Skip to main content

Bacterial Systems for Tumor-Specific Gene Therapy

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1015 Accesses

Abstract

This chapter describes the power of genetically engineered bacteria in cancer therapy. In the applications we consider, the bacteria are genetically engineered to carry a specific gene into tumors, and on this basis, it can be considered gene therapy. However, if gene therapy is defined as the introduction of a gene, or part of a gene, into the cancer cells (or normal cells), then using recombinant bacteria as anticancer vectors is not gene therapy. Bacteria are not vectors for the introduction of genes into mammalian cells. However, they can and do concentrate in tumors by various means and can carry a gene of interest to produce a protein of choice in tumors. This can be a powerful adjunct to cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W., and Vogelstein, B. (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci. USA 98, 15,155–15,160.

    Article  PubMed  CAS  Google Scholar 

  2. Thomlinson, R. H. and Gray, L. H. (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549.

    PubMed  CAS  Google Scholar 

  3. Groebe, K. and Vaupel, P. (1988) Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo data: role of various mechanisms in the development of tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 15, 691–697.

    PubMed  CAS  Google Scholar 

  4. Becker, A., Hansgen, G., Bloching, M., Weigel, C., Lautenschlager, C., and Dunst, J. (1998) Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 42, 35–41.

    Article  PubMed  CAS  Google Scholar 

  5. Brizel, D. M., Rosner, G. L., Prosnitz, L. R., and Dewhirst, M. W. (1995) Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 32, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  6. Brizel, D. M., Dodge, R. K., Clough, R. W., and Dewhirst, M. W. (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother. Oncol. 53, 113–117.

    Article  PubMed  CAS  Google Scholar 

  7. Vaupel, P. W. and Hockel, M. (1995) Oxygenation status of human tumors: a reappraisal using computerized pO2 histography. In Tumor Oxygenation (Vaupel, P. W., Kelleher, D. K., and Gunderoth, M., eds.), Gustav Fischer Verlag, Stuttgart, Germany, pp. 219–232.

    Google Scholar 

  8. Rampling, R., Cruickshank, G., Lewis, A. D., Fitzsimmons, S. A., and Workman, P. (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431.

    PubMed  CAS  Google Scholar 

  9. Sundfor, K., Lyng, H., Kongsgard, U. L., Trope, C., and Rofstad, E. K. (1997) Polarographic measurement of pO2 in cervix carcinoma. Gynecol. Oncol. 64, 230–236.

    Article  PubMed  CAS  Google Scholar 

  10. Movsas, B., Chapman, J. D., Horwitz, E. M., et al. (1999) Hypoxic regions exist in human prostate carcinoma. Urology 53, 11–18.

    Article  PubMed  CAS  Google Scholar 

  11. Koong, A. C., Mehta, V. K., Le, Q. T., et al. (2000) Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 48, 919–922.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, J. M. and Giaccia, A. J. (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416.

    PubMed  CAS  Google Scholar 

  13. Wouters, B. G., Weppler, S. A., Koritzinsky, M., et al. (2002) Hypoxia as a target for combined modality treatments. Eur. J. Cancer 38, 240–257.

    Article  PubMed  CAS  Google Scholar 

  14. Malmgren, R. A. and Flanigan, C. C. (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 15, 473–478.

    PubMed  CAS  Google Scholar 

  15. Mose, J. R. and Mose, G. (1959) Onkolyseversuche mit apathogenen anaeroben Sporenbildern am Ehrlich Tumor des Maus. Z. Krebsforsch. 63, 63–74.

    Article  Google Scholar 

  16. Mose, J. R. and Mose, G. (1964) Oncolysis by clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res. 24, 212–216.

    Google Scholar 

  17. Thiele, E. H., Arison, R. N., and Boxer, G. E. (1964) Oncolysis by clostridia. III. Effects of clostridia and chemotherapeutic agents on rodent tumors. Cancer Res. 24, 222–233.

    PubMed  CAS  Google Scholar 

  18. Engelbart, K. and Gericke, D. (1964) Oncolysis by clostridia V. Transplanted tumors of the hamster. Cancer Res. 24, 239–243.

    PubMed  CAS  Google Scholar 

  19. Carey, R. W., Holland, J. F., Whang, H. Y., Neter, E., and Bryant, B. (1967) Clostridial oncolysis in man. Eur. J. Cancer 3, 37–46.

    Google Scholar 

  20. Heppner, F. and Mose, J. R. (1978) The liquefaction (oncolysis) of malignant gliomas by a nonpathogenic clostridium. Acta Neurol. 12, 123–125.

    Article  Google Scholar 

  21. Heppner, F., Mose, J., Ascher, P. W., and Walter, G. (1983) Oncolysis of malignant gliomas of the brain. 13th Int. Cong. Chemother. 226, 38–45.

    Google Scholar 

  22. Lemmon, M. J., Elwell, J. H., Brehm, J. K., et al. (1994) Anaerobic bacteria as a gene delivery system to tumors. Proc. Am. Assoc. Cancer Res. 35, 374.

    Google Scholar 

  23. Bagshawe, K. D., Sharma, S. K., Springer, C. J., and Rogers, G. T. (1994) Antibody directed enzyme prodrug therapy (ADEPT). A review of some theoretical, experimental and clinical aspects. Ann. Oncol. 5, 879–891.

    PubMed  CAS  Google Scholar 

  24. Syrigos, K. N. and Epenetos, A. A. (1999) Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res. 19, 605–613.

    PubMed  CAS  Google Scholar 

  25. Fox, M. E., Lemmon, M. J., Mauchline, M. L., et al. (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173–178.

    PubMed  CAS  Google Scholar 

  26. Lemmon, M. L., Van Zijl, P., Fox, M. E., et al. (1997) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4, 791–796.

    Article  PubMed  CAS  Google Scholar 

  27. Theys, J., Landuyt, W., Nuyts, S., et al. (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8, 294–297.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, S. C., Minton, N. P., Giaccia, A.J., and Brown, J. M. (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9, 291–296.

    Article  PubMed  CAS  Google Scholar 

  29. Nuyts, S., Van Mellaert, L., Theys, J., Landuyt, W., Lambin, P., and Anne, J. (2002) Clostridium spores for tumor-specific drug delivery. Anticancer Drugs 13, 115–125.

    Article  PubMed  CAS  Google Scholar 

  30. Melton, R. G. and Sherwood, R. F. (1996) Antibody-enzyme conjugates for cancer therapy. J. Natl. Cancer Inst. 88, 153–165.

    Article  PubMed  CAS  Google Scholar 

  31. Gericke, D., Dietzel, F., Konig, W., Ruster, I., and Schumacher, L. (1979) Further progress with oncolysis due to apathogenic clostridia. Zentralbl. Bakteriol. (Orig. A) 243, 102–112.

    CAS  Google Scholar 

  32. Martin, J., Stribbling, S. M., Poon, G. K., et al. (1997) Antibody-directed enzyme prodrug therapy: pharmacokinetics and plasma levels of prodrug and drug in a phase I clinical trial. Cancer Chemother. Pharmacol. 40, 189–201.

    Article  PubMed  CAS  Google Scholar 

  33. Joseph, W. R., Cao, Z., Mountjoy, K. G., Marshall, E. S., Baguley, B. C., and Ching, L. M. (1999) Stimulation of tumors to synthesize tumor necrosis factor-alpha in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res. 59, 633–638.

    PubMed  CAS  Google Scholar 

  34. Zhao, L., Ching, L. M., Kestell, P., and Baguley, B. C. (2002) The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice. Br. J. Cancer 87, 465–470.

    Article  PubMed  CAS  Google Scholar 

  35. Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res. 59, 1626–1634.

    PubMed  CAS  Google Scholar 

  36. Goto, H., Yano, S., Zhang, H., et al. (2002) Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice. Cancer Res. 62, 3711–3715.

    PubMed  CAS  Google Scholar 

  37. Theys, J., Landuyt, W., Nuyts, S., et al. (2001) Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol. Med. Microbiol. 30, 37–41.

    Article  PubMed  CAS  Google Scholar 

  38. Miller, R. V. and Kokjohn, T. A. (1990) General microbiology of recA: environmental and evolutionary significance. Annu. Rev. Microbiol. 44, 365–394.

    PubMed  CAS  Google Scholar 

  39. Nuyts, S., Theys, J., Landuyt, W., Van Mellaert, L., Lambin, P., and Anne, J. (2001) Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 21, 857–861.

    PubMed  CAS  Google Scholar 

  40. Nuyts, S., Van Mellaert, L., Theys, J., et al. (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8, 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  41. Nuyts, S., Van Mellaert, L., Barbe, S., et al. (2001) Insertion or deletion of the Cheo box modifies radiation inducibility of Clostridium promoters. Appl. Environ. Microbiol. 67, 4464–4470.

    Article  PubMed  CAS  Google Scholar 

  42. Yazawa, K., Fujimori, M., Amano, J., Kano, Y., and Taniguchi, S. (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7, 269–274.

    Article  PubMed  CAS  Google Scholar 

  43. Matsumura, H., Takeuchi, A., and Kano, Y. (1997) Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci. Biotechnol. Biochem. 61, 1211–1212.

    Article  PubMed  CAS  Google Scholar 

  44. Pawelek, J. M., Low, K. B., and Bermudes, D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544.

    PubMed  CAS  Google Scholar 

  45. Khan, S. A., Everest, P., Servos, S., et al. (1998) A lethal role for lipid A in Salmonella infections. Mol. Microbiol. 29, 571–579.

    Article  PubMed  CAS  Google Scholar 

  46. Clairmont, C., Lee, K. C., Pike, J., et al. (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J. Infect. Dis. 181, 1996–2002.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, J. J., Sun, Y., and Nabel, G. J. (1998) Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  48. Low, K. B., Ittensohn, M., Le, T., et al. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat. Biotechnol. 17, 37–41.

    PubMed  CAS  Google Scholar 

  49. Mei, S., Theys, J., Landuyt, W., Anne, J., and Lambin, P. (2002) Optimization of tumor-targeted gene delivery by engineered attenuated Salmonella typhimurium. Anticancer Res. 22, 3261–3266.

    PubMed  CAS  Google Scholar 

  50. Pawelek, J. M., Sodi, S., Chakraborty, A. K., et al. (2002) Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther. 9, 813–818.

    Article  PubMed  CAS  Google Scholar 

  51. Platt, J., Sodi, S., Kelley, M., et al. (2000) Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur. J. Cancer 36, 2397–2402.

    Article  PubMed  CAS  Google Scholar 

  52. Zheng, L. M., Luo, X., Feng, M., et al. (2000) Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol. Res. 12, 127–135.

    PubMed  CAS  Google Scholar 

  53. Lee, K. C., Zheng, L. M., Margitich, D., Almassian, B., and King, I. (2001) Evaluation of the acute and subchronic toxic effects in mice, rats, and monkeys of the genetically engineered and Escherichia coli cytosine deaminase gene-incorporated Salmonella strain, TAPET-CD, being developed as an antitumor agent. Int. J. Toxicol. 20, 207–217.

    Article  PubMed  CAS  Google Scholar 

  54. King, I., Bermudes, D., Lin, S., et al. (2002) Tumor-targeted Salmonella expressing cytosine deaminase as an anti-cancer agent. Human Gene Ther. 13, 1225–1233.

    Article  CAS  Google Scholar 

  55. Yuhua, L., Kunyuan, G., Hui, C., et al. (2001) Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int. J. Cancer 94, 438–443.

    Article  PubMed  CAS  Google Scholar 

  56. Toso, J. F., Gill, V. J., Hwu, P., et al. (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152.

    Article  PubMed  Google Scholar 

  57. Cunningham, C. and Nemunaitis, J. (2001) A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum. Gene Ther. 12, 1594–1596.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Brown, J.M., Liu, SC., Theys, J., Lambin, P. (2005). Bacterial Systems for Tumor-Specific Gene Therapy. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_26

Download citation

Publish with us

Policies and ethics