Skip to main content

Drug Resistance Gene Transfer as an Antitumor Strategy

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1008 Accesses

Abstract

The application of gene transfer techniques holds great promise for improved antitumor therapy. The overall goal of gene transfer in the treatment of neoplastic disease is either to augment the body’s ability to eliminate the tumor or to somehow specifically weaken the tumor, in each case relative to other, normal tissues in the body. Other chapters in this volume describe direct molecular, immunological, prodrug activation, and antiangiogenic approaches as genetic antitumor therapeutic strategies. Another approach that has been explored is the introduction of genes conferring resistance to chemotherapeutic agents into normal cells and tissues as a means of protection from the toxic side effects of cancer chemotherapy. The systems that have been the most extensively studied for this purpose are the P-glycoprotein or multidrug resistance (MDR) system, drug-resistant forms of dihydrofolate reductase (DHFR), and O6-alkylguanine-DNA alkyltransferase (AGT), although other systems have emerged as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Juliano, R. L. and Ling, V. (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162.

    Article  PubMed  CAS  Google Scholar 

  2. Horio, M., Gottesman, M. M., and Pastan, I. (1988) ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc. Natl. Acad. Sci. USA 85, 3580–3584.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, C. J., Chin, J. E., Ueda, K., et al. (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47, 381–389.

    Article  PubMed  CAS  Google Scholar 

  4. Raviv, Y., Pollard, H. B., Bruggemann, E. P., Pastan, I., and Gottesman, M. M. (1990) Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J. Biol. Chem. 265, 3975–3980.

    PubMed  CAS  Google Scholar 

  5. Higgins, C. F. and Gottesman, M. M. (1992) Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21.

    Article  PubMed  CAS  Google Scholar 

  6. Kartner, N., Riordan, J. R., and Ling, V. (1983) Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221, 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  7. Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I. (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 84, 265–269.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein, L. J., Galski, H., Fojo, A., et al. (1989) Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81, 116–124.

    Article  PubMed  CAS  Google Scholar 

  9. Chaudhary, P. M. and Roninson, I. B. (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66, 85–94.

    Article  PubMed  CAS  Google Scholar 

  10. Drach, D., Zhao, S., Drach, J., et al. (1992) Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 80, 2729–2734.

    PubMed  CAS  Google Scholar 

  11. Ueda, K., Cardarelli, C., Gottesman, M. M., and Pastan, I. (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 84, 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  12. Kane, S. E., Troen, B. R., Gal, S., Ueda, K., Pastan, I., and Gottesman, M. M. (1988) Use of a cloned multidrug resistance gene for coamplification and overproduction of major excreted protein, a transformation-regulated secreted acid protease. Mol. Cell. Biol. 8, 3316–3321.

    PubMed  CAS  Google Scholar 

  13. Kane, S. E., Reinhard, D. H., Fordis, C. M., Pastan, I., and Gottesman, M. M. (1989) A new vector using the human multidrug resistance gene as a selectable marker enables overexpression of foreign genes in eukaryotic cells. Gene 84, 439–446.

    Article  PubMed  CAS  Google Scholar 

  14. Cole, S. P., Bhardwaj, G., Gerlach, J. H., et al. (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  15. Cole, S. P., Sparks, K. E., Fraser, K., et al. (1994) Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54, 5902–5910.

    PubMed  CAS  Google Scholar 

  16. Zaman, G. J., Flens, M. J., van Leusden, M. R., et al. (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. USA 91, 8822–8826.

    Article  PubMed  CAS  Google Scholar 

  17. Pegg, A. E. (2000) Repair of O6-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100.

    Article  PubMed  CAS  Google Scholar 

  18. Wibley, J. E., Pegg, A. E., and Moody, P. C. (2000) Crystal structure of the human O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 28, 393–401.

    Article  PubMed  CAS  Google Scholar 

  19. Daniels, D. S., Mol, C. D., Arvai, A. S., Kanugula, S., Pegg, A. E., and Tainer, J. A. (2000) Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. 19, 1719–1730.

    Article  PubMed  CAS  Google Scholar 

  20. Gerson, S. L., Phillips, W., Kastan, M., Dumenco, L. L., and Donovan, C. (1996) Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU. Blood 88, 1649–1655.

    PubMed  CAS  Google Scholar 

  21. Gerson, S. L. and Trey, J. E. (1988) Modulation of nitrosourea resistance in myeloid leukemias. Blood 71, 1487–1494.

    PubMed  CAS  Google Scholar 

  22. Gerson, S. L., Berger, N. A., Arce, C., Petzold, S. J., and Willson, J. K. (1992) Modulation of nitrosourea resistance in human colon cancer by O6-methylguanine. Biochem. Pharmacol. 43, 1101–1107.

    Article  PubMed  CAS  Google Scholar 

  23. Dolan, M. E., Moschel, R. C., and Pegg, A. E. (1990) Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc. Natl. Acad. Sci. USA 87, 5368–5372.

    Article  PubMed  CAS  Google Scholar 

  24. Dolan, M. E., Mitchell, R. B., Mummert, C., Moschel, R. C., and Pegg, A. E. (1991) Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 51, 3367–3372.

    PubMed  CAS  Google Scholar 

  25. Dolan, M. E., Stine, L., Mitchell, R. B., Moschel, R. C., and Pegg, A. E. (1990) Modulation of mammalian O6-alkylguanine-DNA alkyltransferase in vivo by O6-benzylguanine and its effect on the sensitivity of a human glioma tumor to 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. Cancer Commun. 2, 371–377.

    PubMed  CAS  Google Scholar 

  26. Friedman, H. S., Dolan, M. E., Moschel, R. C., et al. (1992) Enhancement of nitrosourea activity in medulloblastoma and glioblastoma multiforme. J. Natl. Cancer Inst. 84, 1926–1931.

    Article  PubMed  CAS  Google Scholar 

  27. Mitchell, R. B., Moschel, R. C., and Dolan, M. E. (1992) Effect of O6-benzylguanine on the sensitivity of human tumor xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea and on DNA interstrand cross-link formation. Cancer Res. 52, 1171–1175.

    PubMed  CAS  Google Scholar 

  28. Friedman, H. S., Kokkinakis, D. M., Pluda, J., et al. (1998) Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J. Clin. Oncol. 16, 3570–3575.

    PubMed  CAS  Google Scholar 

  29. Spiro, T. P., Gerson, S. L., Liu, L., et al. (1999) O6-benzylguanine: a clinical trial establishing the biochemical modulatory dose in tumor tissue for alkyltransferase-directed DNA repair. Cancer Res. 59, 2402–2410.

    PubMed  CAS  Google Scholar 

  30. Friedman, H. S., Pluda, J., Quinn, J. A., et al. (2000) Phase I trial of carmustine plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J. Clin. Oncol. 18, 3522–3528.

    PubMed  CAS  Google Scholar 

  31. Quinn, J. A., Pluda, J., Dolan, M. E., et al. (2002) Phase II trial of carmustine plus O6-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J. Clin. Oncol. 20, 2277–2283.

    Article  PubMed  CAS  Google Scholar 

  32. Crone, T. M., Goodtzova, K., Edara, S., and Pegg, A. E. (1994) Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res. 54, 6221–6227.

    PubMed  CAS  Google Scholar 

  33. Xu-Welliver, M., Kanugula, S., and Pegg, A. E. (1998) Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res. 58, 1936–1945.

    PubMed  CAS  Google Scholar 

  34. Hickson, I., Fairbairn, L. J., Chinnasamy, N., Dexter, T. M., Margison, G. P., and Rafferty, J. A. (1996) Protection of mammalian cells against chloroethylating agent toxicity by an O6-benzylguanine-resistant mutant of human O6-alkylguanine-DNA alkyltransferase. Gene Ther. 3, 868–877.

    PubMed  CAS  Google Scholar 

  35. Loktionova, N. A. and Pegg, A. E. (1996) Point mutations in human O6-alkylguanine-DNA alkyltransferase prevent the sensitization by O6-benzylguanine to killing by N,N′-bis (2-chloroethyl)-N-nitrosourea. Cancer Res. 56, 1578–1583.

    PubMed  CAS  Google Scholar 

  36. Blakley, R. L. (1995) Eukaryotic dihydrofolate reductase. Adv. Enzymol. Relat. Areas Mol. Biol. 70, 23–102.

    Article  PubMed  CAS  Google Scholar 

  37. Jolivet, J., Cowan, K. H., Curt, G. A., Clendeninn, N. J., and Chabner, B. A. (1983) The pharmacology and clinical use of methotrexate. N. Engl. J. Med. 309, 1094–1104.

    Article  PubMed  CAS  Google Scholar 

  38. Schornagel, J. H. and McVie, J. G. (1983) The clinical pharmacology of methotrexate. Cancer Treat. Rev. 10, 53–75.

    Article  PubMed  CAS  Google Scholar 

  39. McIvor, R. S. (2002) Protection from antifolate toxicity by expression of drug-resistant dihydrofolate reductase. In Gene Therapy of Cancer, 2nd ed. (Lattime, E. C. and Gerson, S. L., eds.), Academic Press, San Diego, CA, pp. 383–392.

    Google Scholar 

  40. Simonsen, C. C. and Levinson, A. D. (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. USA 90, 2495–2499.

    Article  Google Scholar 

  41. Morris, J. A. and McIvor, R. S. (1994) Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance. Biochem. Pharmacol. 47, 1207–1220.

    Article  PubMed  CAS  Google Scholar 

  42. Galski, H., Sullivan, M., Willingham, M. C., et al. (1989) Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol. Cell. Biol. 9, 4357–4363.

    PubMed  CAS  Google Scholar 

  43. Mickisch, G. H., Licht, T., Merlino, G. T., Gottesman, M. M., and Pastan, I. (1991) Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res. 51, 5417–5424.

    PubMed  CAS  Google Scholar 

  44. Mickisch, G. H., Aksentijevich, I., Schoenlein, P. V., et al. (1992) Transplantation of bone marrow cells from transgenic mice expressing the human MDR1 gene results in long-term protection against the myelosuppressive effect of chemotherapy in mice. Blood 79, 1087–1093.

    PubMed  CAS  Google Scholar 

  45. Hanania, E. G., Fu, S., Roninson, I., Zu, Z., and Deisseroth, A. B. (1995) Resistance to taxol chemotherapy produced in mouse marrow cells by safety-modified retroviruses containing a human MDR-1 transcription unit. Gene Ther. 2, 279–284.

    PubMed  CAS  Google Scholar 

  46. Aksentijevich, I., Cardarelli, C. O., Pastan, I., and Gottesman, M. M. (1996) Retroviral transfer of the human MDR1 gene confers resistance to bisantrene-specific hematotoxicity. Clin. Cancer Res. 2, 973–980.

    PubMed  CAS  Google Scholar 

  47. Sorrentino, B. P., McDonagh, K. T., Woods, D., and Orlic, D. (1995) Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 86, 491–501.

    PubMed  CAS  Google Scholar 

  48. Moscow, J. A., Huang, H., Carter, C., et al. (1999) Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 94, 52–61.

    PubMed  CAS  Google Scholar 

  49. Abonour, R., Williams, D. A., Einhorn, L., et al. (2000) Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat. Med. 6, 652–658.

    Article  PubMed  CAS  Google Scholar 

  50. Bunting, K. D., Galipeau, J., Topham, D., Benaim, E., and Sorrentino, B. P. (1999) Effects of retroviral-mediated MDR1 expression on hematopoietic stem cell self-renewal and differentiation in culture. Ann. NY Acad. Sci. 872, 125–140.

    Article  PubMed  CAS  Google Scholar 

  51. Bunting, K. D., Zhou, S., Lu, T., and Sorrentino, B. P. (2000) Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96, 902–909.

    PubMed  CAS  Google Scholar 

  52. Davis, B. M., Reese, J. S., Koç, O. N., Lee, K., Schupp, J. E., and Gerson, S. L. (1997) Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 57, 5093–5099.

    PubMed  CAS  Google Scholar 

  53. Chinnasamy, N., Rafferty, J. A., Hickson, I., et al. (1998) Chemoprotective gene transfer II: multilineage in vivo protection of haemopoiesis against the effects of an antitumour agent by expression of a mutant human O6-alkyl-guanine-DNA alkyltransferase. Gene Ther. 5, 842–847.

    Article  PubMed  CAS  Google Scholar 

  54. Reese, J. S., Koç, O. N., Lee, K. M., et al. (1996) Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea. Proc. Natl. Acad. Sci. USA 93, 14,088–14,093.

    Article  PubMed  CAS  Google Scholar 

  55. Koç, O. N., Reese, J. S., Szekely, E. M., and Gerson, S. L. (1999) Human long-term culture initiating cells are sensitive to benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and protected after mutant (G156A) methylguanine methyltransferase gene transfer. Cancer Gene Ther. 6, 340–348.

    Article  PubMed  Google Scholar 

  56. Isola, L. M. and Gordon, J. W. (1986) Systemic resistance to methotrexate in transgenic mice carrying a mutant dihydrofolate reductase gene. Proc. Natl. Acad. Sci. USA 83, 9621–9625.

    Article  PubMed  CAS  Google Scholar 

  57. Hock, R. A. and Miller, A. D. (1986) Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells. Nature 320, 275–277.

    Article  PubMed  CAS  Google Scholar 

  58. Williams, D. A., Hsieh, K., DeSilva, A., and Mulligan, R. C. (1987) Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow. J. Exp. Med. 166, 210–218.

    Article  PubMed  CAS  Google Scholar 

  59. Corey, C. A., DeSilva, A. D., Holland, C. A., and Williams, D. A. (1990) Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells. Blood 75, 337–343.

    PubMed  CAS  Google Scholar 

  60. Morris, J. A., May, C., Kim, H. S., et al. (1996) Comparative methotrexate resistance of transgenic mice expressing two distinct dihydrofolate reductase variants. Transgenics 2, 53–67.

    CAS  Google Scholar 

  61. James, R. I., May, C., Vagt, M. D., Studebaker, R., and McIvor, R. S. (1997) Transgenic mice expressing the tyr22 variant of murine DHFR: protection of transgenic marrow transplant recipients from lethal doses of methotrexate. Exp. Hematol. 25, 1286–1295.

    PubMed  CAS  Google Scholar 

  62. May, C., Gunther, R., and McIvor, R. S. (1995) Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. Blood 86, 2439–2448.

    PubMed  CAS  Google Scholar 

  63. Belur, L. R., Boelk-Galvan, D., Diers, M. D., McIvor, R. S., and Zimmerman, C. L. (2001) Methotrexate accumulates to similar levels in animals transplanted with normal vs drug-resistant transgenic marrow. Cancer Res. 61, 1522–1526.

    PubMed  CAS  Google Scholar 

  64. James, R. I., May, C., Vagt, M., Wagner, J. E., and McIvor, R. S. (1999) Methotrexate resistance conferred by transplantation with drug-resistant transgenic marrow cells fractionated by counterflow elutriation. Bone Marrow Transplant. 24, 815–821.

    Article  PubMed  CAS  Google Scholar 

  65. May, C., James, R. I., Gunther, R., and McIvor, R. S. (1996) Methotrexate dose-escalation studies in transgenic mice and marrow transplant recipients expressing drug-resistant dihydrofolate reductase activity. J. Pharmacol. Exp. Ther. 278, 1444–1451.

    PubMed  CAS  Google Scholar 

  66. James, R. I., Warlick, C. A., Diers, M. D., Gunther, R., and McIvor, R. S. (2000) Mild preconditioning and low-level engraftment confer methotrexate resistance in mice transplanted with marrow expressing drug-resistant dihydrofolate reductase activity. Blood 96, 1334–1341.

    PubMed  CAS  Google Scholar 

  67. Zhao, S. C., Banerjee, D., Mineishi, S., and Bertino, J. R. (1997) Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum. Gene Ther. 8, 903–909.

    Article  PubMed  CAS  Google Scholar 

  68. Hanania, E. G. and Deisseroth, A. B. (1997) Simultaneous genetic chemoprotection of normal marrow cells and genetic chemosensitization of breast cancer cells in a mouse cancer gene therapy model. Clin. Cancer Res. 3, 281–286.

    PubMed  CAS  Google Scholar 

  69. Koç, O. N., Reese, J. S., Davis, B. M., Liu, L., Majczenko, K. J., and Gerson, S. L. (1999) DMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum. Gene Ther. 10, 1021–1030.

    Article  PubMed  Google Scholar 

  70. Sweeney, C. L., Diers, M. D., Frandsen, J. L., Gunther, R., Verfaillie, C. M., and McIvor, R. S. (2002) Methotrexate exacerbates tumor progression in a murine model of chronic myeloid leukemia. J. Pharmacol. Exp. Ther. 300, 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  71. Sweeney, C. L., Frandsen, J. L., Verfaillie, C. M., and McIvor, R. S. (2003) Trimetrexate inhibits progression of the murine 32Dp210 model of chronic myeloid leukemia in animals expressing drug-resistant dihydrofolate reductase. Cancer Res. 63, 1304–1310.

    PubMed  CAS  Google Scholar 

  72. Allay, J. A., Spencer, H. T., Wilkinson, S. L., Belt, J. A., Blakley, R. L., and Sorrentino, B. P. (1997) Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleoside transport inhibitors. Blood 90, 3546–3554.

    PubMed  CAS  Google Scholar 

  73. Warlick, C. A., Sweeney, C. L., and McIvor, R. S. (2000) Maintenance of differential methotrexate toxicity between cells expressing drug-resistant and wild-type dihydrofolate reductase activities in the presence of nucleosides through nucleoside transport inhibition. Biochem. Pharmacol. 59, 141–151.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao, R. C., McIvor, R. S., Griffin, J. D., and Verfaillie, C. M. (1997) Gene therapy for chronic myelogenous leukemia (CML): a retroviral vector that renders hematopoietic progenitors methotrexate-resistant and CML progenitors functionally normal and nontumorigenic in vivo. Blood 90, 4687–4698.

    PubMed  CAS  Google Scholar 

  75. McIvor, R. S., Weigel, B., Gunther, R., Diers, M. D., and Frandsen, J. (2000) Methotrexate chemotherapy of a murine mammary adenocarcinoma in animals expressing drug-resistant dihydrofolate reductase activity. Mol. Ther. 1, S166.

    Google Scholar 

  76. Frandsen, J. L., Sweeney, C. L., Gunther, R., and McIvor, R. S. (2001) Trimetrexate chemotherapy of a murine mammary adenocarcinoma in animals expressing drug-resistant dihydrofolate reductase. Mol. Ther. 3, S387.

    Google Scholar 

  77. Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  78. Vassilopoulos, G., Trobridge, G., Josephson, N. C., and Russell, D. W. (2001) Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 98, 604–609.

    Article  PubMed  CAS  Google Scholar 

  79. Liu, H., Hung, Y., Wissink, S. D., and Verfaillie, C. M. (2000) Improved retroviral transduction of hematopoietic progenitors by combining methods to enhance virus-cell interaction. Leukemia 14, 307–311.

    Article  PubMed  CAS  Google Scholar 

  80. Sorrentino, B. P., Brandt, S. J., Bodine, D., et al. (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103.

    Article  PubMed  CAS  Google Scholar 

  81. Podda, S., Ward, M., Himelstein, A., et al. (1992) Transfer and expression of the human multiple drug resistance gene into live mice. Proc. Natl. Acad. Sci. USA 89, 9676–9680.

    Article  PubMed  CAS  Google Scholar 

  82. Cardarelli, C. O., Aksentijevich, I., Pastan, I., and Gottesman, M. M. (1995) Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res. 55, 1086–1091.

    PubMed  CAS  Google Scholar 

  83. Hafkemeyer, P., Licht, T., Pastan, I., and Gottesman, M. M. (2000) Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers. Hum. Gene Ther. 11, 555–565.

    Article  PubMed  CAS  Google Scholar 

  84. Allay, J. A., Persons, D. A., Galipeau, J., et al. (1998) In vivo selection of retrovirally transduced hematopoietic stem cells. Nat. Med. 4, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  85. Warlick, C. A., Diers, M. D., Wagner, J. E., and McIvor, R. S. (2002) In vivo selection of antifolate-resistant transgenic hematopoietic stem cells in a murine bone marrow transplant model. J. Pharmacol. Exp. Ther. 300, 50–56.

    Article  PubMed  CAS  Google Scholar 

  86. McIvor, R. S., Warlick, C. A., Swanson, D. L., and Frandsen, J. L. (2001) In vivo selection of transgenic hematopoietic stem cells expressing drug-resistant dihydrofolate reductase. Mol. Ther. 3, S245.

    Google Scholar 

  87. Davis, B. M., Koç, O. N., and Gerson, S. L. (2000) Limiting numbers of G156A O6-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood 95, 3078–3084.

    PubMed  CAS  Google Scholar 

  88. Ragg, S., Xu-Welliver, M., Bailey, J., et al. (2000) Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res. 60, 5187–5195.

    PubMed  CAS  Google Scholar 

  89. Sawai, N., Zhou, S., Vanin, E. F., Houghton, P., Brent, T. P., and Sorrentino, B. P. (2001) Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol. Ther. 3, 78–87.

    Article  PubMed  CAS  Google Scholar 

  90. Stead, R. B., Kwok, W. W., Storb, R., and Miller, A. D. (1988) Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood 71, 742–747.

    PubMed  CAS  Google Scholar 

  91. Hibino, H., Tani, K., Ikebuchi, K., et al. (1999) The common marmoset as a target preclinical primate model for cytokine and gene therapy studies. Blood 93, 2839–2848.

    PubMed  CAS  Google Scholar 

  92. Sellers, S. E., Tisdale, J. F., Agricola, B. A., et al. (2001) The effect of multidrug-resistance 1 gene vs neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 97, 1888–1891.

    Article  PubMed  CAS  Google Scholar 

  93. Licht, T., Haskins, M., Henthorn, P., et al. (2002) Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc. Natl. Acad. Sci. USA 99, 3123–3128.

    Article  PubMed  CAS  Google Scholar 

  94. Neff, T., Horn, P. A., Peterson, L. J., et al. (2002) BCNU-mediated in vivo selection of MGMT-transduced allogeneic hematopoietic cells in a large animal model. Blood 100, 689.

    Article  CAS  Google Scholar 

  95. Hanania, E. G., Giles, R. E., Kavanagh, J., et al. (1996) Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc. Natl. Acad. Sci. USA 93, 15,346–15,351.

    Article  PubMed  CAS  Google Scholar 

  96. Cowan, K. H., Moscow, J. A., Huang, H., et al. (1999) Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 5, 1619–1628.

    PubMed  CAS  Google Scholar 

  97. Devereux, S., Corney, C., Macdonald, C., et al. (1998) Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma. Gene Ther. 5, 403–408.

    Article  PubMed  CAS  Google Scholar 

  98. Hesdorffer, C., Ayello, J., Ward, M., et al. (1998) Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J. Clin. Oncol. 16, 165–172.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sweeney, C.L., McIvor, R.S. (2005). Drug Resistance Gene Transfer as an Antitumor Strategy. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_21

Download citation

Publish with us

Policies and ethics