Skip to main content

Molecular Imaging of Cancer Gene Therapy

  • Chapter
  • 1008 Accesses

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Applications of noninvasive imaging in cancer gene therapy research and clinical practice fall into three categories. First, “tagged” tumor cells can be used to monitor cell fates in vivo. Target tumor cells can be labeled for noninvasive imaging, either by transfer of ex vivo-labeled tumor cells to host animals or by the development of transgenic animal models in which target tumor cells express reporters that can be noninvasively imaged. The response of imagable target tumor cells to chemotherapy, immunotherapy, gene therapy, cell therapy, and multimodality therapies can then be noninvasively monitored (1). Although an important tool in preclinical cancer research studies in general and gene therapy research in particular, the use of noninvasive imaging to monitor the fate of tagged target tumor cells is not extensively reviewed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sweeney, T. J., Mailänder, V., Tucker, A. A., et al. (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl. Acad. Sci. USA 96, 12,044–12,049.

    Article  PubMed  CAS  Google Scholar 

  2. Haberkorn, U. and Altmann, A. (2001) Imaging methods in gene therapy of cancer. Curr. Gene Ther. 1, 1–27.

    Article  Google Scholar 

  3. Gambhir, S. S., Herschman, H. R., Cherry, S. R., et al. (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138.

    Article  PubMed  CAS  Google Scholar 

  4. Herschman, H. R., MacLaren, D. C., Iyer, M., et al. (2000) Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J. Neurosci. Res. 59, 699–705.

    Article  PubMed  CAS  Google Scholar 

  5. Honigman, A., Zeira, E., Ohana, P., et al. (2001) Imaging transgene expression in live animals. Mol. Ther. 4, 239–249.

    Article  PubMed  CAS  Google Scholar 

  6. Ray, P., Bauer, E., Iyer, M., et al. (2001) Monitoring gene therapy with reporter gene imaging. Semin. Nucl. Med. 31, 312–320.

    Article  PubMed  CAS  Google Scholar 

  7. Spitzweg C. and Morris, J. C. (2001) Approaches to gene therapy with sodium/iodide symporter. Exp. Clin. Endocrinol. Diabetes 109, 56–59.

    Article  PubMed  CAS  Google Scholar 

  8. Allport, J. R. and Weissleder, R. (2001) In vivo imaging of gene and cell therapies. Exp. Hematol. 29, 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  9. Herschman, H. R., Barrio, J. R., Satyamurthy, N., et al. (2002) Monitoring gene therapy by positron emission tomography. In Vector Targeting for Therapeutic Gene Delivery (Curiel, D. T. and Douglas, J. T., eds.), Wiley-Liss, New York, pp. 661–685.

    Google Scholar 

  10. Bogdanov, A. Jr. and Weissleder, R. (2002) In vivo imaging of gene delivery and expression. Trends Biotechnol. 20, S11–S18.

    Article  Google Scholar 

  11. O’Connell-Rodwell, C. E., Burns, S. M., Bachmann, M. H., and Contag, C. H. (2002) Bioluminescent indicators for in vivo measurements of gene expression. Trends Biotechnol. 20, S19–S23.

    Article  Google Scholar 

  12. Greer, L. F. III and Szalay, A. A. (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17, 43–74.

    Article  PubMed  CAS  Google Scholar 

  13. Contag, C. H. and Bachmann, M. H. (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260.

    Article  PubMed  CAS  Google Scholar 

  14. Zinn, K. R. and Chaudhuri, T. R. (2002) The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J. Nucl. Med. Mol. Imaging 29, 388–399.

    Article  PubMed  CAS  Google Scholar 

  15. Harrison, L. H. Jr., Schwarzenberger, P. O., Byrne, P. S., Marrogi, A. J., Kolls, J. K., and McCarthy, K. E. (2000) Gene-modified PA1-STK cells home to tumor sites in patients with malignant pleural mesothelioma. Ann. Thorac. Surg. 70, 407–411.

    Article  PubMed  Google Scholar 

  16. Adonai, N., Nguyen, K. N., Walsh, J., et al. (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N 4-methyl-thiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc. Natl. Acad. Sci. USA 99, 3030–3035.

    Article  PubMed  CAS  Google Scholar 

  17. Schellingerhout, D., Bogdanov, A. Jr., Marecos, E., Spear, M., Breakefield, X., and Weissleder, R. (1998) Mapping the in vivo distribution of herpes simplex virions. Hum. Gene Ther. 9, 1543–1549.

    Article  PubMed  CAS  Google Scholar 

  18. Zinn, K. R., Douglas, J. T., Smyth, C. A., et al. (1998) Imaging and tissue biodistribuiton of 99mTc-labeled adenovirus knob (serotype 5). Gene Ther. 5, 798–808.

    Article  PubMed  CAS  Google Scholar 

  19. Bogdanov, A. Jr., Tung, C. H., Bredow, S., and Weissleder, R. (2001) DNA binding chelates for nonviral gene delivery imaging. Gene Ther. 8, 515–522.

    Article  PubMed  CAS  Google Scholar 

  20. Josephson, L., Tung, C. H., Moore, A., and Weissleder, R. (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10, 186–191.

    Article  PubMed  CAS  Google Scholar 

  21. Westphal, H., Overbeek, P. A., Khillan, J. S., et al. (1985) Promoter sequences of murine alpha A crystallin, murine alpha 2(I) collagen or of avian sarcoma virus genes linked to the bacterial chloramphenicol acetyl transferase gene direct tissue-specific patterns of chloramphenicol acetyl transferase expression in transgenic mice. Cold Spring Harb. Symp. Quant. Biol. 50, 411–416.

    PubMed  CAS  Google Scholar 

  22. Leite, J. P., Niel, C., and D’Halluin, J. C. (1986) Expression of the chloramphenicol acetyl transferase gene in human cells under the control of early adenovirus subgroup C promoters: effect of E1A gene products from other subgroups on gene expression. Gene 41, 207–215.

    Article  PubMed  CAS  Google Scholar 

  23. Forss-Petter, S., Danielson, P. E., Catsicas, S., et al. (1990) Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5, 187–200.

    Article  PubMed  CAS  Google Scholar 

  24. Naciff, J. M., Behbehani, M. M., Misawa, H., and Dedman, J. R. (1999) Identification and transgenic analysis of a murine promoter that targets cholinergic neuron expression. J. Neurochem. 72, 17–28.

    Article  PubMed  CAS  Google Scholar 

  25. Zlokarnik, G., Negulescu, P. A., Knapp, T. E., et al. (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–88.

    Article  PubMed  CAS  Google Scholar 

  26. Ehrin, E., Farde, L., de Paulis, T., et al. (1985) Preparation of 11C-labelled Raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int. J. Appl. Radiat. Isot. 36, 269–273.

    Article  PubMed  CAS  Google Scholar 

  27. Hall, H., Kohler, C., Gawell, L., Farde, L., and Sedvall, G. (1988) Raclopride, a new selective ligand for the dopamine-D2 receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 12, 559–568.

    Article  PubMed  CAS  Google Scholar 

  28. Hume, S. P., Myers, R., Bloomfield, P. M., et al. (1992) Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12, 47–54.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner, H. N. Jr., Burns, H. D., Dannals, R. F., et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221, 1264–1266.

    Article  PubMed  CAS  Google Scholar 

  30. Barrio, J. R., Satyamurthy, N., Huang, S. C., et al. (1989) 3-(2′-[18F]Fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J. Cereb. Blood Flow Metab. 9, 830–839.

    PubMed  CAS  Google Scholar 

  31. Satyamurthy, N., Barrio, J. R., Bida, G. T., Huang, S. C., Mazziotta, J. C., and Phelps, M. E. (1990) 3-(2′-[18F]Fluoroethyl) spiperone, a potent dopamine antagonist: synthesis, structural analysis and in-vivo utilization in humans. Int. J. Rad. Appl. Instrum. 41, 113–129.

    Article  CAS  Google Scholar 

  32. Kessler, R. M., Ansari, M. S., de Paulis, T., et al. (1991) High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J. Nucl. Med. 32, 1593–1600.

    PubMed  CAS  Google Scholar 

  33. MacLaren, D. C., Gambhir, S. S., Satyamurthy, N., et al. (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791.

    Article  PubMed  CAS  Google Scholar 

  34. Neve, K. A., Cox, B. A., Henningsen, R. A., Spanoyannis, A., and Neve, R. L. (1991) Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase. Mol. Pharmacol. 39, 733–739.

    PubMed  CAS  Google Scholar 

  35. Cox, B. A., Henningsen, R. A., Spanoyannis, A., Neve, R. L., and Neve, K. A. (1992) Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J. Neurochem. 59, 627–635.

    Article  PubMed  CAS  Google Scholar 

  36. Liang, Q., Satyamurthy, N., Barrio, J. R., et al. (2001) Noninvasive, quantitative imaging, in living animals, of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. 8, 1490–1498.

    Article  PubMed  CAS  Google Scholar 

  37. Tjuvajev, J. G., Stockhammer, G., Desai, R., et al. (1995) Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132.

    PubMed  CAS  Google Scholar 

  38. Tjuvajev, J. G., Finn, R., Watanabe, K., et al. (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095.

    PubMed  CAS  Google Scholar 

  39. Tjuvajev, J. G., Avril, N., Oku, T., et al. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341.

    PubMed  CAS  Google Scholar 

  40. Namavari, M., Barrio, J. R., Toyokuni, T., et al. (2000) Synthesis of 8-[(18)F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl. Med. Biol. 27, 157–162.

    Article  PubMed  CAS  Google Scholar 

  41. Gambhir, S. S., Barrio, J. R., Phelps, M. E., et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338.

    Article  PubMed  CAS  Google Scholar 

  42. Iyer, M., Barrio, J. R., Namavari, M., et al. (2001) 8-[18F]-Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using positron emission tomography. J. Nucl. Med. 42, 96–105.

    PubMed  CAS  Google Scholar 

  43. Alauddin, M. M., Conti, P. S., Mazza, S. M., Hamzeh, F. M., and Lever, J. R. (1996) Synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl. Med. Biol. 23, 787–792.

    Article  PubMed  CAS  Google Scholar 

  44. Alauddin, M. M. and Conti, P. S. (1998) Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl. Med. Biol. 25, 175–180.

    Article  PubMed  CAS  Google Scholar 

  45. Alauddin, M. M., Shahinian, A., Kundu, R. K., Gordon, E. M., and Conti, P. S. (1999) Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl] guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl. Med. Biol. 26, 371–376.

    Article  PubMed  CAS  Google Scholar 

  46. Hospers, G. A., Calogero, A., van Waarde, A., et al. (2000) Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography. Cancer Res. 60, 1488–1491.

    PubMed  CAS  Google Scholar 

  47. Hustinx, R., Shiue, C. Y., Alavi, A., et al. (2001) Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and [18F]FHPG. Eur. J. Nucl. Med. 28, 5–12.

    Article  PubMed  CAS  Google Scholar 

  48. Yaghoubi, S., Barrio, J., Dahlborn, M., et al. (2001) Human pharmacokinetic and dosimetry studies of [18F]-FHBG, a reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression. J. Nucl. Med. 42, 1225–1234.

    PubMed  CAS  Google Scholar 

  49. Black, M. E., Newcomb, T. G., Wilson, H.-M. P., and Loeb, L. A. (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529.

    Article  PubMed  CAS  Google Scholar 

  50. Brust, P., Haubner, R., Friedrich, A., et al. (2001) Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression. Eur. J. Nucl. Med. 28, 721–729.

    Article  PubMed  CAS  Google Scholar 

  51. Tjuvajev, J. G., Doubrovin, M., Akhurst, T., et al. (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072–1083.

    PubMed  Google Scholar 

  52. Alauddin, M., Shahinian, A., Fissekis, J., and Conti, P. (2002) Comparative evaluation of 2′-deoxy-2′-Fluoro-1-b-D-arabinofuranosiluracil and its 5-substituted derivatives as gene imaging agents. Mol. Imaging 1, 222.

    Article  Google Scholar 

  53. Anderson, C. J., Dehdashti, F., Cutler, P. D., et al. (2001) 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J. Nucl. Med. 42, 213–221.

    PubMed  CAS  Google Scholar 

  54. Henze, M., Schuhmacher, J., Hipp, P., et al. (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J. Nucl. Med. 42, 1053–1056.

    PubMed  CAS  Google Scholar 

  55. Hofmann, M., Maecke, H., Borner, R., et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751–1757.

    Article  PubMed  CAS  Google Scholar 

  56. Benali, N., Cordelier, P., Calise, D., et al. (2000) Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc. Natl. Acad. Sci. USA 97, 9180–9185.

    Article  PubMed  CAS  Google Scholar 

  57. Rogers, B. E., Zinn, K. R., Lin, C. Y., Chaudhuri, T. R., and Buchsbaum, D. J. (2002) Targeted radiotherapy with [90Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector. Cancer 94, 1298–1305.

    Article  PubMed  CAS  Google Scholar 

  58. Chung, J.-K. (2002) Sodium iodide symporter: its role in nuclear medicine. J. Nucl. Med. 43, 1188–1200.

    PubMed  CAS  Google Scholar 

  59. La Perle, K. M. D., Shen, D., Buckwalter, T. L. F., et al. (2002) In vivo expression and function of the sodium iodide symporter following gene transfer in the MATLyLu rat model of metastatic prostate cancer. Prostate 50, 170–178.

    Article  PubMed  CAS  Google Scholar 

  60. Boland, A., Ricard, M., Opolon, P., et al. (2000) Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res. 60, 3484–3492.

    PubMed  CAS  Google Scholar 

  61. Cho, J. Y., Xing, S., Liu, X., et al. (2000) Expression and activity of human Na+/I-symporter in human glioma cells by adenovirus-mediated gene delivery. Gene Ther. 7, 740–749.

    Article  PubMed  CAS  Google Scholar 

  62. Spitzweg, C., Dietz, A. B., O’Connor, M. K., et al. (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. mGene Ther. 8, 1524–1531.

    Article  CAS  Google Scholar 

  63. Louie, A. Y., Huber, M. M., Ahrens, E. T., et al. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325.

    Article  PubMed  CAS  Google Scholar 

  64. Chalfie, M., Tu, Y., Euskirchen, W., Ward, W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  65. Naylor, L. H. (1999) Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58, 749–757.

    Article  PubMed  CAS  Google Scholar 

  66. Yang, M., Baranov, E., Jiang, P., et al. (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  67. Contag, C. H., Spilman, S. D., Contag, P. R., et al. (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531.

    PubMed  CAS  Google Scholar 

  68. Yang, M., Baranov, E., Wang, J. W., et al. (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc. Natl. Acad. Sci. USA 99, 3824–3829.

    Article  PubMed  CAS  Google Scholar 

  69. Ito, S., Nakanishi, H., Ikehara, Y., et al. (2001) Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int. J. Cancer 93, 212–217.

    Article  PubMed  CAS  Google Scholar 

  70. Zhou, J. H., Rosser, C. J., Tanaka, M., et al. (2002) Visualizing superficial human bladder cancer cell growth in vivo by green fluorescent protein expression. Cancer Gene Ther. 9, 681–686.

    Article  PubMed  CAS  Google Scholar 

  71. Bouvet, M., Wang, J., Nardin, S. R., et al. (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res. 62, 1534–1540.

    PubMed  CAS  Google Scholar 

  72. Yang, M., Baranov, E., Moossa, A. R., Penman, S., and Hoffman, R. M. (2000) Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97, 12,278–12,282.

    Article  PubMed  CAS  Google Scholar 

  73. Brown, E. B., Campbell, R. B., Tsuzuki, Y., et al. (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868.

    Article  PubMed  CAS  Google Scholar 

  74. Contag, C. H., Jenkins, D., Contag, P. R., and Negrin, R. S. (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2, 41–52.

    Article  PubMed  CAS  Google Scholar 

  75. Bhaumik, S. and Gambhir, S. S. (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382.

    Article  PubMed  CAS  Google Scholar 

  76. Cho, J.-Y., Shen, D. H. Y., Yang, W., et al. (2002) In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther. 9, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  77. Spitzweg, C., O’Connor, M. K., Bergert, E. R., Tindall, D. J., Young, C. Y. F., and Morris, J. C. (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res. 60, 6526–6530.

    PubMed  CAS  Google Scholar 

  78. Loimas, S., Wahlfors, J., and Janne, J. (1998) Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 24, 614–618.

    PubMed  CAS  Google Scholar 

  79. Steffens, S., Frank, S., Fischer, U., et al. (2000) Enhanced green fluorescent protein fusion proteins of herpes simplex virus type 1 thymidine kinase and cytochrome P450 4B1: applications for prodrug-activating gene therapy. Cancer Gene Ther. 7, 806–812.

    Article  PubMed  CAS  Google Scholar 

  80. Strathdee, C. A., McLeod, M. R., and Underhill, T. M. (2000) Dominant positive and negative selection using luciferase, green fluorescent protein and beta-galactosidase reporter gene fusions. Biotechniques 28, 210–214.

    PubMed  CAS  Google Scholar 

  81. Yaghoubi, S. S., Wu, L., Liang, Q., et al. (2001) Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 8, 1072–1080.

    Article  PubMed  CAS  Google Scholar 

  82. Zinn, K. R., Chaudhuri, T. R., Krasnykh, V. N., et al. (2002) Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 223, 417–425.

    Article  PubMed  CAS  Google Scholar 

  83. Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606.

    Article  PubMed  CAS  Google Scholar 

  84. Krestel, H. E., Mayford, M., Seeburg, P. H., and Sprengel, R. (2001) A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res. 29, E39.

    Article  PubMed  CAS  Google Scholar 

  85. Sun, X., Annala, A. J., Yaghoubi, S., et al. (2001) Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579.

    Article  PubMed  CAS  Google Scholar 

  86. Martinez-Salas, E. (1999) Internal ribosome entry site biology and its use in expression vectors. Curr. Opin. Biotechnol. 10, 458–464.

    Article  PubMed  CAS  Google Scholar 

  87. Tjuvajev, J. G., Joshi, A., Callegari, J., et al. (1999) A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1, 315–320.

    Article  PubMed  CAS  Google Scholar 

  88. Yu, Y., Annala, A. J., Barrio, J. R., et al. (2000) Quantification of target gene expression by imaging reporter gene expression in living animals. Nat. Med. 6, 933–937.

    Article  PubMed  CAS  Google Scholar 

  89. Liang, Q., Gotts, J., Satyamurthy, N., et al. (2002) Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol. Ther. 6, 73–82.

    Article  PubMed  CAS  Google Scholar 

  90. Su, H., Lu, R., Chang, J. C., and Kan, Y. W. (1997) Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc. Natl. Acad. Sci. USA 94, 13,891–13,896.

    Article  PubMed  CAS  Google Scholar 

  91. Lan, K. H., Kanai, F., Shiratori, Y., et al. (1996) Tumor-specific gene expression in carcinoembryonic antigen-producing gastric cancer cells using adenovirus vectors. Gastroenterology 111, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  92. Siders, W. M., Halloran, P. J., and Fenton, R. G. (1996) Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res. 56, 5638–5646.

    PubMed  CAS  Google Scholar 

  93. Southgate, T. D., Windeatt, S., Smith-Arica, J., et al. (2000) Transcriptional targeting to anterior pituitary lactotrophic cells using recombinant adenovirus vectors in vitro and in vivo in normal and estrogen/sulpiride-induced hyperplastic anterior pituitaries. Endocrinology 141, 3493–3505.

    Article  PubMed  CAS  Google Scholar 

  94. Adams, J. Y., Johnson, M., Sato, M., et al. (2002) Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med. 8, 891–896.

    PubMed  CAS  Google Scholar 

  95. Nettelbeck, D. M., Jerome, V., and Muller, R. (2000) Gene therapy: designer promoters for tumour targeting. Trends Genet. 16, 174–181.

    Article  PubMed  CAS  Google Scholar 

  96. Qiao, J., Doubrovin, M., Sauter, B. V., et al. (2002) Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther. 9, 168–175.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang, L., Adams, J. Y., Billick, E., et al. (2002) Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol. Ther. 5, 223–232.

    Article  PubMed  CAS  Google Scholar 

  98. Hemminki, A., Zinn, K. R., Liu, B., et al. (2002) In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J. Natl. Cancer Inst. 94, 741–749.

    PubMed  CAS  Google Scholar 

  99. Bennett, J. J., Tjuvajev, J., Johnson, P., et al. (2001) Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat. Med. 7, 859–863.

    Article  PubMed  CAS  Google Scholar 

  100. Jacobs, A., Tjuvajev, J. G., Dubrovin, M., et al. (2001) Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 61, 2983–2995.

    PubMed  CAS  Google Scholar 

  101. Ercikan-Abali, E. A., Banerjee, D., Waltham, M. C., et al. (1997) Dihydrofolate reductase protein inhibits its own translation by binding to dihydrofolate reductase mRNA sequences within the coding region. Biochemistry 36, 12,317–12,322.

    Article  PubMed  CAS  Google Scholar 

  102. Mayer-Kuckuk, P., Banerjee, D., Malhotra, S., et al. (2002) Cells exposed to antifolates show increased cellular levels of proteins fused to dihydrofolate reductase: a method to modulate gene expression. Proc. Natl. Acad. Sci. USA 99, 3400–3405.

    Article  PubMed  CAS  Google Scholar 

  103. Le, L. Q., Kabarowski, J. H. S., Wong, S., Nguyen, K., Gambhir, S. S., and Witte, O. N. (2002) Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell 1, 381–391.

    Article  PubMed  CAS  Google Scholar 

  104. Ponomarev, V., Doubrovin, M., Lyddane, C., et al. (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3, 480–488.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang, W., Feng, J. Q., Harris, S. E., Contag, P. R., Stevenson, D. K., and Contag, C. H. (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 10, 423–434.

    Article  PubMed  CAS  Google Scholar 

  106. Green, L. A., Yap, C. S., Nguyen, K., et al. (2002) Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in transgenic mice. Mol. Imaging Biol. 4, 71–81.

    Article  PubMed  Google Scholar 

  107. Koransky, M. L., Ip, T. K., Wu, S., et al. (2001) In vivo monitoring of myoblast transplantation into rat myocardium. J. Heart Lung Transplant. 20, 188–189.

    Article  PubMed  Google Scholar 

  108. Jacobs, A., Voges, J., Reszka, R., et al. (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Herschman, H.R. (2005). Molecular Imaging of Cancer Gene Therapy. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_27

Download citation

Publish with us

Policies and ethics