Skip to main content

Cancer Therapeutic Applications of Ribozymes and RNAi

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Ribozymes are ribonucleic acid (RNA) molecules capable of acting as enzymes even in the complete absence of proteins. They have the catalytic activity of breaking and/or forming covalent bonds with extraordinary specificity, accelerating the rate of these reactions. The ability of RNA to serve as a catalyst was first shown for the self-splicing group I intron of Tetrahymena and the RNA moiety of RNAse P (1–3). Subsequent to the discovery of these two RNA enzymes, RNA-mediated catalysis has been associated with the self-splicing group II introns of yeast, fungal, and plant mitochondria (as well as chloroplasts) (4); single-stranded plant viroid and virusoid RNAs (5–7); hepatitis delta virus (8); and a satellite RNA from Neurospora mitochondria (9). It is rather clear that the RNA component of the larger ribosomal subunit is functioning as a peptidyltransferase as well (10–13). The potential functioning of spliceosomal smaller nuclear (sn)RNAs as a ribozyme in complex with the premessenger RNA (pre-mRNA) to catalyze pre-mRNA splicing has also been proposed (14). It is highly likely that additional RNA catalytic motifs and new roles for RNA-mediated catalysis will also be found as more is learned about the genomes of a variety of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevilacqua, P. C. and Turner, D. H. (1991) Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2′ OH groups. Biochemistry 30, 10,632–10,640.

    Article  PubMed  CAS  Google Scholar 

  2. Guerrier-Takada, C. and Altman, S. (1992) Reconstitution of enzymatic activity from fragments of M1 RNA. Proc. Natl. Acad. Sci. USA 89, 1266–1270.

    Article  PubMed  CAS  Google Scholar 

  3. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157.

    Article  PubMed  CAS  Google Scholar 

  4. Costa, M. and Michel, F. (1995) Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285.

    PubMed  CAS  Google Scholar 

  5. Hutchins, C. J., Rathjen, P. D., Forster, A. C., and Symons, R. H. (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640.

    Article  PubMed  CAS  Google Scholar 

  6. Buzayan, J. M., McNinch, J. S., Schneider, I. R., and Bruening, G. (1987) A nucleotide sequence rearrangement distinguishes two isolates of satellite tobacco ringspot virus RNA. Virology 160, 95–99.

    Article  PubMed  CAS  Google Scholar 

  7. Buzayan, J. M., Hampel, A., and Bruening, G. (1986) Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res. 14, 9729–9743.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar, P. K., Suh, Y. A., Miyashiro, H., et al. (1992) Random mutations to evaluate the role of bases at two important single-stranded regions of genomic HDV ribozyme. Nucleic Acids Res. 20, 3919–3924.

    Article  PubMed  CAS  Google Scholar 

  9. Saville, B. J. and Collins, R. A. (1990) A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696.

    Article  PubMed  CAS  Google Scholar 

  10. Cech, T. R. (2000) Structural biology. The ribosome is a ribozyme. Science 289, 878–879.

    Article  PubMed  CAS  Google Scholar 

  11. Moore, P. B. and Steitz, T. A. (2002) The involvement of RNA in ribosome function. Nature 418, 229–235.

    Article  PubMed  CAS  Google Scholar 

  12. Moore, P. B. and Steitz, T. A. (2003) After the ribosome structures: how does peptidyl transferase work? RNA 9, 155–159.

    Article  PubMed  CAS  Google Scholar 

  13. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.

    Article  PubMed  CAS  Google Scholar 

  14. Setlik, R. F., Shibata, M., Sarma, R. H., et al. (1995) Modeling of a possible conformational change associated with the catalytic mechanism in the hammerhead ribozyme. J. Biomol. Struct. Dyn. 13, 515–522.

    PubMed  CAS  Google Scholar 

  15. Lipkowitz, M. S., Hanss, B., Tulchin, N., et al. (1999) Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J. Am. Soc. Nephrol. 10, 1908–1915.

    PubMed  CAS  Google Scholar 

  16. Ullu, E., Djikeng, A., Shi, H., and Tschudi, C. (2002) RNA interference: advances and questions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 65–70.

    Article  PubMed  CAS  Google Scholar 

  17. Boutla, A., Delidakis, C., Livadaras, I., Tsagris, M., and Tabler, M. (2001) Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila. Curr. Biol. 11, 1776–1780.

    Article  PubMed  CAS  Google Scholar 

  18. Vaucheret, H., Beclin, C., and Fagard, M. (2001) Post-transcriptional gene silencing in plants. J. Cell Sci. 114, 3083–3091.

    PubMed  CAS  Google Scholar 

  19. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  20. Banerjee, D. and Slack, F. (2002) Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays 24, 119–129.

    Article  PubMed  CAS  Google Scholar 

  21. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  22. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  23. Rossi, J. J. (1992) Ribozymes. Curr. Opin. Biotechnol. 3, 3–7.

    Article  PubMed  CAS  Google Scholar 

  24. Rossi, J. J. (1995) Therapeutic antisense and ribozymes. Br. Med. Bull. 51, 217–225.

    PubMed  CAS  Google Scholar 

  25. Rossi, J. J. (1997) Therapeutic applications of catalytic antisense RNAs (ribozymes). CIBA Found. Symp. 209, 195–204.

    PubMed  CAS  Google Scholar 

  26. Rossi, J. J. (1999) Ribozymes, genomics and therapeutics. Chem. Biol. 6, R33–R37.

    Article  PubMed  CAS  Google Scholar 

  27. Snyder, D. S., Wu, Y., McMahon, R., Yu, L., Rossi, J. J., and Forman, S. J. (1997) Ribozyme-mediated inhibition of a Philadelphia chromosome-positive acute lymphoblastic leukemia cell line expressing the p190 bcr-abl oncogene. Biol. Blood Marrow Transplant. 3, 179–186.

    PubMed  CAS  Google Scholar 

  28. Snyder, D. S., Wu, Y., Wang, J. L., et al. (1993) Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 82, 600–605.

    PubMed  CAS  Google Scholar 

  29. Kuwabara, T., Warashina, M., Tanabe, T., Tani, K., Asano, S., and Taira, K. (1998) A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol. Cell 2, 617–627.

    Article  PubMed  CAS  Google Scholar 

  30. Lange, W. (1995) Cleavage of BCR/ABL mRNA by synthetic ribozymes—effects on the proliferation rate of K562 cells. Klin. Paediatr. 207, 222–224.

    Article  CAS  Google Scholar 

  31. Hertel, K. J., Pardi, A., Uhlenbeck, O. C., et al. (1992) Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252.

    Article  PubMed  CAS  Google Scholar 

  32. Kijima, H., Tsuchida, T., Kondo, H., et al. (1998) Hammerhead ribozymes against gamma-glutamylcysteine synthetase mRNA down-regulate intracellular glutathione concentration of mouse islet cells. Biochem. Biophys. Res. Commun. 247, 697–703.

    Article  PubMed  CAS  Google Scholar 

  33. Czubayko, F., Liaudet-Coopman, E.D., Aigner, A., Tuveson, A. T., Berchem, G. J., and Wellstein, A. (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat. Med. 3, 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi, H., Dorai, T., Holland, J. F., and Ohnuma, T. (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res. 54, 1271–1275.

    PubMed  CAS  Google Scholar 

  35. Scanlon, K. J., Ishida, H., and Kashani-Sabet, M. (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc. Natl. Acad. Sci. USA 91, 11,123–11,127.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, F. S., Kobayashi, H., Liang, K. W., Holland, J. F., and Ohnuma, T. (1999) Retrovirus-mediated transfer of anti-MDR1 ribozymes fully restores chemosensitivity of P-glycoprotein-expressing human lymphoma cells. Hum. Gene Ther. 10, 1185–1195.

    Article  PubMed  CAS  Google Scholar 

  37. Funato, T., Shitara, T., Tone, T., Jiao, L., Kashani-Sabet, M., and Scanlon, K. J. (1994) Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem. Pharmacol. 48, 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  38. Funato, T. (1997) [Circumventing multidrug resistance in human cancer by anti-ribozyme]. Nippon Rinsho 55, 1116–1121.

    PubMed  CAS  Google Scholar 

  39. Gibson, S. A., Pellenz, C., Hutchison, R. E., Davey, F. R., and Shillitoe, E. J. (2000) Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenovirus vector. Clin. Cancer Res. 6, 213–222.

    PubMed  CAS  Google Scholar 

  40. Maelandsmo, G. M., Hovig, E., Skrede, M., et al. (1996) Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res. 56, 5490–5498.

    PubMed  CAS  Google Scholar 

  41. Sehgal, G., Hua, J., Bernhard, E. J., Sehgal, I., Thompson, T. C., and Muschel, R. J. (1998) Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am. J. Pathol. 152, 591–596.

    PubMed  CAS  Google Scholar 

  42. Czubayko, F., Riegel, A. T., and Wellstein, A. (1994) Ribozyme-targeting elucidates a direct role of pleiotrophin in tumor growth. J. Biol. Chem. 269, 21,358–21,363.

    PubMed  CAS  Google Scholar 

  43. Yamamoto, H., Irie, A., Fukushima, Y., et al. (1996) Abrogation of lung metastasis of human fibrosarcoma cells by ribozyme-mediated suppression of integrin alpha6 subunit expression. Int. J. Cancer 65, 519–524.

    Article  PubMed  CAS  Google Scholar 

  44. Feng, B., Rollo, E. E., and Denhardt, D. T. (1995) Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: evidence from cell lines down-regulated for OPN expression by a targeted ribozyme. Clin. Exp. Metastasis 13, 453–462.

    Article  PubMed  CAS  Google Scholar 

  45. Czubayko, F., Downing, S. G., Hsieh, S. S., et al. (1997) Adenovirus-mediated transduction of ribozymes abrogates HER-2/neu and pleiotrophin expression and inhibits tumor cell proliferation. Gene Ther. 4, 943–949.

    Article  PubMed  CAS  Google Scholar 

  46. Frimerman, A., Welch, P. J., Jin, X., et al. (1999) Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 99, 697–703.

    PubMed  CAS  Google Scholar 

  47. Gu, J. L., Pei, H., Thomas, L., et al. (2001) Ribozyme-mediated inhibition of rat leukocyte-type 12-lipoxygenase prevents intimal hyperplasia in balloon-injured rat carotid arteries. Circulation 103, 1446–1452.

    PubMed  CAS  Google Scholar 

  48. Jarvis, T. C., Alby, L. J., Beaudry, A. A., et al. (1996) Inhibition of vascular smooth muscle cell proliferation by ribozymes that cleave c-myb mRNA. RNA 2, 419–428.

    PubMed  CAS  Google Scholar 

  49. Yokoyama, Y., Wan, X., Shinohara, A., Takahashi, Y., and Tamaya, T. (2001) Hammerhead ribozymes to modulate telomerase activity of endometrial carcinoma cells. Hum. Cell 14, 223–231.

    PubMed  CAS  Google Scholar 

  50. Kashani-Sabet, M. (2002) Ribozyme therapeutics. J. Investig. Dermatol. Symp. Proc. 7, 76–78.

    Article  PubMed  CAS  Google Scholar 

  51. Heidenreich, O., Benseler, F., Fahrenholz, A., and Eckstein, F. (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J. Biol. Chem. 269, 2131–2138.

    PubMed  CAS  Google Scholar 

  52. Burgin, A. B. Jr., Gonzalez, C., Matulic-Adamic, J., et al. (1996) Chemically modified hammerhead ribozymes with improved catalytic rates. Biochemistry 35, 14,090–14,097.

    Article  PubMed  CAS  Google Scholar 

  53. Flory, C. M., Pavco, P. A., Jarvis, T. C., et al. (1996) Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc. Natl. Acad. Sci. USA 93, 754–758.

    Article  PubMed  CAS  Google Scholar 

  54. Morgan, R. A. and Anderson, W. F. (1993) Human gene therapy. Annu. Rev. Biochem. 62, 191–217.

    Article  PubMed  CAS  Google Scholar 

  55. Perlman, H., Sata, M., Krasinski, K., Dorai, T., Buttyan, R., and Walsh, K. (2000) Adenovirus-encoded hammerhead ribozyme to Bcl-2 inhibits neointimal hyperplasia and induces vascular smooth muscle cell apoptosis. Cardiovasc. Res. 45, 570–578.

    Article  PubMed  CAS  Google Scholar 

  56. Giordano, V., Jin, D. Y., Rekosh, D., and Jeang, K. T. (2000) Intravirion targeting of a functional anti-human immunodeficiency virus ribozyme directed to pol. Virology 267, 174–184.

    Article  PubMed  CAS  Google Scholar 

  57. Horster, A., Teichmann, B., Hormes, R., Grimm, D., Kleinschmidt, J., and Sczakiel, G. (1999) Recombinant AAV-2 harboring gfp-antisense/ribozyme fusion sequences monitor transduction, gene expression, and show anti-HIV-1 efficacy. Gene Ther. 6, 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  58. Kunke, D., Grimm, D., Denger, S., et al. (2000) Preclinical study on gene therapy of cervical carcinoma using adenoassociated virus vectors. Cancer Gene Ther. 7, 766–777.

    Article  PubMed  CAS  Google Scholar 

  59. L’Huillier, P. J., Soulier, S., Stinnakre, M. G., et al. (1996) Efficient and specific ribozyme-mediated reduction of bovine alpha-lactalbumin expression in double transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6698–6703.

    Article  CAS  Google Scholar 

  60. Welch, P. J., Yei, S., and Barber, J. R. (1998) Ribozyme gene therapy for hepatitis C virus infection. Clin. Diagn. Virol. 10, 163–171.

    Article  PubMed  CAS  Google Scholar 

  61. Smith, S. M., Maldarelli, F., and Jeang, K. T. (1997) Efficient expression by an alphavirus replicon of a functional ribozyme targeted to human immunodeficiency virus type 1. J. Virol. 71, 9713–9721.

    PubMed  CAS  Google Scholar 

  62. Castanotto, D., Bertrand, E., and Rossi, J. (1997) Exogenous cellular delivery of ribozymes and ribozyme encoding DNAs. Methods Mol. Biol. 74, 429–439.

    PubMed  CAS  Google Scholar 

  63. Efrat, S., Leiser, M., Wu, Y. J., et al. (1994) Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 91, 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  64. Tang, J. and Breaker, R. R. (1998) Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res. 26, 4214–4221.

    Article  PubMed  CAS  Google Scholar 

  65. Zhao, J. J. and Lemke, G. (1998) Selective disruption of neuregulin-1 function in vertebrate embryos using ribozymet-RNA transgenes. Development 125, 1899–1907.

    PubMed  CAS  Google Scholar 

  66. Zhao, J. J. and Pick, L. (1993) Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365, 448–451.

    Article  PubMed  CAS  Google Scholar 

  67. Sullenger, B. A. (1996) Ribozyme-mediated repair of RNAs encoding mutant tumor suppressors. Cytokines Mol. Ther. 2, 201–205.

    PubMed  CAS  Google Scholar 

  68. Watanabe, T. and Sullenger, B. A. (2000) RNA repair: a novel approach to gene therapy. Adv. Drug Deliv. Rev. 44, 109–118.

    Article  PubMed  CAS  Google Scholar 

  69. Sullenger, B. A. and Cech, T. R. (1994) Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371, 619–622.

    Article  PubMed  CAS  Google Scholar 

  70. Chaulk, S. G. and MacMillan, A. M. (1998) Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178.

    Article  PubMed  CAS  Google Scholar 

  71. Hager, A. J. and Szostak, J. W. (1997) Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem. Biol. 4, 607–617.

    Article  PubMed  CAS  Google Scholar 

  72. Santoro, S. W. and Joyce, G. F. (1998) Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330.

    Article  PubMed  CAS  Google Scholar 

  73. Coetzee, T., Herschlag, D., and Belfort, M. (1994) Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 8, 1575–1588.

    Article  PubMed  CAS  Google Scholar 

  74. Bertrand, E., Pictet, R., and Grange, T. (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res. 22, 293–300; published erratum appears in Nucleic Acids Res. 22, 1326.

    Article  PubMed  CAS  Google Scholar 

  75. Sioud, M. (1996) Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo. Eur. J. Immunol. 26, 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  76. Lee, N. S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.

    PubMed  CAS  Google Scholar 

  77. Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  PubMed  CAS  Google Scholar 

  78. Paul, C. P., Good, P. D., Li, S. X., Kleihauer, A., Rossi, J. J., and Engelke, D. R. (2003) Localized expression of small RNA inhibitors in human cells. Mol. Ther. 7, 237–247.

    Article  PubMed  CAS  Google Scholar 

  79. Xia, X., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  80. Wilson, J. A., Jayasena, S., Khvorova, A., et al. (2003) RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. USA 100, 2783–2788.

    Article  PubMed  CAS  Google Scholar 

  81. Barton, G. M. and Medzhitov, R. (2002) Retroviral delivery of small interfering RNA into primary cells. Proc. Natl. Acad. Sci. USA 99, 14,943–14,945.

    Article  PubMed  CAS  Google Scholar 

  82. Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., and Aebischer, P. (2002) Lentiviral-mediated RNA interference. Hum. Gene Ther. 13, 2197–2201.

    Article  PubMed  CAS  Google Scholar 

  83. Qin, X. F., An, D. S., Chen, I. S., and Baltimore, D. (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 100, 183–188.

    Article  PubMed  CAS  Google Scholar 

  84. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    Article  PubMed  CAS  Google Scholar 

  85. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I. M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848.

    Article  PubMed  CAS  Google Scholar 

  86. Hooberman, A. L., Rubin, C. M., Barton, K. P., and Westbrook, C. A. (1989) Detection of the Philadelphia chromosome in acute lymphoblastic leukemia by pulsed-field gel electrophoresis. Blood 74, 1101–1107.

    PubMed  CAS  Google Scholar 

  87. Rubin, C. M., Larson, R. A., Bitter, M. A., et al. (1987) Association of a chromosomal 3;21 translocation with the blast phase of chronic myelogenous leukemia. Blood 70, 1338–1342.

    PubMed  CAS  Google Scholar 

  88. Wilda, M., Fuchs, U., Wossmann, W., and Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–5724.

    Article  PubMed  CAS  Google Scholar 

  89. Scherr, M., Battmer, K., Winkler, T., Heidenreich, O., Ganser, A., and Eder, M. (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  90. Jakubowiak, A., Pouponnot, C., Berguido, F., et al. (2000) Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J. Biol. Chem. 275, 40,282–40,287.

    Article  PubMed  CAS  Google Scholar 

  91. Pabst, T., Mueller, B. U., Zhang, P., et al. (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat. Genet. 27, 263.

    Article  PubMed  CAS  Google Scholar 

  92. Dohjima, T., Lee, N. S., Li, H., Ohno, T., and Rossi, J. J. (2003) Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol. Therapy 7, 811–816.

    Article  CAS  Google Scholar 

  93. Amarzguioui, M., Holen, T., Babaie, E., and Prydz, H. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595.

    Article  PubMed  CAS  Google Scholar 

  94. Capodici, J., Kariko, K., and Weissman, D. (2002) Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169, 5196–5201.

    PubMed  Google Scholar 

  95. Zeng, Y. and Cullen, B. R. (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860.

    Article  PubMed  CAS  Google Scholar 

  96. Michienzi, A., Cagnon, L., Bahner, I., and Rossi, J. J. (2000) Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc. Natl. Acad. Sci. USA 97, 8955–8960.

    Article  PubMed  CAS  Google Scholar 

  97. Lee, N. S., Sun, B., Williamson, R., Gunkel, N., Salvaterra, P. M., and Rossi, J. J. (2001) Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes. FASEB J. 15, 2390–2400.

    Article  PubMed  CAS  Google Scholar 

  98. Castanotto, D., Scherr, M., and Rossi, J. J. (2000) Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol. 313, 401–420.

    Article  PubMed  CAS  Google Scholar 

  99. Kawasaki, H., Suyama, E., Iyo, M., and Taira, K. (2003) siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. 31, 981–987.

    Article  PubMed  CAS  Google Scholar 

  100. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Scherer, L., Rossi, J.J. (2005). Cancer Therapeutic Applications of Ribozymes and RNAi. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_5

Download citation

Publish with us

Policies and ethics