Skip to main content

Fusogeneic Membrane Glycoproteins for Cancer Gene Therapy

A Better Class of Killer

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1012 Accesses

Abstract

There are currently no vector systems available that are efficient enough or targeted enough to transduce all of the tumor cells in a patient with even a single copy of a therapeutic gene (1–4). Ideally, therefore, the genes used for gene transfer therapy of cancer should be able to achieve two major goals. The first is to kill tumor cells locally with high efficiency. The second is to stimulate potent antitumor immunity such that distant metastases, to which genes cannot be delivered, can also be eradicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verma, I. and Somia, N. (1977) Gene therapy—promises, problems and prospects. Nature 389, 239–242.

    Google Scholar 

  2. Vile, R. G., Sunassee, K., and Diaz, R. M. (1998) Strategies for achieving multiple layers of selectivity in gene therapy. Mol. Med. Today 4, 84–92.

    PubMed  CAS  Google Scholar 

  3. Vile, R. G., Russell, S. J., and Lemoine, N. R. (2000) Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2–8.

    PubMed  CAS  Google Scholar 

  4. Harrington, H., Alvarez-Vallina, L., Crittenden, M., et al. (2002) Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum. Gene Ther. 13, 1263–1280.

    PubMed  CAS  Google Scholar 

  5. Colombo, M. P. and Forni, G. (1996) Immunotherapy: cytokine gene transfer strategies. Cancer Metastasis Rev. 15, 317–328.

    PubMed  CAS  Google Scholar 

  6. Vile, R. G. and Chong, H. (1996) Immunotherapy: combinatorial molecular immunotherapy—a synthesis and suggestions. Cancer Metastasis Rev. 15, 351–364.

    PubMed  CAS  Google Scholar 

  7. Moolten, F. L. (1994) Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther. 1, 279–287.

    PubMed  CAS  Google Scholar 

  8. Vile, R. G. and Hart, I. R. (1994) Targeting of cytokine gene expression to malignant melanoma cells using tissue-specific promoter sequences. Ann. Oncol. 5, S59–S65.

    Google Scholar 

  9. Castleden, S. A., Chong, H., Garcia-Ribas, I., et al. (1997) A family of bicistronic vectors to enhance both local and systemic anti tumour effects of HSVtk or cytokine expression in a murine melanoma model. Hum. Gene Ther. 8, 2087–2102.

    PubMed  CAS  Google Scholar 

  10. Chong, H., Hutchinson, G., Hart, I. R., and Vile, R. G. (1998) Expression of B7 co-stimulatory molecules by B16 melanoma results in a natural killer cell-dependent local anti tumour response, but induces T cell-dependent systemic immunity only against B7-expressing tumours. Br. J. Cancer 78, 1043–1050.

    PubMed  CAS  Google Scholar 

  11. Diaz, R. M., Todryk, S., Chong, H., et al. (1998) Rapid adenoviral transduction of freshly resected tumour explants with therapeutically useful genes provides a rationale for genetic immunotherapy for colorectal cancer. Gene Ther. 5, 869–879.

    PubMed  CAS  Google Scholar 

  12. Vile, R. G. and Hart, I. R. (1993) In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res. 53, 962–967.

    PubMed  CAS  Google Scholar 

  13. Vile, R. G. and Hart, I. R. (1993) Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53, 3860–3864.

    PubMed  CAS  Google Scholar 

  14. Vile, R. G., Nelson, J. A., Castleden, S., Chong, H., and Hart, I. R. (1994) Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228–6234.

    PubMed  CAS  Google Scholar 

  15. Vile, R. G., Miller, N., Chernajovsky, Y., and Hart, I. R. (1994) A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL-2 genes. Gene Ther. 1, 307–316.

    PubMed  CAS  Google Scholar 

  16. Chong, H., Todryk, S., Hutchinson, G., Hart, I. R., and Vile, R. G. (1998) Tumour cell expression of B7 costimulatory molecules and interleukin-12 or granulocyte-macrophage colony stimulating factor induces a local antitumour response and may generate systemic protective immunity. Gene Ther. 5, 223–232.

    PubMed  CAS  Google Scholar 

  17. Chester, J., Ruchatz, A., Gough, M., et al. (2002) Tumor antigen-specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor-modified T cells. Nat. Biotechnol. 20, 256–263.

    PubMed  CAS  Google Scholar 

  18. Harrington, K. J., Melcher, A. A., Bateman, A. R., Ahmed, A., and Vile, R. G. (2002) Cancer gene therapy: Part 2. Candidate transgenes and their clinical development. Clin. Oncol. (R. Coll. Radiol.) 14, 148–169.

    Google Scholar 

  19. Fielding, A. K., Chapel-Fernandes, S., Chadwick, M. P., et al. (2000) A hyperfusogenic gibbon ape leukaemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display. Hum. Gene Ther. 11, 817–826.

    PubMed  CAS  Google Scholar 

  20. Bateman, A., Bullough, F., Murphy, S., et al. (2000) Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res. 60, 1492–1497.

    PubMed  CAS  Google Scholar 

  21. Diaz, R. M., Bateman, A., Emiliusen, L., et al. (2000) A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy. Gene Ther. 7, 1656–1663.

    PubMed  CAS  Google Scholar 

  22. Higuchi, H., Bronk, S., Bateman, A., Harrington, K. J., Vile, R. G., and Gores, G. J. (2000) Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res. 60, 6396–6402.

    PubMed  CAS  Google Scholar 

  23. Pardoll, D. M. (1995) Paracrine cytokine adjuvants in cancer immunotherapy. Annu. Rev. Immunol. 13, 399–415.

    PubMed  CAS  Google Scholar 

  24. Melcher, A. A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M., and Vile, R. G. (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4, 581–587.

    PubMed  CAS  Google Scholar 

  25. Melcher, A. A., Gough, M. J., Todryk, S., and Vile, R. G. (1999) Apoptosis or necrosis for tumour immunotherapy—what’s in a name? J. Mol. Med. 77, 824–833.

    PubMed  CAS  Google Scholar 

  26. Basu, S., Binder, R. J., Suto, R., Anderson, K. M., and Srivastava, P. K. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappaB pathway. Int. Immunol. 12, 1539–1546.

    PubMed  CAS  Google Scholar 

  27. Gallucci, S., Lolkema, M., and Matzinger, P. (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255.

    PubMed  CAS  Google Scholar 

  28. Savill, J. and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. Nature 407, 784–788.

    PubMed  CAS  Google Scholar 

  29. Gough, M. J., Melcher, A. A., Ahmed, A., et al. (2001) Macrophages orchestrate the immune response to tumor cell death. Cancer Res. 61, 7240–7247.

    PubMed  CAS  Google Scholar 

  30. Leist, M. and Jaattela, M. (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598.

    PubMed  CAS  Google Scholar 

  31. Kitanaka, C. and Kuchino, Y. (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 6, 508–515.

    PubMed  CAS  Google Scholar 

  32. Clarke, P. G. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.) 181, 195–213.

    CAS  Google Scholar 

  33. Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature 407, 770–776.

    PubMed  CAS  Google Scholar 

  34. Denecker, G., Vercammen, D., Declercq, W., and Vandenabeele, P. (2001) Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58, 356–370.

    PubMed  CAS  Google Scholar 

  35. Bateman, A., Harrington, K., Kottke, T., et al. (2002) Viral fusogenic membrane glycoproteins kill solid tumor cells by non-apoptotic mechanisms which promote cross presentation of tumor antigens by dendritic cells. Cancer Res. 62, 5466–6578.

    Google Scholar 

  36. Dunn, W. A. J. (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 4, 139–143.

    PubMed  CAS  Google Scholar 

  37. Liang, X. H., Jackson, S., Seaman, M., et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676.

    PubMed  CAS  Google Scholar 

  38. Freeman, S. M., Ramesh, R., and Marrogi, A. J. (1997) Immune system in suicide gene therapy. Lancet 349, 2–3.

    PubMed  CAS  Google Scholar 

  39. Reiter, I., Krammer, B., and Schwamberger, G. (1999) Cutting edge: differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities. J. Immunol. 163, 1730–1732.

    PubMed  CAS  Google Scholar 

  40. Albert, M. L., Sauter, B., and Bhardwaj, N. (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89.

    PubMed  CAS  Google Scholar 

  41. Bellone, M., Iezzi, G., Rovere, P., et al. (1997) Processing of engulfed apoptotic bodies yields T cell epitopes. J. Immunol. 159, 5391–5399.

    PubMed  CAS  Google Scholar 

  42. Matzinger, P. (1994) Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045.

    PubMed  CAS  Google Scholar 

  43. Wolfers, J., Lozier, A., Raposo, G., et al. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303.

    PubMed  CAS  Google Scholar 

  44. Clayton, A., Court, J., Navabi, H., et al. (2001) Analysis of antigen presenting cell derived exosomes, based on immunomagnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174.

    PubMed  CAS  Google Scholar 

  45. Thery, C., Zitvogel, L., and Amigorena, S. (2002) Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579.

    PubMed  CAS  Google Scholar 

  46. Andre, F., Schartz, N. E., Movassagh, M., et al. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305.

    PubMed  CAS  Google Scholar 

  47. Dolo, V., Ginestra, A., Cassara, D., et al. (1998) Selective localisation of matrix metalloproteinase 9, beta 1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res. 58, 4468–4474.

    PubMed  CAS  Google Scholar 

  48. Karlsson, M. (2001) Tolerosomes are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900.

    PubMed  CAS  Google Scholar 

  49. Steinman, R. M., Turley, S., Mellman, I., and Inaba, K. (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells [comment]. J. Exp. Med. 191, 411–416.

    PubMed  CAS  Google Scholar 

  50. Brown, G., Aitken, J., Rixon, H. W., and Sugrue, R. J. (2002) Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus infected cells. J. Gen. Virol. 83, 611–621.

    PubMed  Google Scholar 

  51. Marrack, P., Kappler, J., and Kotzin, B. L. (2001) Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905.

    PubMed  CAS  Google Scholar 

  52. Blond, J. L., Lavillette, D., Cheynet, V., et al. (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329.

    PubMed  CAS  Google Scholar 

  53. Mi, S., Lee, X., Li, X., et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789.

    PubMed  CAS  Google Scholar 

  54. Linardakis, E., Bateman, A., Phan, V., et al. (2002) Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. CancerRes. 62, 5495–5504.

    CAS  Google Scholar 

  55. Mandelboim, O., Lieberman, N., Lev, M., et al. (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060.

    PubMed  CAS  Google Scholar 

  56. Eslahi, N. K., Muller, S., Nguyen, L., et al. (2001) Fusogenic activity of vesicular stomatitis virus glycoprotein plasmid in tumors as an enhancer of IL-12 gene therapy. Cancer Gene Ther. 8, 55–62.

    PubMed  CAS  Google Scholar 

  57. Schirrmacher, V., Haas, C., Bonifer, R., Ahlert, T., Gerhards, R., and Ertel, C. (1999) Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 6, 63–73.

    PubMed  CAS  Google Scholar 

  58. Prehn, R. T. (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res. 53, 3266–3269.

    PubMed  CAS  Google Scholar 

  59. Cavallo, F., Giovarrelli, M., Gulino, A., et al. (1992) Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfer. J. Immunol. 149, 3627–3635.

    PubMed  CAS  Google Scholar 

  60. Cayeux, S., Richter, G., Becker, C., Pezzutto, A., Dorken, B., and Blankenstein, T. (1999) Direct and indirect T cell priming by dendritic cell vaccines. Eur. J. Immunol. 29, 255–234.

    Google Scholar 

  61. Huang, A. Y. C., Bruce, A. T., Pardoll, D. M., and Levitsky, H. I. (1996) In vivo cross-priming of MHC class I-restricted antigens requires a TAP transporter. Immunity 4, 349–355.

    PubMed  CAS  Google Scholar 

  62. Forni, G., Lollini, P. L., Musiani, P., and Colombo, M. P. (2000) Immunoprevention of cancer: is the time ripe? Cancer Res. 60, 2571–2575.

    PubMed  CAS  Google Scholar 

  63. Walden, P. (2000) Hybrid cell vaccination for cancer immunotherapy. Adv. Exp. Med. Biol. 465, 347–354.

    PubMed  CAS  Google Scholar 

  64. Stuhler, G. and Walden, P. (1994) Recruitment of helper T cells for induction of tumour rejection by cytolytic T lymphocytes. Cancer Immunol. Immunother. 39, 342–345.

    PubMed  CAS  Google Scholar 

  65. Stuhler, G., Trefzer, U., and Walden, P. (1998) Hybrid cell vaccination in cancer immunotherapy. Recruitment and activation of T cell help for induction of antitumour cytotoxic T cells. Adv. Exp. Med. Biol. 451, 277–282.

    PubMed  CAS  Google Scholar 

  66. Guo, Y., Wu, M., Chen, H., et al. (1994) Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 263, 518–520.

    PubMed  CAS  Google Scholar 

  67. Gong, J., Avigan, D., Chen, D., et al. (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc. Natl. Acad. Sci. USA 97, 2715–2718.

    PubMed  CAS  Google Scholar 

  68. Tanaka, Y., Koido, S., Chen, D., Gendler, S. J., Kufe, D., and Gong, J. (2001) Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. Clin. Immunol. 101, 192–200.

    PubMed  CAS  Google Scholar 

  69. Gong, J., Chen, D., Kashiwaba, M., and Kufe, D. (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med. 3, 558–561.

    PubMed  CAS  Google Scholar 

  70. Homma, S., Toda, G., Gong, J., Kufe, D., and Ohno, T. (2001) Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J. Gastroenterol. 36, 764–771.

    PubMed  CAS  Google Scholar 

  71. Gong, J., Apostolopoulos, V., Chen, D., et al. (2000) Selection and characterization of MUC1-specific CD8+ T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells. Immunology 101, 316–324.

    PubMed  CAS  Google Scholar 

  72. Gong, J., Chen, D., Kashiwaba, M., et al. (1998) Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. Natl. Acad. Sci. USA 95, 6279–6283.

    PubMed  CAS  Google Scholar 

  73. Souberbielle, B. E., Westby, M., Ganz, S., et al. (1998) Comparison of four strategies for tumour vaccination in the B16-F10 melanoma model. Gene Ther. 5, 1447–1454.

    PubMed  CAS  Google Scholar 

  74. Dunnion, D. J., Cywinski, A. L., Tucker, V. C., et al. (1999) Human antigen-presenting cell/tumour cell hybrids stimulate strong allogeneic responses and present tumour-associated antigens to cytotoxic T cells in vitro. Immunology 98, 541–550.

    PubMed  CAS  Google Scholar 

  75. Trefzer, U., Weingart, G., Chen, Y., et al. (2000) Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int. J. Cancer 85, 618–626.

    PubMed  CAS  Google Scholar 

  76. Kikuchi, T., Akasaki, Y., Irie, M., Homma, S., Abe, T., and Ohno, T. (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 50, 337–344.

    PubMed  CAS  Google Scholar 

  77. Koido, S., Tanaka, Y., Chen, D., Kufe, D., and Gong, J. (2002) The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice. J. Immunol. 168, 2111–2117.

    PubMed  CAS  Google Scholar 

  78. Scott-Taylor, T. H., Pettengell, R., Clarke, I., et al. (2000) Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim. Biophys. Acta 1500, 265–279.

    PubMed  CAS  Google Scholar 

  79. Trefzer, U., Herberth, G., Sterry, W., and Walden, P. (2000) The hybrid cell vaccination approach to cancer immunotherapy. Ernst Schering Res. Found. Workshop 154–166.

    Google Scholar 

  80. Kugler, A., Stuhler, G., Walden, P., et al. (2000) Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 6, 332–336.

    PubMed  CAS  Google Scholar 

  81. Trefzer, U., Weingart, G., Sterry, W., and Walden, P. (2000) Hybrid cell vaccination in patients with metastatic melanoma. Methods Mol. Med. 35, 469–475.

    Google Scholar 

  82. Plautz, G. E., Yang, Z.-Y., Wu, B.-Y., Gao, X., Huang, L., and Nabel, G. J. (1993) Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc. Natl. Acad. Sci. USA 90, 4645–4649.

    PubMed  CAS  Google Scholar 

  83. Ram, Z., Culver, K. W., Oshiro, E. M., et al. (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat. Med. 3, 1354–1361.

    PubMed  CAS  Google Scholar 

  84. Russell, S. J. (1994) Replicating vectors for cancer therapy: a question of strategy. Semin. Cancer Biol. 5, 437–443.

    PubMed  CAS  Google Scholar 

  85. Russell, S. J. (1994) Replicating vectors for gene therapy of cancer: risks, limitations and prospects. Eur. J. Cancer 30A, 1165–1171.

    PubMed  CAS  Google Scholar 

  86. Alemany, R., Balague, C., and Curiel, D. T. (2000) Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18, 723–727.

    PubMed  CAS  Google Scholar 

  87. Curiel, D. T. (2000) The development of conditionally replicative adenoviruses for cancer therapy. Clin. Cancer Res. 6, 3395–3399.

    PubMed  CAS  Google Scholar 

  88. Nemunaitis, J., Khuri, F., Ganly, I., et al. (2001) Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19, 289–298.

    PubMed  CAS  Google Scholar 

  89. Heise, C., Hermiston, T., Johnson, L., et al. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 6, 1134–1139.

    PubMed  CAS  Google Scholar 

  90. Kirn, D. H. (2000) A tale of two trials: selectively replicating herpesviruses for brain tumors. Gene Ther. 7, 815–816.

    PubMed  CAS  Google Scholar 

  91. Kirn, D., Martuza, R. L., and Zwiebel, J. (2001) Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. 7, 781–787.

    PubMed  CAS  Google Scholar 

  92. Vile, R. G. (2001) Vironcology-not yet, but soon? Nat. Biotechnol. 19, 1020–1022.

    PubMed  CAS  Google Scholar 

  93. Vile, R. G., Ando, D., and Kirn, D. H. (2002) The oncolytic virotherapy treatment platform for cancer: unique biological and biosafety points to consider. Cancer Gene Ther. 9, 1062–1067.

    PubMed  CAS  Google Scholar 

  94. Logg, C. R., Tai, C. K., Logg, A., Anderson, W. F., and Kasahara, N. (2001) A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum. Gene Ther. 12, 921–932.

    PubMed  CAS  Google Scholar 

  95. Grote, D., Russell, S. J., Cornu, T. I., etal. (2001) Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97, 3746–3754.

    PubMed  CAS  Google Scholar 

  96. Peng, K.-W., Ahmann, G. J., Pham, L., Greipp, P. R., Cattaneo, R., and Russell, S. J. (2001) Systemic therapy of myeloma xenografts by an attenutaed measles virus. Blood 98, 2002–2007.

    PubMed  CAS  Google Scholar 

  97. Freytag, S. O., Khil, M., Stricker, H., et al. (2002) Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976.

    PubMed  CAS  Google Scholar 

  98. Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G., and Curiel, D. T. (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol. 75, 4176–4183.

    PubMed  CAS  Google Scholar 

  99. Rodriguez, R., Schuur, E. R., Lim, H. Y., Henderson, G. A., Simons, J. W., and Henderson, D. R. (1997) Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563.

    PubMed  CAS  Google Scholar 

  100. Bischoff, J., Kirn, D. H., Williams, A., et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.

    PubMed  CAS  Google Scholar 

  101. Ramachandra, M., Rahman, A., Zou, A., et al. (2001) Reengineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol. 19, 1035–1041.

    PubMed  CAS  Google Scholar 

  102. Ahmed, A., Suzuki, K., Kottke, T., et al. (2003) Intratumoral expression of a fusogenic membrane glycoprotein enhances the efficacy of replicating adenovirus therapy. Gene Ther. 10, 1663–1671.

    PubMed  CAS  Google Scholar 

  103. Li, H., Haviv, Y. S., Derdeyn, C. A., et al. (2001) Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and De Novo-synthesized virus particles. Hum. Gene Ther. 12, 2155–2165.

    PubMed  CAS  Google Scholar 

  104. Bateman, A. (2002) FMG: a cancer gene therapy. Ph.D. thesis, Open University, London, UK.

    Google Scholar 

  105. Fu, X., Tao, L., Jin, A., Vile, R., Brenner, M. K., and Zhang, X. (2003) Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus provides potent synergistic anti-tumor effect. Mol. Ther. 7, 784–786.

    Google Scholar 

  106. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N. (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bateman, A., Phan, V., Melcher, A., Linardakis, E., Harrington, K., Vile, R. (2005). Fusogeneic Membrane Glycoproteins for Cancer Gene Therapy. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_6

Download citation

Publish with us

Policies and ethics