies from 14 to 40 weeks’ gestation: a proposal for clinical management. Am J Obstet Gynecol 1993; 168 (5): 1370–1376.

    PubMed  CAS  Google Scholar 

  52. Spinnato JA, Clark AL, Ralston KK, Greenwell ER, Goldsmith LJ. Hemolytic disease of the fetus: a comparison of the Queenan and extended Liley methods. Obstet Gynecol 1998; 92 (3): 441–445.

    Article  PubMed  CAS  Google Scholar 

  53. Scott F, Chan FY. Assessment of the clinical usefulness of the “Queenan” chart versus the “Liley” chart in predicting severity of rhesus iso-immunization. Prenat Diagn 1998; 18 (11): 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  54. Ovenstone JA, Connon AF. Optical density differencing: a new method for the direct measurement of bilirubin in liquor amnii. Clin Chim Acta 1968; 20: 397–406.

    Article  PubMed  CAS  Google Scholar 

  55. Connon AF. Improved accuracy of prediction of severity of hemolytic disease of the newborn. Obstet Gynecol 1969; 33: 72–78.

    Article  PubMed  CAS  Google Scholar 

  56. Amstey MS, Hochberg CJ, Choate JW, Wax SH, Lund CJ. Comparative analysis of amniotic fluid bilirubin. Obstet Gynecol 1972; 39: 407–410.

    PubMed  CAS  Google Scholar 

  57. Moore GI, Hochberg CJ. Ovenstone factor in the management of Rh sensitization. South Med J 1977; 70: 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  58. Gottvall T, Hilden JO, Selbing A. Evaluation of standard parameters to predict exchange transfusions in the erythroblastotic newborn. Acta Obstet Gynecol Scand 1994; 73 (4): 300–306.

    Article  PubMed  CAS  Google Scholar 

  59. Hadley AG, Wilkes A, Goodrick J, Penman D, Soothill P, Lucas G. The ability of the chemiluminescence test to predict clinical outcome and the necessity for amniocenteses in pregnancies at risk of haemolytic disease of the newborn. Br J Obstet Gynaecol 1998; 105 (2): 231–234.

    Article  PubMed  CAS  Google Scholar 

  60. Ananth U, Queenan JT. Does midtrimester delta OD450 of amniotic fluid reflect severity of Rh disease? Am J Obstet Gynecol 1989; 161 (1): 47–49.

    PubMed  CAS  Google Scholar 

  61. Moise KJ Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 2002; 100 (3): 600–611.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Grenache, D.G. (2004). Hemolytic Disease of the Newborn. In: Gronowski, A.M. (eds) Handbook of Clinical Laboratory Testing During Pregnancy. Current Clinical Pathology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-787-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-787-1_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9862-2

  • Online ISBN: 978-1-59259-787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics