Skip to main content

Reovirus as an Oncolytic Agent

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1030 Accesses

Abstract

As the incidence of cancer continues to escalate, the demand for alternative anticancer therapeutics increases. The use of viruses in cancer treatment is well documented (1); however, as knowledge in the fields of virology, cell biology, and oncology expands, refined techniques and novel viral-based therapeutics emerge. The oncolytic potential of a wide spectrum of viruses has been explored, such as adenovirus (2,3), herpes simplex virus (HSV) (4,5), vesicular stomatitis virus (6), vaccinia virus (7), poliovirus (8), and mammalian reovirus (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinkovics, J. and Horvath, J. (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36, 193–214.

    PubMed  CAS  Google Scholar 

  2. McCormick, F. (1999) Cancer therapy based on p53. Cancer J. Sci. Am. 5, 139–144.

    PubMed  CAS  Google Scholar 

  3. McCormick, F. (2000) ONYX-015 selectivity and the p14ARF pathway. Oncogene 19, 6670–6672.

    Article  PubMed  CAS  Google Scholar 

  4. Rampling, R., Cruickshank, G., Papanastassiou, V., et al. (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859–866.

    Article  PubMed  CAS  Google Scholar 

  5. Martuza, R. L. (2000) Conditionally replicating herpes vectors for cancer therapy. J. Clin. Invest. 105, 841–846.

    PubMed  CAS  Google Scholar 

  6. Stojdl, D. F., Lichty, B., Knowles, S., et al. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825.

    Article  PubMed  CAS  Google Scholar 

  7. McCart, J. A., Ward, J. M., Lee, J., et al. (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 61, 8751–8757.

    PubMed  CAS  Google Scholar 

  8. Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H., and Wimmer, E. (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA 97, 6803–6808.

    Article  PubMed  CAS  Google Scholar 

  9. Coffey, M. C., Strong, J. E., Forsyth, P. A., and Lee, P. W. (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334.

    Article  PubMed  CAS  Google Scholar 

  10. Hemminki, A., Dmitriev, I., Liu, B., Desmond, R. A., Alemany, R., and Curiel, D. T. (2001) Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 61, 6377–6381.

    PubMed  CAS  Google Scholar 

  11. Dmitriev, I., Krasnykh, V., Miller, C. R., et al. (1998) An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a Coxsackievirus and adenovirus receptor-independent cell entry mechanism. J. Virol. 72, 9706–9713.

    PubMed  CAS  Google Scholar 

  12. van der Poel, H. G., Molenaar, B., van Beusechem, V. W., et al. (2002) Epidermal growth factor receptor targeting of replication competent adenovirus enhances cytotoxicity in bladder cancer. J. Urol. 168, 266–272.

    Article  PubMed  Google Scholar 

  13. Shayakhmetov, D. M., Li, Z. Y., Ni, S., and Lieber, A. (2002) Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res. 62, 1063–1068.

    PubMed  CAS  Google Scholar 

  14. Bischoff, J. R., Kirn, D. H., Williams, A., et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.

    Article  PubMed  CAS  Google Scholar 

  15. Yew, P. R. and Berk, A. J. (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82–85.

    Article  PubMed  CAS  Google Scholar 

  16. Ries, S. J., Brandts, C. H., Chung, A. S., et al. (2000) Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat. Med. 6, 1128–1133.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, C. T., You, L., Uematsu, K., Yeh, C. C., McCormick, F., and Jablons, D. M. (2001) p14(ARF) modulates the cytolytic effect of ONYX-015 in mesothelioma cells with wild-type p53. Cancer Res. 61, 5959–5963.

    PubMed  CAS  Google Scholar 

  18. Levine, A. J., Momand, J., and Finlay, C.A. (1991) The p53 tumour suppressor gene. Nature 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  19. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) p53 mutations in human cancers. Science 253, 49–53.

    Article  PubMed  CAS  Google Scholar 

  20. Hall, A. R., Dix, B. R., O’Carroll, S. J., and Braithwaite, A. W. (1998) p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat. Med. 4, 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  21. Dix, B. R., O’Carroll, S. J., Myers, C. J., Edwards, S. J., and Braithwaite, A. W. (2000) Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res. 60, 2666–2672.

    PubMed  CAS  Google Scholar 

  22. Goodrum, F. D. and Ornelles, D. A. (1998) p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490.

    PubMed  CAS  Google Scholar 

  23. Khuri, F. R., Nemunaitis, J., Ganly, I., et al. (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885.

    Article  PubMed  CAS  Google Scholar 

  24. Whitley, R. J., Kimberlin, D. W., and Roizman, B. (1998) Herpes simplex viruses. Clin. Infect. Dis. 26, 541–553; quiz 554-545.

    PubMed  CAS  Google Scholar 

  25. Mineta, T., Rabkin, S. D., and Martuza, R. L. (1994) Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 54, 3963–3966.

    PubMed  CAS  Google Scholar 

  26. Boviatsis, E. J., Scharf, J. M., Chase, M., et al. (1994) Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther. 1, 323–331.

    PubMed  CAS  Google Scholar 

  27. Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D., and Martuza, R. L. (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat. Med. 1, 938–943.

    Article  PubMed  CAS  Google Scholar 

  28. Hunter, W. D., Martuza, R. L., Feigenbaum, F., et al. (1999) Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J. Virol. 73, 6319–6326.

    PubMed  CAS  Google Scholar 

  29. Oyama, M., Ohigashi, T., Hoshi, M., et al. (2000) Intravesical and intravenous therapy of human bladder cancer by the herpes vector G207. Hum. Gene Ther. 11, 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  30. Kooby, D. A., Carew, J. F., Halterman, M. W., et al. (1999) Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J. 13, 1325–1334.

    PubMed  CAS  Google Scholar 

  31. Coukos, G., Makrigiannakis, A., Montas, S., et al. (2000) Multi-attenuated herpes simplex virus-1 mutant G207 exerts cytotoxicity against epithelial ovarian cancer but not normal mesothelium and is suitable for intraperitoneal oncolytic therapy. Cancer Gene Ther. 7, 275–283.

    Article  PubMed  CAS  Google Scholar 

  32. Toda, M., Rabkin, S. D., and Martuza, R. L. (1998) Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum. Gene Ther. 9, 2177–2185.

    PubMed  CAS  Google Scholar 

  33. Walker, J. R., McGeagh, K. G., Sundaresan, P., Jorgensen, T. J., Rabkin, S. D., and Martuza, R. L. (1999) Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum. Gene Ther. 10, 2237–2243.

    Article  PubMed  CAS  Google Scholar 

  34. Chahlavi, A., Todo, T., Martuza, R. L., and Rabkin, S. D. (1999) Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1, 162–169.

    Article  PubMed  CAS  Google Scholar 

  35. Randazzo, B. P., Bhat, M. G., Kesari, S., Fraser, N. W., and Brown, S. M. (1997) Treatment of experimental subcutaneous human melanoma with a replication-restricted herpes simplex virus mutant. J. Invest. Dermatol. 108, 933–937.

    Article  PubMed  CAS  Google Scholar 

  36. Bradley, J. D., Kataoka, Y., Advani, S., et al. (1999) Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin. Cancer Res. 5, 1517–1522.

    PubMed  CAS  Google Scholar 

  37. Coukos, G., Makrigiannakis, A., Kang, E. H., Rubin, S. C., Albelda, S. M., and Molnar-Kimber, K. L. (2000) Oncolytic herpes simplex virus-1 lacking ICP34.5 induces p53-independent death and is efficacious against chemotherapy-resistant ovarian cancer. Clin. Cancer Res. 6, 3342–3353.

    PubMed  CAS  Google Scholar 

  38. Markert, J. M., Medlock, M. D., Rabkin, S. D., et al. (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 7, 867–874.

    Article  PubMed  CAS  Google Scholar 

  39. Rosen, L., Evans, H. E., and Sickard, A. (1963) Reovirus infections in human volunteers. Am. J. Hyg. 77, 29–37.

    PubMed  CAS  Google Scholar 

  40. Rosen, L., Hovis, J. F., Mastrota, F. M., Bell, J. A., and Huebner, R. J. (1960) Observations on a newly recognized virus (Abney) of the reovirus family. Am. J. Hyg. 71, 258–265.

    PubMed  CAS  Google Scholar 

  41. Tyler, K. L., Fields, B. N. (1996) Reoviruses. In Fields Virology (Fields, B. N., Knipe, D. M., and Howley, P. M., ed.), Lippincott-Raven, Philadelphia, PA, pp. 1597–1623.

    Google Scholar 

  42. Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P., and Lee, P. W. (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 17, 3351–3362.

    Article  PubMed  CAS  Google Scholar 

  43. Lowe, P. N. and Skinner, R. H. (1994) Regulation of Ras signal transduction in normal and transformed cells. Cell Signal. 6, 109–123.

    Article  PubMed  CAS  Google Scholar 

  44. Levitzki, A. (1994) Signal-transduction therapy. A novel approach to disease management. Eur. J. Biochem. 226, 1–13.

    Article  PubMed  CAS  Google Scholar 

  45. Ridinger, D. N., Spendlove, R. S., Barnett, B. B., George, D. B., and Roth, J. C. (1982) Evaluation of cell lines and immunofluorescence and plaque assay procedures for quantifying reoviruses in sewage. Appl. Environ. Microbiol. 43, 740–746.

    PubMed  CAS  Google Scholar 

  46. Stanley, N. F. (1967) Reoviruses. Br. Med. Bull. 23, 150–154.

    PubMed  CAS  Google Scholar 

  47. Jackson, G. G. and Muldoon, R. L. (1973) Viruses causing common respiratory infection in man. IV. Reoviruses and adenoviruses. J. Infect. Dis. 128, 811–866.

    PubMed  CAS  Google Scholar 

  48. Sabin, A. (1959) Reoviruses: a new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science 130, 1387–1389.

    Article  PubMed  CAS  Google Scholar 

  49. Stanley, N. F. (1974) The reovirus murine models. Prog. Med. Virol. 18, 257–272.

    PubMed  CAS  Google Scholar 

  50. Minuk, G. Y., Rascanin, N., Paul, R. W., Lee, P. W., Buchan, K., and Kelly, J. K. (1987) Reovirus type 3 infection in patients with primary biliary cirrhosis and primary sclerosing cholangitis. J. Hepatol. 5, 8–13.

    Article  PubMed  CAS  Google Scholar 

  51. Minuk, G. Y., Paul, R. W., and Lee, P. W. (1985) The prevalence of antibodies to reovirus type 3 in adults with idiopathic cholestatic liver disease. J. Med. Virol. 16, 55–60.

    Article  PubMed  CAS  Google Scholar 

  52. Both, G. W., Lavi, S., and Shatkin, A. J. (1975) Synthesis of all the gene products of the reovirus genome in vivo and in vitro. Cell 4, 173–180.

    Article  PubMed  CAS  Google Scholar 

  53. McCrae, M. A. and Joklik, W. K. (1978) The nature of the polypeptide encoded by each of the 10 double-stranded RNA segments of reovirus type 3. Virology 89, 578–593.

    Article  PubMed  CAS  Google Scholar 

  54. Shatkin, A. J., Sipe, J. D., and Loh, P. (1968) Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J. Virol. 2, 986–991.

    PubMed  CAS  Google Scholar 

  55. Lee, P. W., Hayes, E. C., and Joklik, W. K. (1981) Protein sigma 1 is the reovirus cell attachment protein. Virology 108, 156–163.

    Article  PubMed  CAS  Google Scholar 

  56. Choi, A. H., Paul, R. W., and Lee, P. W. (1990) Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology 178, 316–320.

    Article  PubMed  CAS  Google Scholar 

  57. Gentsch, J. R. and Hatfield, J. W. (1984) Saturable attachment sites for type 3 mammalian reovirus on murine L cells and human HeLa cells. Virus Res. 1, 401–414.

    Article  PubMed  CAS  Google Scholar 

  58. Barton, E. S., Forrest, J. C., Connolly, J. L., et al. (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104, 441–451.

    Article  PubMed  CAS  Google Scholar 

  59. Paul, R. W., Choi, A. H., and Lee, P. W. (1989) The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172, 382–385.

    Article  PubMed  CAS  Google Scholar 

  60. Borsa, J., Morash, B. D., Sargent, M. D., Copps, T. P., Lievaart, P. A., and Szekely, J. G. (1979) Two modes of entry of reovirus particles into L cells. J. Gen. Virol. 45, 161–170.

    Article  PubMed  CAS  Google Scholar 

  61. Georgi, A., Mottola-Hartshorn, C., Warner, A., Fields, B., and Chen, L. B. (1990) Detection of individual fluorescently labeled reovirions in living cells. Proc. Natl. Acad. Sci. USA 87, 6579–6583.

    Article  PubMed  CAS  Google Scholar 

  62. Rubin, D. H., Weiner, D. B., Dworkin, C., Greene, M. I., Maul, G. G., and Williams, W. V. (1992) Receptor utilization by reovirus type 3: distinct binding sites on thymoma and fibroblast cell lines result in differential compartmentalization of virions. Microb. Pathog. 12, 351–365.

    Article  PubMed  CAS  Google Scholar 

  63. Sturzenbecker, L. J., Nibert, M., Furlong, D., and Fields, B. N. (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J. Virol. 61, 2351–2361.

    PubMed  CAS  Google Scholar 

  64. Canning, W. M. and Fields, B. N. (1983) Ammonium chloride prevents lytic growth of reovirus and helps to establish persistent infection in mouse L cells. Science 219, 987–988.

    Article  PubMed  CAS  Google Scholar 

  65. Dryden, K. A., Wang, G., Yeager, M., et al. (1993) Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J. Cell Biol. 122, 1023–1041.

    Article  PubMed  CAS  Google Scholar 

  66. Faust, M., Hastings, K. E., and Millward, S. (1975) m7G5′ppp5′GmptcpUp at the 5′ terminus of reovirus messenger RNA. Nucleic Acids Res. 2, 1329–1343.

    Article  PubMed  CAS  Google Scholar 

  67. Furuichi, Y., Morgan, M., Muthukrishnan, S., and Shatkin, A. J. (1975) Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m-7G(5()ppp(5()G-MpCp. Proc. Natl. Acad. Sci. USA 72, 362–366.

    Article  PubMed  CAS  Google Scholar 

  68. Zou, S. and Brown, E. G. (1992) Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment. Virology 186, 377–388.

    Article  PubMed  CAS  Google Scholar 

  69. Chapell, J. D., Goral, M. I., Rodgers, S. E., dePamphilis, C. W., and Dermody, T. S. (1994) Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif. J. Virol. 68, 750–756.

    PubMed  CAS  Google Scholar 

  70. Zarbl, H., Skup, D., and Millward, S. (1980) Reovirus progeny subviral particles synthesize uncapped mRNA. J. Virol. 34, 497–505.

    PubMed  CAS  Google Scholar 

  71. Ito, Y. and Joklik, W. K. (1972) Temperature-sensitive mutants of reovirus. I. Patterns of gene expression by mutants of groups C, D, and E. Virology 50, 189–201.

    Article  PubMed  CAS  Google Scholar 

  72. Hashiro, G., Loh, P. C., and Yau, J. T. (1977) The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch. Virol. 54, 307–315

    Article  PubMed  CAS  Google Scholar 

  73. Duncan, M. R., Stanish, S. M., and Cox, D. C. (1978) Differential sensitivity of normal and transformed human cells to reovirus infection. J. Virol. 28, 444–449.

    PubMed  CAS  Google Scholar 

  74. Strong, J. E., Tang, D., and Lee, P. W. (1993) Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197, 405–411.

    Article  PubMed  CAS  Google Scholar 

  75. Tang, D., Strong, J. E., and Lee, P. W. (1993) Recognition of the epidermal growth factor receptor by reovirus. Virology 197, 412–414.

    Article  PubMed  CAS  Google Scholar 

  76. Strong, J. E. and Lee, P. W. (1996) The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J. Virol. 70, 612–616.

    PubMed  CAS  Google Scholar 

  77. Libermann, T. A., Nusbaum, H. R., Razon, N., et al. (1985) Amplification, enhanced expression and possible rear-rangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313, 144–147.

    Article  PubMed  CAS  Google Scholar 

  78. Guha, A., Dashner, K., Black, P. M., Wagner, J. A., and Stiles, C. D. (1995) Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer 60, 168–173.

    Article  PubMed  CAS  Google Scholar 

  79. Shamah, S. M., Stiles, C. D., and Guha, A. (1993) Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol. Cell Biol. 13, 7203–7212.

    PubMed  CAS  Google Scholar 

  80. Helseth, E., Unsgaard, G., Dalen, A., et al. (1988) Amplification of the epidermal growth factor receptor gene in biopsy specimens from human intracranial tumours. Br. J. Neurosurg. 2, 217–225

    PubMed  CAS  Google Scholar 

  81. Guha, A. (1998) Ras activation in astrocytomas and neurofibromas. Can. J. Neurol. Sci. 25, 267–281.

    PubMed  CAS  Google Scholar 

  82. Slamon, D. J., Godolphin, W., Jones, L. A., et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712.

    Article  PubMed  CAS  Google Scholar 

  83. Ross, J. S. and Fletcher, J. A. (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3, 237–252

    PubMed  Google Scholar 

  84. Koenders, P. G., Beex, L. V., Geurts-Moespot, A., Heuvel, J. J., Kienhuis, C. B., and Benraad, T. J. (1991) Epidermal growth factor receptor-negative tumors are predominantly confined to the subgroup of estradiol receptor-positive human primary breast cancers. Cancer Res. 51, 4544–4548.

    PubMed  CAS  Google Scholar 

  85. Shackney, S. E., Pollice, A. A., Smith, C. A., et al. (1998) Intracellular coexpression of epidermal growth factor receptor, Her-2/neu, and p21ras in human breast cancers: evidence for the existence of distinctive patterns of genetic evolution that are common to tumors from different patients. Clin. Cancer Res. 4, 913–928.

    PubMed  CAS  Google Scholar 

  86. Jacobs, C. and Rubsamen, H. (1983) Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas. Cancer Res. 43, 1696–1702.

    PubMed  CAS  Google Scholar 

  87. Verbeek, B. S., Vroom, T. M., Adriaansen-Slot, S. S., et al. (1996) c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 180, 383–388.

    Article  PubMed  CAS  Google Scholar 

  88. Schlessinger, J. (1993) How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273–275.

    Article  PubMed  CAS  Google Scholar 

  89. Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J. (1998) Increasing complexity of Ras signaling. Oncogene 17, 1395–1413.

    Article  PubMed  CAS  Google Scholar 

  90. Vojtek, A. B. and Der, C. J. (1998) Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19,925–19,928.

    Article  PubMed  CAS  Google Scholar 

  91. Kavanaugh, W. M. and Williams, L. T. (1994) An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266, 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  92. Batzer, A. G., Blaikie, P., Nelson, K., Schlessinger, J., and Margolis, B. (1995) The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor. Mol. Cell Biol. 15, 4403–4409.

    PubMed  CAS  Google Scholar 

  93. Egan, S. E., Giddings, B. W., Brooks, M. W., Buday, L., Sizeland, A. M., and Weinberg, R. A. (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51.

    Article  PubMed  CAS  Google Scholar 

  94. Pelicci, G., Lanfrancone, L., Grignani, F., et al. (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93–104.

    Article  PubMed  CAS  Google Scholar 

  95. Buday, L. and Downward, J. (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620.

    Article  PubMed  CAS  Google Scholar 

  96. Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J. (2000) Understanding Ras: “it ain’t over’ til it’s over.” Trends Cell Biol. 10, 147–154.

    Article  PubMed  CAS  Google Scholar 

  97. Wolthuis, R. M., de Ruiter, N. D., Cool, R. H., and Bos, J. L. (1997) Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 16, 6748–6761.

    Article  PubMed  CAS  Google Scholar 

  98. Bischoff, J. R. and Samuel, C. E. (1989) Mechanism of interferon action. Activation of the human P1/eIF-2 alpha protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology 172, 106–115.

    Article  PubMed  CAS  Google Scholar 

  99. Thomis, D. C. and Samuel, C. E. (1993) Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J. Virol. 67, 7695–7700.

    PubMed  CAS  Google Scholar 

  100. Levin, D. H., Petryshyn, R., and London, I. M. (1980) Characterization of double-stranded-RNA-activated kinase that phosphorylates alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) in reticulocyte lysates. Proc. Natl. Acad. Sci. USA 77, 832–836.

    Article  PubMed  CAS  Google Scholar 

  101. Panniers, R. and Henshaw, E. C. (1983) A GDP/GTP exchange factor essential for eukaryotic initiation factor 2 cycling in Ehrlich ascites tumor cells and its regulation by eukaryotic initiation factor 2 phosphorylation. J. Biol. Chem. 258, 7928–7934.

    PubMed  CAS  Google Scholar 

  102. Mundschau, L. J. and Faller, D. V. (1992) Oncogenic ras induces an inhibitor of double-stranded RNA-dependent eukaryotic initiation factor 2 alpha-kinase activation. J. Biol. Chem. 267, 23,092–23,098.

    PubMed  CAS  Google Scholar 

  103. Wilcox, M. E., Yang, W., Senger, D., et al. (2001) Reovirus as an oncolytic agent against experimental human malignant gliomas. J. Natl. Cancer Inst. 93, 903–912.

    Article  PubMed  CAS  Google Scholar 

  104. Clarke, P., Meintzer, S. M., Spalding, A. C., Johnson, G. L., and Tyler, K. L. (2001) Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. Oncogene 20, 6910–6919.

    Article  PubMed  CAS  Google Scholar 

  105. Connolly, J. L. and Dermody, T. S. (2002) Virion disassembly is required for apoptosis induced by reovirus. J. Virol. 76, 1632–1641.

    Article  PubMed  CAS  Google Scholar 

  106. Clark, G. J., Westwick, J. K., and Der, C. J. (1997) p120 GAP modulates Ras activation of Jun kinases and transformation. J. Biol. Chem. 272, 1677–1681.

    Article  PubMed  CAS  Google Scholar 

  107. Bos, J. L. (1989) ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  108. Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M. (1987) Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327, 298–303.

    Article  PubMed  CAS  Google Scholar 

  109. Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., and Perucho, M. (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554.

    Article  PubMed  CAS  Google Scholar 

  110. Varras, M. N., Sourvinos, G., Diakomanolis, E., et al. (1999) Detection and clinical correlations of ras gene mutations in human ovarian tumors. Oncology 56, 89–96.

    Article  PubMed  CAS  Google Scholar 

  111. Caduff, R. F., Svoboda-Newman, S. M., Ferguson, A. W., Johnston, C. M., and Frank, T. S. (1999) Comparison of mutations of Ki-RAS and p53 immunoreactivity in borderline and malignant epithelial ovarian tumors. Am. J. Surg. Pathol. 23, 323–328.

    Article  PubMed  CAS  Google Scholar 

  112. Haas, C. J., Diebold, J., Hirschmann, A., Rohrbach, H., and Lohrs, U. (1999) In serous ovarian neoplasms the frequency of Ki-ras mutations correlates with their malignant potential. Virchows Arch. 434, 117–120.

    Article  PubMed  CAS  Google Scholar 

  113. Slebos, R. J., Kibbelaar, R. E., Dalesio, O., et al. (1990) K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 323, 561–565.

    Article  PubMed  CAS  Google Scholar 

  114. Beaupre, D. M. and Kurzrock, R. (1999) RAS and leukemia: from basic mechanisms to gene-directed therapy. J. Clin. Oncol. 17, 1071–1079.

    PubMed  CAS  Google Scholar 

  115. Norman, K. L., Coffey, M. C., Hirasawa, K., et al. (2002) Reovirus oncolysis of human breast cancer. Hum. Gene Ther. 13, 641–652.

    Article  PubMed  CAS  Google Scholar 

  116. Hirasawa, K., Nishikawa, S. G., Norman, K. L., Alain, T., Kossakowska, A., and Lee, P. W. (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res. 62, 1696–1701.

    PubMed  CAS  Google Scholar 

  117. Alain, T., Hirasawa, K., Pon, K. J., et al. (2002) Reovirus therapy of lymphoid malignancies. Blood 100, 4146–4153.

    Article  PubMed  CAS  Google Scholar 

  118. Hirasawa, K., Nishikawa, S. G., Norman, K. L., et al. (2003) Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res. 63, 348–353.

    PubMed  CAS  Google Scholar 

  119. Kloog, Y. and Cox, A. D. (2000) RAS inhibitors: potential for cancer therapeutics. Mol. Med. Today 6, 398–402.

    Article  PubMed  CAS  Google Scholar 

  120. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689.

    Article  PubMed  CAS  Google Scholar 

  121. Herrmann, C., Block, C., Geisen, C., et al. (1998) Sulindac sulfide inhibits Ras signaling. Oncogene 17, 1769–1776.

    Article  PubMed  CAS  Google Scholar 

  122. James, G. L., Goldstein, J. L., Brown, M. S., et al. (1993) Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260, 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  123. Kohl, N. E., Mosser, S. D., deSolms, S. J., et al. (1993) Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260, 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  124. Kohl, N. E., Omer, C. A., Conner, M. W., et al. (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med. 1, 792–797.

    Article  PubMed  CAS  Google Scholar 

  125. Liu, M., Bryant, M. S., Chen, J., et al. (1998) Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 58, 4947–4956.

    PubMed  CAS  Google Scholar 

  126. Sepp-Lorenzino, L., Ma, Z., Rands, E., et al. (1995) A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and-independent growth of human tumor cell lines. Cancer Res. 55, 5302–5309.

    PubMed  CAS  Google Scholar 

  127. Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., et al. (1997) K-and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14,459–14,464.

    Article  PubMed  CAS  Google Scholar 

  128. Marom, M., Haklai, R., Ben-Baruch, G., Marciano, D., Egozi, Y., and Kloog, Y. (1995) Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J. Biol. Chem. 270, 22,263–22,270.

    Article  PubMed  CAS  Google Scholar 

  129. Haklai, R., Weisz, M. G., Elad, G., et al. (1998) Dislodgment and accelerated degradation of Ras. Biochemistry 37, 1306–1314.

    Article  PubMed  CAS  Google Scholar 

  130. Jansen, B., Schlagbauer-Wadl, H., Kahr, H., et al. (1999) Novel Ras antagonist blocks human melanoma growth. Proc. Natl. Acad. Sci. USA 96, 14,019–14,024.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Patrick, M.K., Norman, K.L., Lee, P.W.K. (2005). Reovirus as an Oncolytic Agent. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_16

Download citation

Publish with us

Policies and ethics