Skip to main content

Tumor Suppressor Gene Replacement for Cancer

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1056 Accesses

Abstract

Long before the genetic basis of cancer was accepted and over half a century before the term tumor suppressor gene (TSG) was coined, German biologist Theodor Boveri (1) suggested “the presence of definite chromosomes which inhibit division.” Writing in 1914 (translation published in 1929), Boveri ventured that “cells of tumors with unlimited growth would arise if those ‘inhibiting chromosomes’ were eliminated.” Over half a century later, molecular analysis of human tumors revealed that, in every case of cancer, at least one of the multiple genetic alterations found is in an “inhibiting chromosome,” now known as a TSG. During the 1980s, molecular biology and cancer genetics (see Chapters 1 and 2) transformed Boveri’s theoretical inhibiting chromosomes into powerful tools for the study of the molecular pathogenesis of cancer and then, during the 1990s, propelled them from the laboratory bench to the bedside. Between 1994 and the end of 2002, more than 25 clinical trials for TSG replacement therapy were initiated, and results indicated a promising future for TSG in the management of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boveri, T. (1929) The Origin of Malignant Tumors. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  2. Watson, J. D. (1977) The awful incompleteness of eucaryotic cell biochemistry. In Molecular Biology of the Gene (Watson, J. D., ed.), W. A. Benjamin, Reading, PA, p. 584–585.

    Google Scholar 

  3. Bishop, J. M. (1991) Molecular themes in oncogenesis. Cell 64, 235–248.

    Article  PubMed  CAS  Google Scholar 

  4. Sager, R. (1989) Tumor suppressor genes: the puzzle and the promise. Science 246, 1406–1412.

    Article  PubMed  CAS  Google Scholar 

  5. Knudson, A. G. Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823.

    Article  PubMed  Google Scholar 

  6. Marshall, C. J. (1991) How does p21-ras transform cells? Trends Genet. 7, 91–95.

    PubMed  CAS  Google Scholar 

  7. Weinberg, R. A. (1991) Tumor suppressor genes. Science 254, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  8. Ji, L., Nishizaki, M., Gao, B., et al. (2002) Expression of several genes in the human chromosome 3p21.3 homozygous deletion region exhibit tumor suppressor activities in vitro and in vivo. Cancer Res. 62, 2715–2720.

    PubMed  CAS  Google Scholar 

  9. Park, I. W., Wistuba, I. I., Maitra, et al. (1999) Multiple clonal abnormalities in the bronchial epithelium of patients with lung cancer. J. Natl. Cancer Inst. 91, 1863–1868.

    Article  PubMed  CAS  Google Scholar 

  10. Wistuba, I. I., Behrens, C., Virmani, A. K., et al. (2000) High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 60, 1949–1960.

    PubMed  CAS  Google Scholar 

  11. Wistuba, I. I., Berry, J., Behrens, C., et al. (2000) Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin. Cancer Res. 6, 2604–2610.

    PubMed  CAS  Google Scholar 

  12. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  13. Hakem, R. and Mak, T. W. (2001) Animal models of tumor-suppressor genes. Annu. Rev. Genet. 2001, 209–241.

    Article  Google Scholar 

  14. El-Deiry, W. (2003) Tumor Suppressor Genes, Volume 1, Pathways and Isolation Strategies. Humana Press, Totowa, NJ.

    Google Scholar 

  15. El-Deiry, W. (2003) Tumor Suppressor Genes, Volume 2, Regulation, Function and Medicinal Applications. Humana Press, Totowa, NJ.

    Google Scholar 

  16. Kinzler, K. W. and Vogelstein, B. (1997) Gatekeepers and caretakers. Nature 386, 761–763.

    Article  PubMed  CAS  Google Scholar 

  17. Vogelstein, B., Lane, D., and Levine, A. J. (2000) Surfing the p53 network. Nature 408, 307–310.

    Article  PubMed  CAS  Google Scholar 

  18. Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1996) Apoptosis and APC in colorectal tumorigenesis. Proc. Natl. Acad. Sci. USA 93, 7950–7954.

    Article  PubMed  CAS  Google Scholar 

  19. Nikitin, A. Y., Juarez-Perez, M. I., Li, S., Huang, L., and Lee, W. H. (1999) RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/-mice. Proc. Natl. Acad. Sci. USA 96, 3916–3921.

    Article  PubMed  CAS  Google Scholar 

  20. Demers, G. W., Harris, M. P., Wen, S. F., Engler, H., Nielsen, L. L., and Maneval, D. C. (1998) A recombinant adenoviral vector expressing full-length human retinoblastoma susceptibility gene inhibits human tumor cell growth. Cancer Gene Ther. 5, 207–214.

    PubMed  CAS  Google Scholar 

  21. Sandig, V., Brand, K., Herwig, S., Lukas, J., Bartek, J., and Strauss, M. (1997) Adenovirally transferred p16(INK4/CDKN2) and p53 genes cooperate to induce apoptotic tumor cell death. Nat. Med. 3, 313–319.

    Article  PubMed  CAS  Google Scholar 

  22. Tsao Y. P., Huang, S., Chang, J., Hsieh, J. T., Pong, R. C., and Chen, S. (1999) Adenovirus-mediated p21 (WAF1/SDII/CIP1) gene transfer induces apoptosis of human cervical cancer cell line. J. Virol. 73, 4983–4990.

    PubMed  CAS  Google Scholar 

  23. Dong, Y., Yang, H., Elliott, M., and McMasters, K. M. (2002) Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors. Cancer Res. 62, 1776–1783.

    PubMed  CAS  Google Scholar 

  24. Tanaka, M., Koul, D., Davies, M., Liebert, M., Steck, P. A., and Grossman, H. B. (2000) MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 19, 5406–5412.

    Article  PubMed  CAS  Google Scholar 

  25. Dumon, K., Ishii, H., Vecchione, A., et al. (2001) Fragile histidine triad expression delays tumor development and induces apoptosis in human pancreatic cancer. Cancer Res. 6, 4827–4836.

    Google Scholar 

  26. Ji, L., Fang, B., Yen, N., Fong, K., Minna, J. D., and Roth, J. A. (1999) Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res. 59, 3333–3339.

    PubMed  CAS  Google Scholar 

  27. Dumon, K. R., Ishii, H., Fong, L., et al. (2001) FHIT gene therapy prevents tumor development in Fhit-deficient mice. Proc. Natl. Acad. Sci. USA 98, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  28. Sasaki, Y., Morimoto, I., Ishida, S., Yamashita, T., Imai, K., and Tokino, T. (2001) Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Ther. 8, 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  29. Spitz, F. R., Nguyen, D., Skibber, J. M., Meyn, R. E., Cristiano, R. J., and Roth, J. A. (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin. Cancer Res. 2, 1665–1671.

    PubMed  CAS  Google Scholar 

  30. Burns, T. and El-Deiry, W. (1999) The p53 pathway and apoptosis. J. Cell. Physiol. 181, 231–239.

    Article  PubMed  CAS  Google Scholar 

  31. Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  32. Kamijo, T., Zindy, F., Roussel, M. F., et al. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659.

    Article  PubMed  CAS  Google Scholar 

  33. Fujiwara, T., Cai, D. W., Georges, R. N., Mukhopadhyay, T., Grimm, E. A., and Roth, J. A. (1994) Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J. Natl. Cancer Inst. 86, 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  34. Cai, D. W., Mukhopadhyay, T., and Roth, J. A. (1993) A Novel Ribozyme for Modification of Mutated p53 Pre-mRNA in Non-small Cell Lung Cancer Cell Lines. Third Antisense Workshop presented Nov. 13, 1993.

    Google Scholar 

  35. Fujiwara, T., Grimm, E. A., Mukhopadhyay, T., Cai, D. W., Owen-Schaub, L. B., and Roth, J. A. (1993) A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res. 53, 4129–4133.

    PubMed  CAS  Google Scholar 

  36. Cusack, J. C., Spitz, F. R., Nguyen, D., Zhang, W. W., Cristiano, R. J., and Roth, J. A. (1996) High levels of gene transduction in human lung tumors following intralesional injection of recombinant adenovirus. Cancer Gene Ther. 3, 245–249.

    PubMed  CAS  Google Scholar 

  37. Miyashita, T. and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of human bax gene. Cell 80, 293–299.

    Article  PubMed  CAS  Google Scholar 

  38. Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  39. Molinier-Frenkel, V., Le Boulaire, C., Le Gal, F. A., et al. (2000) Longitudinal follow-up of cellular and humoral immunity induced by recombinant adenovirus-mediated gene therapy in cancer patients. Human Gene Ther. 11, 1911–1920.

    Article  CAS  Google Scholar 

  40. Yen, N., Ioannides, C. G., Xu, K., et al. (2000) Cellular and humoral immune responses to adenovirus and p53 protein antigens in patients following intratumor injection of an adenovirus vector expressing wild-type p53 (Ad-p53) Cancer Gene Ther. 7, 530–536.

    Article  PubMed  CAS  Google Scholar 

  41. Carroll, J. L., Nielsen, L. L., Pruett, S. B., and Mathis, J. M. (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol. Cancer Ther. 1, 49–60.

    PubMed  CAS  Google Scholar 

  42. Owen-Schaub, L. B., Zhang, W., Cusack, J. C., et al. (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15, 3032–3040.

    PubMed  CAS  Google Scholar 

  43. Zhang, W. W., Fang, X., Mazur, W., French, B. A., Georges, R. N., and Roth, J. A. (1994) High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther. 1, 5–13.

    PubMed  Google Scholar 

  44. Wang, J., Bucana, C. D., Roth, J. A., and Zhang, W. W. (1995) Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV-p53. Cancer Gene Ther. 2, 9–17.

    PubMed  CAS  Google Scholar 

  45. Georges, R. N., Mukhopadhyay, T., Zhang, Y., Yen, N., and Roth, J. A. (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res. 53, 1743–1746.

    PubMed  CAS  Google Scholar 

  46. Bouvet, M., Fang, B., Ekmekcioglu, S., et al. (1998) Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther. 5, 189–195.

    Article  PubMed  CAS  Google Scholar 

  47. Spitz, F. R., Nguyen, D., Skibber, J., Meyn, R., Cristiano, R. J., and Roth, J. A. (1996) Adenoviral mediated p53 gene therapy enhances radiation sensitivity of colorectal cancer cell lines. Proc. Am. Assoc. Cancer Res. 37, 347.

    Google Scholar 

  48. Xu, M., Kumar, D., Srinivas, S., et al. (1997) Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum. Gene Ther. 8, 177–185.

    PubMed  CAS  Google Scholar 

  49. Nielsen, L. L., Dell, J., Maxwell, E., Armstrong, L., Maneval, D., and Catino, J. J. (1997) Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 4, 129–138.

    PubMed  CAS  Google Scholar 

  50. Roth, J. A., Nguyen, D., Lawrence, D. D., et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat. Med. 2, 985–991.

    Article  PubMed  CAS  Google Scholar 

  51. Roth, J. A. (1996) Clinical protocol: modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC). Hum. Gene Ther. 7, 875–889.

    Article  PubMed  CAS  Google Scholar 

  52. Roth, J. A. (1996) Clinical protocol: modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum. Gene Ther. 7, 1013–1030.

    PubMed  CAS  Google Scholar 

  53. Swisher, S. G., Roth, J. A., Nemunaitis, J., et al. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small cell lung cancer. J. Natl. Cancer Inst. 91, 763–771.

    Article  PubMed  CAS  Google Scholar 

  54. Clayman, G. L., El-Naggar, A. K., Lippman, S. M., et al. (1998) Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. New Frontiers Res. Treat. Aerodigestive Tract Cancers 41, 109–110.

    Google Scholar 

  55. Goodwin, W. J., Esser, D., Clayman, G. L., Nemunaitis, J., Yver, A., and Dreiling, L. K. (1999) Randomized phase II study of intratumoral injection of two dosing schedules using a replication-deficient adenovirus carrying the p53 gene (AD5CMV-P53) in patients with recurrent/refractory head and neck cancer. Proc. Am. Soc. Clin. Oncol. 19, 445a.

    Google Scholar 

  56. Bier-Laning, C. M., VanEcho, D., Yver, A., and Dreiling, L. K. (1999) A phase II multi-center study of AD5CMV-P53 administered intratumorally to patients with recurrent head and neck cancer. Proc. Am. Soc. Clin. Oncol. 18, 444a.

    Google Scholar 

  57. National Institute of Health, Recombinant DNA Advisory Committee. (2002) Gene Therapy Protocols by Disease. NIH, Washington, D.C.

    Google Scholar 

  58. Yver, A., Dreiling, L. K., Mohanty, S., et al. (1999) Tolerance and safety of RPR/INGN 201, an adeno-viral vector containing a p53 gene, administered intratumorally in 309 patients with advanced cancer enrolled in phase I and II studies world-wide. Proc. Am Soc. Clin. Oncol. 19, 460a.

    Google Scholar 

  59. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M. (1991) Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6. Nature 352, 345–347.

    Article  PubMed  CAS  Google Scholar 

  60. Ramqvist, T., Magnusson, K. P., Wang, Y., Szekeley, L., and Klein, G. (1993) Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 8, 1495–1500.

    PubMed  CAS  Google Scholar 

  61. Shaw, P., Bovey, R., Tardy, S., Sahli, R., Sordat, B., and Costa, J. (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89, 4495–4499.

    Article  PubMed  CAS  Google Scholar 

  62. Dewey, W. C., Ling, C. C., and Meyn, R. E. (1995) Radiation induced apoptosis: relevance to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 33, 781–796.

    Article  PubMed  CAS  Google Scholar 

  63. Roth, J. A. (1995) Review: clinical protocol for modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum. Gene Ther. 6, 252–255.

    Google Scholar 

  64. Meyn, R. E., Stephens, L. C., Hunter, N. R., and Milas, L. (1997) Apoptosis in murine tumors treated with chemotherapy agents. Anticancer Drugs 6, 443–450.

    Article  Google Scholar 

  65. Fujiwara, T., Grimm, E. A., Mukhopadhyay, T., Zhang, W. W., Owen-Schaub, L. B., and Roth, J. A. (1994) Induction of chemosensitivity in human cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Surg. Forum 45, 524–526.

    Google Scholar 

  66. Nguyen, D. M., Spitz, F. R., Yen, N., Cristiano, R. J., and Roth, J. A. (1996) Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J. Thorac. Cardiovasc. Surg. 112, 1372–1377.

    Article  PubMed  CAS  Google Scholar 

  67. Hamada, M., Fujiwara, T., Hizuta, A., et al. (1996) The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J. Cancer Res. Clin. Oncol. 122, 360–365.

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen, D., Spitz, F., Kataoka, M., Wiehle, S., Roth, J. A., and Cristiano, R. (1996) Enhancement of gene transduction in human carcinoma cells by DNA-damaging agents. Proc. Am. Assoc. Cancer Res. 37, 347.

    Google Scholar 

  69. Jasty, R., Lu, J., Irwin, T., Suchard, S., Clarke, M. F., and Castle, V. P. (1998) Role of p53 in the regulation of irradiation-induced apoptosis in neuroblastoma cells. Mol. Genet. Metab. 65, 155–164.

    Article  PubMed  CAS  Google Scholar 

  70. Akimoto, T., Hunter, N. R., Buchmiller, L., Mason, K., Ang, K. K., and Milas, L. (1999) Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin. Cancer Res. 5, 2884–2890.

    PubMed  CAS  Google Scholar 

  71. Feinmesser, M., Halpern, M., Fenig, E., et al. (1994) Expression of the apoptosis-related oncogenes bcl-2, bax, and p53 in Merkel cell carcinoma: can they predict treatment response and clinical outcome? Hum. Pathol. 30, 1367–1372.

    Article  Google Scholar 

  72. Broaddus, W. C., Liu, Y., Steele, L. L., et al. (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J. Neurosurg. 91, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  73. Sakakura, C., Sweeney, E. A., Shirahama, T., et al. (1996) Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int. J. Cancer 67, 101–105.

    Article  PubMed  CAS  Google Scholar 

  74. Brachman, D. G., Becket, M., Graves, D., Haraf, D., Vokes, E., and Weichselbaum, R. R. (1993) p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cells lines. Cancer Res. 53, 3667–3669.

    PubMed  CAS  Google Scholar 

  75. Slichenmyer, W. J., Nelson, W. G., Slebos, R. J., and Kastan, M. B. (1993) Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res. 53, 4164–4168.

    PubMed  CAS  Google Scholar 

  76. Danielsen, T., Smith-Sorensen, B., Gronlund, H. A., Hvidsten, M., Borresen-Dale, A. L., and Rofstad, E. K. (1994) No association between radiosensitivity and TP53 status, G(1) arrest or protein levels of p53, myc, ras or raf in human melanoma lines. Int. J. Radiat. Biol. 75, 1149–1160.

    Article  Google Scholar 

  77. Nemunaitis, J., Swisher, S. G., Timmons, T., et al. (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small cell lung cancer. J. Clin. Oncol. 18, 609–622.

    PubMed  CAS  Google Scholar 

  78. Schuler, M., Herrmann, R., De Greve, J. L., et al. (2001) Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J. Clin. Oncol. 19, 1750–1758.

    PubMed  CAS  Google Scholar 

  79. Buller, R., Runnebaum, I., Karlan, B., et al. (2002) A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther. 9, 553–566.

    Article  PubMed  CAS  Google Scholar 

  80. Buller, R. E., Shahin, M. S., Horowitz, J. A., et al. (2002) Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther. 9, 567–572.

    Article  PubMed  CAS  Google Scholar 

  81. Swisher, S., Roth, J. A., Komaki, R., et al. (2000) A phase II trial of adenoviral mediated p53 gene transfer (RPR/INGN 201) in conjunction with radiation therapy in patients with localized non-small cell lung cancer (NSCLC). Am. Soc. Clin. Oncol. 19, 461a.

    Google Scholar 

  82. Nishizaki, M., Fujiwara, T., Tanida, T., et al. (1999) Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effects. Clin. Cancer Res. 5, 1015–1023.

    PubMed  CAS  Google Scholar 

  83. Templeton, N. S., Lasic, D. D., Frederik, P. M., Strey, H. H., Roberts, D. D., and Pavlakis, G. N. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15, 647–652.

    Article  PubMed  CAS  Google Scholar 

  84. Ramesh, R., Saeki, T., Templeton, N. S., et al. (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol. Ther. 3, 337–350.

    Article  PubMed  CAS  Google Scholar 

  85. Shimizu, T., Chen, J., Gamou, S., and Takayanagi, A. (1996) Immunogene approach toward cancer therapy using epidermal growth factor receptor-mediated gene delivery. Cancer Gene Ther. 3, 113–120.

    PubMed  CAS  Google Scholar 

  86. Hood, J. D., Bednarski, M., Frausto, R., et al. (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407.

    Article  PubMed  CAS  Google Scholar 

  87. Kondo, M., Ji, L., Kamibayashi, C., et al. (2001) Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene 20, 6258–6262.

    Article  PubMed  CAS  Google Scholar 

  88. Ji, L., Nishizaki, M., Gao, B., et al. (2002) Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res. 62, 2715–2720.

    PubMed  CAS  Google Scholar 

  89. Lerman, M. I. and Minna, J. D. (2000) The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 60, 6116–6133.

    PubMed  CAS  Google Scholar 

  90. National Institutes of Health and Office of Biomedical Affairs. (2002) Recombinant DNA and gene transfer Web site. NIH/NCI. 11-25-0002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roth, J.A., Grammer, S.F. (2005). Tumor Suppressor Gene Replacement for Cancer. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_3

Download citation

Publish with us

Policies and ethics