Skip to main content

Dendritic Cells

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1020 Accesses

Abstract

Dendritic cells (DCs) are the principal immune cells priming naïve T lymphocytes to initiate adaptive immunity. DCs have been referred to as “nature’s adjuvant” owing to their potency in igniting immune responses (1). They originate from proliferating hematopoietic progenitor cells in bone marrow and enter blood as nonproliferating precursor cells. These precursor cells then seed all tissues, in which they differentiate into immature DCs that sample the environment for “danger” or foreign antigens. If such is encountered, they migrate to locally draining lymph nodes, during which transit they undergo a process of maturation. In maturation, their capacity to acquire antigen is lost simultaneous with their acquisition of an enormous capacity to prime naïve T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.

    PubMed  CAS  Google Scholar 

  2. Kohrgruber, N., Halanek, N., Groger, M., et al. (1999) Survival, maturation, and function of CD11c and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol. 163, 3250–3259.

    PubMed  CAS  Google Scholar 

  3. Rissoan, M. C., Soumelis, V., Kadowaki, N., et al. (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186.

    PubMed  CAS  Google Scholar 

  4. Cella, M., Jarrossay, D., Facchetti, F., et al. (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923.

    PubMed  CAS  Google Scholar 

  5. Bennett, S. R., Carbone, F. R., Karamalis, F., Flavell, R. A., Miller, J. F., and Heath, W. R. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480.

    PubMed  CAS  Google Scholar 

  6. Ridge, J. P., Di Rosa, F., and Matzinger, P. (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.

    PubMed  CAS  Google Scholar 

  7. Zou, W., Machelon, V., Coulomb-L’Hermin, A., et al. (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7, 1339–1346.

    PubMed  CAS  Google Scholar 

  8. Sallusto, F., Schaerli, P., Loetscher, P., et al. (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769.

    PubMed  CAS  Google Scholar 

  9. Pulendran, B., Smith, J. L., Caspary, G., et al. (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041.

    PubMed  CAS  Google Scholar 

  10. Mohamadzadeh, M., Berard, F., Essert, G., et al. (2001) Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J. Exp. Med. 194, 1013–1020.

    PubMed  CAS  Google Scholar 

  11. Caux, C., Massacrier, C., Dezutter-Dambuyant, C., et al. (1995) Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen. J. Immunol. 155, 5427–5435.

    PubMed  CAS  Google Scholar 

  12. Caux, C., Durand, I., Moreau, I., Duvert, V., Saeland, S., and Banchereau, J. (1993) Tumor necrosis factor alpha cooperates with interleukin 3 in the recruitment of a primitive subset of human CD34+ progenitors. J. Exp. Med. 177, 1815–1820.

    PubMed  CAS  Google Scholar 

  13. Siegal, F. P., Kadowaki, N., Shodell, M., et al. (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837.

    PubMed  CAS  Google Scholar 

  14. Cella, M., Facchetti, F., Lanzavecchia, A., and Colonna, M. (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent Th1 polarization.Nat. Immunol. 1, 305–310.

    PubMed  CAS  Google Scholar 

  15. Krug, A., Towarowski, A., Britsch, S., et al. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12.Eur. J. Immunol. 31, 3026–3037.

    PubMed  CAS  Google Scholar 

  16. Kuwana, M., Kaburaki, J., Wright, T. M., Kawakami, Y., and Ikeda, Y. (2001) Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur. J. Immunol. 31, 2547–2557.

    PubMed  CAS  Google Scholar 

  17. Nakano, H., Yanagita, M., and Gunn, M. D. (2001) CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178.

    PubMed  CAS  Google Scholar 

  18. Asselin-Paturel, C., Boonstra, A., Dalod, M., et al. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150.

    PubMed  CAS  Google Scholar 

  19. Albert, M. L., Sauter, B., and Bhardwaj, N. (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89.

    PubMed  CAS  Google Scholar 

  20. Albert, M. L., Pearce, S. F., Francisco, L. M., et al. (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368.

    PubMed  CAS  Google Scholar 

  21. de Saint-Vis, B., Vincent, J., Vandenabeele, S., et al. (1998) A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325–336.

    PubMed  Google Scholar 

  22. Geijtenbeek, B. H. T. (2000) DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking.Nat. Immunol. 1,353–357.

    PubMed  CAS  Google Scholar 

  23. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint, F. G., and Kapsenberg, M. L. (1997) IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naïve T helper cells. J. Immunol. 159, 28–35.

    PubMed  CAS  Google Scholar 

  24. Enk, A. H., Jonuleit, H., Saloga, J., and Knop, J. (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer 73, 309–316.

    PubMed  CAS  Google Scholar 

  25. Steinbrink, K., Jonuleit, H., Muller, G., Schuler, G., Knop, J., and Enk, A. H. (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93, 1634–1642.

    PubMed  CAS  Google Scholar 

  26. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A. H. (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222.

    PubMed  CAS  Google Scholar 

  27. Banchereau, J., Palucka, A. K., Dhodapkar, M., et al. (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451–6458.

    PubMed  CAS  Google Scholar 

  28. Gilliet, M. and Liu, Y. J. (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704.

    PubMed  CAS  Google Scholar 

  29. Jahnsen, F. L., Lund-Johansen, F., Dunne, J. F., Farkas, L., Haye, R., and Brandtzaeg, P. (2000) Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy.J. Immunol. 165, 4062–4068.

    PubMed  CAS  Google Scholar 

  30. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F., and Lanzavecchia, A. (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393.

    PubMed  CAS  Google Scholar 

  31. Pope, M. (1998) SIV replication and the dendritic cell. AIDS Res. Hum. Retroviruses 14(Suppl. 1), S71–S73.

    PubMed  Google Scholar 

  32. Messmer, D., Ignatius, R., Santisteban, C., Steinman, R. M., and Pope, M. (2000) The decreased replicative capacity of simian immunodeficiency virus SIVmac239Deltanef is manifest in cultures of immature dendritic cells and T cells.J. Virol. 74, 2406–2413.

    PubMed  CAS  Google Scholar 

  33. Stahl-Hennig, C., Steinman, R. M., Tenner-Racz, K., et al. (1999) Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 285, 1261–1265.

    PubMed  CAS  Google Scholar 

  34. O’Doherty, U., Ignatius, R., Bhardwaj, N., and Pope, M. (1997) Generation of monocyte-derived dendritic cells from precursors in rhesus macaque blood. J. Immunol. Methods 207, 185–194.

    PubMed  CAS  Google Scholar 

  35. Barratt-Boyes, S. M., Kao, H., and Finn, O. J. (1998) Chimpanzee dendritic cells derived in vitro from blood monocytes and pulsed with antigen elicit specific immune responses in vivo. J. Immunother. 21, 142–148.

    PubMed  CAS  Google Scholar 

  36. Barratt-Boyes, S. M., Watkins, S. C., and Finn, O. J. (1997) In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J. Immunol. 158, 4543–4547.

    PubMed  CAS  Google Scholar 

  37. Barratt-Boyes, S. M., Henderson, R. A., and Finn, O. J. (1996) Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood. Immunology 87, 528–534.

    PubMed  CAS  Google Scholar 

  38. Kosco-Vilbois, M. H. and Imhof, B. A. (2000) In vivo veritas. Immunol. Today 21, 64–65.

    PubMed  CAS  Google Scholar 

  39. Stumbles, P. A., Thomas, J. A., Pimm, C. L., et al. (1998) Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031.

    PubMed  CAS  Google Scholar 

  40. West, K. A., al-Alwan, M. M., Colp, P. E., and Rowden, G. (1999) Characterization of porcine dendritic cells grown in vitro. Transplant. Proc. 31, 666–667.

    PubMed  CAS  Google Scholar 

  41. Zhou, Z. H., Wang, J. F., Wang, Y. D., et al. (1999) An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybridoma 18, 471–478.

    PubMed  CAS  Google Scholar 

  42. Czerniecki, B. J., Carter, C., Rivoltini, L., et al. (1997) Calcium ionophore-treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J. Immunol. 159, 3823–3837.

    PubMed  CAS  Google Scholar 

  43. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., and Muller, W. A. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483.

    PubMed  CAS  Google Scholar 

  44. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M., and Muller, W. A. (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761.

    PubMed  CAS  Google Scholar 

  45. Inaba, K., Inaba, M., Romani, N., et l. 1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702.

    Google Scholar 

  46. Vecchi, A., Massimiliano, L., Ramponi, S., et al. (1999) Differential responsiveness to constitutive vs inducible chemokines of immature and mature mouse dendritic cells. J. Leukoc. Biol. 66, 489–494.

    PubMed  CAS  Google Scholar 

  47. Zhang, Y., Harada, A., Wang, J. B., et al. (1998) Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood 92, 118–128.

    PubMed  CAS  Google Scholar 

  48. Zhang, Y., Zhang, Y. Y., Ogata, M., et al. (1999) Transforming growth factor-beta1 polarizes murine hematopoietic progenitor cells to generate Langerhans cell-like dendritic cells through a monocyte/macrophage differentiation pathway. Blood 93, 1208–1220.

    PubMed  CAS  Google Scholar 

  49. Schuler, G. and Steinman, R. M. (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546.

    PubMed  CAS  Google Scholar 

  50. Rezzani, R., Rodella, L., Zauli, G., Caimi, L., and Vitale, M. (1999) Mouse peritoneal cells as a reservoir of late dendritic cell progenitors. Br. J. Haematol. 104, 111–118.

    PubMed  CAS  Google Scholar 

  51. Zou, W., Borvak, J., Marches, F., et al.(2000) Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J. Immunol. 165, 4388–4396.

    PubMed  CAS  Google Scholar 

  52. Dembic, Z., Schenck, K., and Bogen, B. (2000) Dendritic cells purified from myeloma are primed with tumorspecific antigen (idiotype) and activate CD4+ T cells. Proc. Natl. Acad. Sci. USA 97, 2697–2702.

    PubMed  CAS  Google Scholar 

  53. Chiodoni, C., Paglia, P., Stoppacciaro, A., Rodolfo, M., Parenza, M., and Colombo, M. P. (1999) Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J. Exp. Med. 190, 125–133.

    PubMed  CAS  Google Scholar 

  54. Paglia, P., Girolomoni, G., Robbiati, F., Granucci, F., and Ricciardi-Castagnoli, P. (1993) Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J. Exp. Med. 178, 1893–1901.

    PubMed  CAS  Google Scholar 

  55. Yokota, K., Ariizumi, K., Kitajima, T., Bergstresser, P. R., Street, N. E., and Takashima, A. (1996) Cytokine-mediated communication between dendritic epidermal T cells and Langerhans cells. In vitro studies using cell lines. J. Immunol. 157, 1529–1537.

    PubMed  CAS  Google Scholar 

  56. Sallusto, F. and Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118.

    PubMed  CAS  Google Scholar 

  57. Chapuis, F., Rosenzwajg, M., Yagello, M., Ekman, M., Biberfeld, P., and Gluckman, J. C. (1997) Differentiation of human dendritic cells from monocytes in vitro. Eur. J. Immunol. 27, 431–441.

    PubMed  CAS  Google Scholar 

  58. Bender, A., Sapp, M., Schuler, G., Steinman, R. M., and Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121–135.

    PubMed  CAS  Google Scholar 

  59. Kiertscher, S. M. and Roth, M. D. (1996) Human CD14+ leukocytes acquire the phenotype and function of antigenpresenting dendritic cells when cultured in GM-CSF and IL-4. J. Leukoc. Biol. 59, 208–218.

    PubMed  CAS  Google Scholar 

  60. Romani, N., Reider, D., Heuer, M., et al.(1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137–151.

    PubMed  CAS  Google Scholar 

  61. Strobl, H., Bello-Fernandez, C., Riedl, E., et al. (1997) FLT3 ligand in cooperation with transforming growth factorbeta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90, 1425–1434.

    PubMed  CAS  Google Scholar 

  62. Banchereau, J., Briere, F., Caux, C., et al. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811.

    PubMed  CAS  Google Scholar 

  63. Zou, W., Borvak, J., Marches, F., Wei, S., Isaeva, T., and Curiel, T. (2001) A guide to isolation, culture and propagation of dendritic cells. In Dendritic Cells: Biology and Clinical Applications, 2nd ed. (Lotze, M. T. and Thomson, A. W., eds.), Academic Press, London, UK, pp. 77–96.

    Google Scholar 

  64. Lenz, A., Heine, M., Schuler, G., and Romani, N. (1993) Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Invest. 92, 2587–2596.

    PubMed  CAS  Google Scholar 

  65. Caux, C., Massacrier, C., Vanbervliet, B., et al. (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 90, 1458–1470.

    PubMed  CAS  Google Scholar 

  66. Caux, C., Vanbervliet, B., Massacrier, C., et al. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 184,695–706.

    PubMed  CAS  Google Scholar 

  67. Arrighi, J. F., Hauser, C., Chapuis, B., Zubler, R. H., and Kindler, V. (1999) Long-term culture of human CD34(+) progenitors with FLT3-ligand, thrombopoietin, and stem cell factor induces extensive amplification of a CD34(−) CD14(−) and a CD34(−)CD14(+) dendritic cell precursor. Blood 93, 2244–2252.

    PubMed  CAS  Google Scholar 

  68. Song, W., Kong, H. L., Carpenter, H., et al. (1997) Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J. Exp. Med. 186,1247–1256.

    PubMed  CAS  Google Scholar 

  69. Lundqvist, A., Choudhury, A., Nagata, T., et al. (2002) Recombinant adenovirus vector activates and protects human monocyte-derived dendritic cells from apoptosis. Hum. Gene Ther. 13, 1541–1549.

    PubMed  CAS  Google Scholar 

  70. Pereboev, A. V., Asiedu, C. K., Kawakami, Y., et al. (2002) Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells. Gene Ther. 9, 1189–1193.

    PubMed  CAS  Google Scholar 

  71. Tillman, B. W., Hayes, T. L., DeGruijl, T. D., Douglas, J. T., and Curiel, D. T. (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 60, 5456–5463.

    PubMed  CAS  Google Scholar 

  72. Tillman, B. W., de Gruijl, T. D., Luykx-de Bakker, S. A., et al. (1999) Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol. 162, 6378–6383.

    PubMed  CAS  Google Scholar 

  73. Okada, N., Saito, T., Masunaga, Y., et al. (2001) Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res. 61, 7913–7919.

    PubMed  CAS  Google Scholar 

  74. Kianmanesh, A., Hackett, N. R., Lee, J. M., Kikuchi, T., Korst, R. J., and Crystal, R. G. (2001) Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum. Gene Ther. 12, 2035–2049.

    PubMed  CAS  Google Scholar 

  75. Tanaka, F., Hashimoto, W., Robbins, P. D., Lotze, M. T., and Tahara, H. (2002) Therapeutic and specific antitumor immunity induced by co-administration of immature dendritic cells and adenoviral vector expressing biologically active IL-18. Gene Ther. 9, 1480–1486.

    PubMed  CAS  Google Scholar 

  76. Ribas, A., Butterfield, L. H., Hu, B., et al. (2000) Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice. Cancer Res. 60, 2218–2224.

    PubMed  CAS  Google Scholar 

  77. Sumimoto, H., Tsuji, T., Miyoshi, H., et al. (2002) Rapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells. J. Immunol. Methods 271, 153–165.

    PubMed  CAS  Google Scholar 

  78. Rouas, R., Uch, R., Cleuter, Y., et al. (2002) Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther. 9, 715–724.

    PubMed  CAS  Google Scholar 

  79. Esslinger, C., Romero, P., and MacDonald, H. R. (2002) Efficient transduction of dendritic cells and induction of a T-cell response by third-generation lentivectors. Hum. Gene Ther. 13, 1091–1100.

    PubMed  CAS  Google Scholar 

  80. Evans, J. T., Cravens, P., Gatlin, J., Kelly, P. F., Lipsky, P. E., and Garcia, J. V. (2001) Pre-clinical evaluation of an in vitro selection protocol for the enrichment of transduced CD34+ cell-derived human dendritic cells. Gene Ther. 8, 1427–1435.

    PubMed  CAS  Google Scholar 

  81. Gruber, A., Kan-Mitchell, J., Kuhen, K. L., Mukai, T., and Wong-Staal, F. (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96, 1327–1333.

    PubMed  CAS  Google Scholar 

  82. Movassagh, M., Baillou, C., Cosset, F. L., Klatzmann, D., Guigon, M., and Lemoine, F. M. (1999) High level of retrovirus-mediated gene transfer into dendritic cells derived from cord blood and mobilized peripheral blood CD34+ cells. Hum. Gene Ther. 10, 175–187.

    PubMed  CAS  Google Scholar 

  83. Cao, X., Zhang, W., Wang, J., et al. (1999) Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulating factor genetically modified dendritic cells. Immunology 97, 616–625.

    PubMed  CAS  Google Scholar 

  84. Latouche, J. B. and Sadelain, M. (2000) Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat. Biotechnol. 18, 405–409.

    PubMed  CAS  Google Scholar 

  85. Jonuleit, H., Tuting, T., Steitz, J., et al. (2000) Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. 7, 249–254.

    PubMed  CAS  Google Scholar 

  86. Dietz, A. B. and Vuk-Pavlovic, S. (1998) High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 91, 392–398.

    PubMed  CAS  Google Scholar 

  87. Zou, W., Borvak, J., Wei, S., Isaeva, T., Curiel, D. T., and Curiel, T. J. (2001) Reciprocal regulation of plasmacytoid dendritic cells and monocytes during viral infection. Eur. J. Immunol. 31, 3833–3839.

    PubMed  CAS  Google Scholar 

  88. Jooss, K., Yang, Y., Fisher, K. J., and Wilson, J. M. (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J. Virol. 72, 4212–4223.

    PubMed  CAS  Google Scholar 

  89. Diebold, S. S., Cotten, M., Wagner, E., and Zenke, M. (1998) Gene-modified dendritic cells by receptor-mediated transfection. Adv. Exp. Med. Biol. 451, 449–455.

    PubMed  CAS  Google Scholar 

  90. Wan, Y., Emtage, P., Foley, R., Carter, R., and Gauldie, J. (1999) Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can overcome anti-adenovirus neutralizing immunity and induce effective tumor regression. Int. J. Oncol. 14, 771–776.

    PubMed  CAS  Google Scholar 

  91. Lee, W. C., Wan, Y. H., Li, W., et al. (1999) Enhancement of dendritic cell tolerogenicity by genetic modification using adenoviral vectors encoding cDNA for TGF beta 1. Transplant. Proc. 31, 1195.

    PubMed  CAS  Google Scholar 

  92. Lu, L., Gambotto, A., Lee, W. C., et al. (1999) Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther. 6, 554–563.

    PubMed  CAS  Google Scholar 

  93. Lu, L., Lee, W. C., Takayama, T., et al. (1999) Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-beta, and CTLA4Ig). J. Leukoc. Biol. 66, 293–296.

    PubMed  CAS  Google Scholar 

  94. Bonham, C. A., Peng, L., Liang, X., et al. (2002) Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-kappa B oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J. Immunol. 169, 3382–3391.

    PubMed  CAS  Google Scholar 

  95. Rea, D., Schagen, F. H., Hoeben, R. C., et al. (1999) Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J. Virol. 73, 10,245–10,253.

    PubMed  CAS  Google Scholar 

  96. Di Nicola, M., Siena, S., Bregni, M., et al. (1998) Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors. Cancer Gene Ther. 5, 350–356.

    PubMed  Google Scholar 

  97. Philip, R., Alters, S. E., Brunette, E., et al. (2000) Dendritic cells loaded with MART-1 peptide or infected with adenoviral construct are functionally equivalent in the induction of tumor-specific cytotoxic T lymphocyte responses in patients with melanoma. J. Immunother. 23, 168–176.

    PubMed  CAS  Google Scholar 

  98. Kusumoto, M., Umeda, S., Ikubo, A., et al. (2001) Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene. Cancer Immunol. Immunother. 50, 373–381.

    PubMed  CAS  Google Scholar 

  99. Soiffer, R., Hodi, F. S., Haluska, F., et al. (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. 21, 3343–3350.

    PubMed  CAS  Google Scholar 

  100. Kielian, T., Nagai, E., Ikubo, A., Rasmussen, C. A., and Suzuki, T. (1999) Granulocyte/macrophage-colony-stimulating factor released by adenovirally transduced CT26 cells leads to the local expression of macrophage inflammatory protein 1alpha and accumulation of dendritic cells at vaccination sites in vivo. Cancer Immunol. Immunother. 48, 123–131.

    PubMed  CAS  Google Scholar 

  101. Miller, G., Pillarisetty, V. G., Shah, A. B., Lahrs, S., Xing, Z., and DeMatteo, R. P. (2002) Endogenous granulocytemacrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced immunostimulatory function. J. Immunol. 169, 2875–2885.

    PubMed  CAS  Google Scholar 

  102. Kikuchi, T. and Crystal, R. G. (2001) Antigen-pulsed dendritic cells expressing macrophage-derived chemokine elicit Th2 responses and promote specific humoral immunity. J. Clin. Invest. 108, 917–927.

    PubMed  CAS  Google Scholar 

  103. Wu, M. T. and Hwang, S. T. (2002) CXCR5-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses. J. Immunol. 168, 5096–5102.

    PubMed  CAS  Google Scholar 

  104. Di Nicola, M., Carlo-Stella, C., Milanesi, M., et al. (2000) Large-scale feasibility of gene transduction into human CD34+ cell-derived dendritic cells by adenoviral/polycation complex. Br. J. Haematol. 111, 344–350.

    PubMed  Google Scholar 

  105. John, J., Hutchinson, J., Dalgleish, A., and Pandha, H. (2003) Cryopreservation of immature monocyte-derived dendritic cells results in enhanced cell maturation but reduced endocytic activity and efficiency of adenoviral transduction. J. Immunol. Methods 272, 35–48.

    PubMed  CAS  Google Scholar 

  106. Lyakh, L. A., Koski, G. K., Young, H. A., Spence, S. E., Cohen, P. A., and Rice, N. R. (2002) Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14(+) monocytes cultured under serum-free conditions. Blood 99, 600–608.

    PubMed  CAS  Google Scholar 

  107. Ribas, A., Butterfield, L. H., Glaspy, J. A., and Economou, J. S. (2002) Cancer immunotherapy using gene-modified dendritic cells. Curr. Gene Ther. 2, 57–78.

    PubMed  CAS  Google Scholar 

  108. Bubenik, J. (2001) Genetically engineered dendritic cell-based cancer vaccines (review). Int. J. Oncol. 18, 475–478.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Zou, W., Wei, S., Curiel, T.J. (2005). Dendritic Cells. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_11

Download citation

Publish with us

Policies and ethics