Skip to main content

Genetic Immunotherapy Approaches

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

The idea of exploiting the immune system to treat tumors (cancer immunotherapy) is at least a century old. Immunotherapy is generally classified into two functional approaches: Passive immunotherapy administers preformed elements of the immune system (tumor-reactive antibodies, antitumor cytokines, or tumoricidal effector cells) to patients with the intent that these agents will directly attack the cancer cells. Active immunotherapy (including tumor vaccines and immunostimulatory cytokines) is intended to stimulate the patients’ immune system to generate effective antitumor immunity. Both passive and active immunotherapies are integral parts of modern medical practice for problems as diverse as the treatment of snakebites and the prevention of infectious diseases. Yet, for cancer, the role of the immune system and immunotherapy has been a topic of spirited debate for the last 50 years (1). Major points of contention have been whether tumor cells are immunogenic in their host of origin and whether the immune system is capable of controlling or eradicating malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998.

    Article  PubMed  CAS  Google Scholar 

  2. Smyth, M. J., Godfrey, D. I., and Trapani, J. A. (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2, 293–299.

    Article  PubMed  CAS  Google Scholar 

  3. Phillips, R. E. (2002) Immunology taught by Darwin. Nat. Immunol. 3, 987–989.

    Article  PubMed  CAS  Google Scholar 

  4. Khong, H. T. and Restifo, N. P. (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 3, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  5. Coley, W. B. (1893) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of 10 original cases. Clin. Orthop. 262, 3–11.

    Google Scholar 

  6. Mocelin, S., Rossi, C. R., Lise, M., and Marincola, F. M. (2002) Adjuvant immunotherapy for solid tumors: from promise to clinical application. Cancer Immunol. Immunother. 51, 583–595.

    Article  CAS  Google Scholar 

  7. Rosenberg, S. A., Lotze, M. T., Muul, L. M., et al. (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492.

    Article  PubMed  CAS  Google Scholar 

  8. Portielje, J. E. A., Gratama, J. W., van Ojik, H. H., Stoter, G., and Kruit, W. H. J. (2003) IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol. Immunother. 52, 133–144.

    PubMed  CAS  Google Scholar 

  9. Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H., and Godfrey, D. I. (2002) NKT cells— conductors of tumor immunity? Curr. Opin. Immunol. 14, 165–171.

    Article  PubMed  CAS  Google Scholar 

  10. Mitra, R., Singh, S., and Khar, A. (2003) Antitumor immune responses. Exp. Rev. Mol. Med. 5; Date accessed: 01/28/2003; available at http://www.expertreviews.org/03005623h.htm.

  11. Yip, Y. L. and Ward, R. L. (2002) Anti-erbB-2 monoclonal antibodies and ErbB-2-directed vaccines. Cancer Immunol. Immunother. 50, 569–587.

    Article  PubMed  CAS  Google Scholar 

  12. Shan, D., Ledbetter, J. A., and Press, O. W. (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol. Immunother. 48, 673–683.

    Article  PubMed  CAS  Google Scholar 

  13. Kaech, S. M., Wherry, E. J., and Ahmed, R. (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262.

    Article  PubMed  CAS  Google Scholar 

  14. Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. (2002) Tolerigenic dendritic cells. Annu. Rev. Immunol. 21, 685–711.

    Article  CAS  Google Scholar 

  15. Schuler, G., Schuler-Thurner, B., and Steinman, R. M. (2003) The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147.

    Article  PubMed  CAS  Google Scholar 

  16. Woltman, A. M. and van Kooten, C. (2003) Functional modulation of dendritic cells to suppress adaptive immune responses. J. Leukoc. Biol. 73, 428–441.

    Article  PubMed  CAS  Google Scholar 

  17. Dranoff, G. (2002) Tumor immunology: immune recognition and tumor protection. Curr. Opin. Immunol. 14, 161–164.

    Article  CAS  Google Scholar 

  18. Jäger, E., Jäger, D., and Knuth, A. (2002) Clinical cancer vaccine trials. Curr. Opin. Immunol. 14, 178–182.

    Article  PubMed  Google Scholar 

  19. Meese, E. and Comtesse, N. (2002) Cancer genetics and tumor antigens: time for a combined view? Genes Chromosomes Cancer 33, 107–113.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, A. Y., Gulden, P. H., Woods, A. S., et al. (1996) The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl. Acad. Sci. USA 93, 9730–9735.

    Article  PubMed  CAS  Google Scholar 

  21. Schiavetti, F., Thonnard, J., Colau, D., Boon, T., and Coulie, P. G. (2002) A human endogenous retroviral sequence encoding and antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res. 62, 5510–5516.

    PubMed  CAS  Google Scholar 

  22. Lower, R., Lower, J., and Kurth, R. (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177–5184.

    Article  PubMed  CAS  Google Scholar 

  23. Hörig, H., Medina, F. A., Conkright, W. A., and Kaufman, H. L. (2000) Strategies for cancer therapy using carcinoembryonic antigen vaccines. Exp. Rev. Mol. Med. Date accessed: 04/19/2003; available at: http://www-ermm.cbcu.cam.ac.uk/0000168Xh.htm.

  24. Carter, P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129.

    Article  PubMed  CAS  Google Scholar 

  25. McKallip, R., Li, R., and Ladisch, S. (1999) Tumor gangliosides inhibit the tumor-specific immune response. J. Immunol. 163, 3718–3726.

    PubMed  CAS  Google Scholar 

  26. Waller, E. K. and Ernstoff, M. S. (2003) Modulation of antitumor immune responses by hematopoietic cytokines. Cancer 97, 1797–1809.

    Article  PubMed  CAS  Google Scholar 

  27. Paul, S., Regulier, E., Poitevin, Y., Hormann, H., and Acres, R. B. (2002) The combination of a chemokine, cytokine and TCR-based T cell stimulus for effective gene therapy of cancer. Cancer Immunol. Immunother. 51, 645–654.

    Article  PubMed  CAS  Google Scholar 

  28. Hodge, J. W., Grosenback, D. W., and Schlom, J. (2002) Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. Cancer Detect. Prev. 26, 275–291.

    Article  PubMed  CAS  Google Scholar 

  29. Koutsky L. A., Ault, K. A., Wheeler, C. M., et al. for the Proof of Principle Study Investigators. (2002) A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347, 1645–1651.

    Article  PubMed  CAS  Google Scholar 

  30. Haupt, K., Roggendorf, M., and Mann, K. (2002) The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp. Biol. Med. 227, 227–237.

    CAS  Google Scholar 

  31. Wolff, J. A., Malone, R. W., Williams, P., et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  32. Conry, R. M., Curiel, D. T., Strong, T. V., et al. (2002) Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin. Cancer Res. 8, 2782–2787.

    PubMed  CAS  Google Scholar 

  33. MacGregor, R. R., Boyer, J. D., Ugen, K. E., et al. (1998) First human trial of a DNA based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Inf. Dis. 178, 92–100.

    CAS  Google Scholar 

  34. Sheets, E. E., Urban, R. G., Crum, C. P., et al. (2003) Immunotherapy of human cervical high-grade cervical intra-epithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 DNA. Am. J. Obstet. Gynecol. 188, 916–926.

    Article  PubMed  CAS  Google Scholar 

  35. Meng, W. S., Butterfield, L. H., Ribas, A., et al. (2001) Alpha-fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 61, 8782–8786.

    PubMed  CAS  Google Scholar 

  36. Ready, T. (2003) AIDSVAX flop leaves vaccine field unscathed. Nat. Med. 9, 376.

    Article  PubMed  CAS  Google Scholar 

  37. Xiao, W., Chirmule, N., Schnell, M. A., Tazelaar, J., Hughes, J. V., and Wilson, J. M. (2000) Route of administration determines induction of T-cell-dependent humoral responses to adeno-associated virus vectors. Mol. Ther. 1, 323–329.

    Article  PubMed  CAS  Google Scholar 

  38. Palese, P., Zavala, F., Muster, T., Nussenzweig, R. S., and Garcia-Sastre, A. (1997) Novel influenza virus vaccines and vectors. J. Inf. Dis. 176, S45–S49.

    Google Scholar 

  39. Hamilton, J. M., Chen, A. P., and Nguyen, B. (1994) Phase I study of recombinant vaccinia virus (rV) that expresses human carcinoembryonic antigen (CEA) in adult patients with adenocarcinomas [abstract]. Proc. Am. Soc. Clin. Oncol. 13, 961.

    Google Scholar 

  40. Smallpox vaccine adverse events among civilians—United States, March 4–10, 2003. (2003) MMWR Morb. Mortal. Wkly Rep. 52, 201–203.

    Google Scholar 

  41. Blackwell, J. L., Li, H., Gomez-Navarro, J., et al. (2000) Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum. Gene Ther. 11, 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  42. Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R., and Wilson, J. (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6, 1574–1583.

    Article  PubMed  CAS  Google Scholar 

  43. Gilboa, E., Nair, S. K., and Lyerly, H. K. (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol. Immunother. 46, 82–87.

    Article  PubMed  CAS  Google Scholar 

  44. Jaffee, E. M., Hruban, R. H., Biedrzycki, B., et al. (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J. Clin. Oncol. 19, 145–156.

    PubMed  CAS  Google Scholar 

  45. Von Mehren, M., Arlen, P., Gulley, J., et al. (2001) The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7.1) in patients with metastatic carcinoma. Clin. Cancer Res. 7, 1181–1191.

    Google Scholar 

  46. Marshall, J. L., Hoyer, R. J., Toomey, M. A., et al. (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol. 18, 3964–3973.

    PubMed  CAS  Google Scholar 

  47. Willemsen, R. A., Debets, R., Chames, P., and Bohuis, R. L. H. (2003) Genetic engineering of T cell specificity for immunotherapy of cancer. Hum. Immunol. 64, 56–68.

    Article  PubMed  CAS  Google Scholar 

  48. Patel, S. D., Moskalenko, M., Tian, T., et al. (2000) T-cell killing of heterogeneous tumor or viral targets with bispecific chimeric immune receptors. Cancer Gene Ther. 7, 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  49. Hwu, P. and Freedman, R. S. (2002) The immunotherapy of patients with ovarian cancer. J. Immunother. 25, 189–201.

    Article  PubMed  CAS  Google Scholar 

  50. Sheen, A. J., Sherlock, D. J., Irlam, J., Hawkins, R. E., and Gilham, D. E. (2003) T lymphocytes isolated from patients with advanced colorectal cancer are suitable for gene immunotherapy approaches. Br. J. Cancer 88, 1119–1127.

    Article  PubMed  CAS  Google Scholar 

  51. Cooper, M. A., Bush, J. E., Fehniger, T. A., et al. (2002) In vivo evidence for a dependence on interleukin-15 for natural killer cell survival. Blood 100, 3633–3638.

    Article  PubMed  CAS  Google Scholar 

  52. Smyth, M. J., Hayakawa, Y., Takeda, K., and Yagita, H. (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer 2, 850–861.

    Article  PubMed  CAS  Google Scholar 

  53. Berd, D., Maguire, H. C., and Mastrangelo, M. J. (1986) Induction of cell-mediated immunity to melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res. 46, 2572–2577.

    PubMed  CAS  Google Scholar 

  54. Livingston, P. O., Cunningham-Rundles, S., Marfleet, G., et al. (1987) Inhibition of suppressor-cell activity by cyclophosphamide in patients with malignant melanoma. J. Biol. Response Modif. 6, 392–403.

    CAS  Google Scholar 

  55. Nigam, A., Yacavone, R. F., Zahurak, M. L., et al. (1998) Immunomodulatory properties of antineoplastic drugs administered in conjunction with GM-CSF-secreting cancer cell vaccines. Int. J. Cancer 12, 161–170.

    CAS  Google Scholar 

  56. Machiels, J. P., Reilly, R. T., Emens, L. A., et al. (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 61, 3689–3697.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shaw, D.R., LoBuglio, A.F. (2005). Genetic Immunotherapy Approaches. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_9

Download citation

Publish with us

Policies and ethics