Skip to main content

Effects of Specific Foods and Non-Nutritive Dietary Components on Drug Metabolism

  • Chapter
Handbook of Drug-Nutrient Interactions

Part of the book series: Nutrition and Health ((NH))

Abstract

This chapter reviews the effects that specific components of foods have on the metabolism and actions of drugs in humans. The review focuses on examples of such interactions that are presently known, but it is not all-inclusive. Additional interactions are described in more detail in the chapter references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Utermohlen V. Diet, nutrition and drug interactions. In: Shils ME, Olsen JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. Lippincott Williams and Wilkins, Philadelphia, PA, 1999, pp. 1619–1641.

    Google Scholar 

  2. Anderson KE, McCleery RB, Vesell ES, Vickers FF, Kappas A. Diet and cimetidine induce comparable changes in theophylline metabolism. Hepatol 1991; 13: 941–946.

    Article  CAS  Google Scholar 

  3. Anderson KE, Kappas A. Dietary regulation of cytochrome P450. Annu Rev Nutr 1991; 11: 141–167.

    Article  CAS  Google Scholar 

  4. Anderson KE. Nutritional effects on hepatic drug metabolism in the elderly. In: Prinsley DM, Sandstead HH, eds. Nutrition and Aging. Alan R. Liss, New York, 1990, pp. 263–277.

    Google Scholar 

  5. Campbell TC, Hayes JR. Role of nutrition in the drug-metabolizing enzyme system. Pharmacol Rev 1974; 26: 171–197.

    CAS  Google Scholar 

  6. Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica 1999; 29 (2): 109–154.

    Article  CAS  Google Scholar 

  7. Guengerich FP. Influence of nutrients and other dietary materials on cytochrome P-450 enzymes. Am J Clin Nutr 1995; 61 (3 suppl): 651–658.

    Google Scholar 

  8. Alvares AP, Anderson KE, Conney AH, Kappas A. Interactions between nutritional factors and drug biotransformations in man. Proc Natl Acad Sci USA 1976; 73: 2501–2504.

    Article  CAS  Google Scholar 

  9. Kappas A, Anderson KE, Conney AH, Alvares AP. Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man. Clin Pharmacol Ther 1976; 20: 643–653.

    CAS  Google Scholar 

  10. Fagan TC, Walle T, Oexmann MJ, Walle UK, Bai SA, Gaffney TE. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 1987; 41: 402–406.

    Article  CAS  Google Scholar 

  11. Juan D, W orwag EM, Schoeller DA, Kotake AN, Hughes RL, Frederiksen MC. Effects of dietary protein on theophylline pharmacokinetics and caffeine and aminopyrine breath tests. Clin Pharmacol Ther 1986; 40: 187–194.

    Article  CAS  Google Scholar 

  12. Anderson KE, Conney AH, Kappas A. Nutrition and oxidative drug metabolism in man: relative influence of dietary lipids, carbohydrate and protein. Clin Pharmacol Ther 1979; 26: 493–501.

    CAS  Google Scholar 

  13. Mucklow JC, Caraher MT, Idle JR, et al. The influence of changes in dietary fat on the clearance of antipyrine and 4-hydroxylation of debrisoquine. Br J Clin Pharmacol 1980; 9: 283.

    Article  Google Scholar 

  14. Krishnaswamy K, Kalamegham R, Naidu NA. Dietary influences on the kinetics of antipyrine and aminopyrine in human subjects. Br J Clin Pharmacol 1984; 17: 139–146.

    Article  CAS  Google Scholar 

  15. Farrell GC, Cooksley WGE, Hart P, Powell LW. Drug metabolism in liver disease, identification of patients with impaired drug metabolism. Gastroenterology 1978; 75: 580–588.

    CAS  Google Scholar 

  16. Feldman CH, Hutchinson VE, Sher TH, Feldman BR, Davis WJ. Interaction between nutrition and theophylline metabolism in children. Ther Drug Monit 1982; 4: 69–76.

    Article  CAS  Google Scholar 

  17. Thompson PJ, Skypala I, Dawson S, McAllister WAC, Warwick MT. The effect of diet upon serum concentrations of theophylline. Br J Clin Pharmacol 1983; 16: 267–270.

    Article  CAS  Google Scholar 

  18. Anderson KE. Influence of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988; 14: 325–346.

    Article  CAS  Google Scholar 

  19. Argyris TS. Additive effects of phenobarbital and high protein diet on liver growth in immature male rats. Dev Biol 1971; 25: 293–309.

    Article  CAS  Google Scholar 

  20. Sidransky H. Effects of tryptophan on protein synthesis by liver. In: Scarpelli DG, Migaki G, eds. Nutritional Diseases: Research Directions in Comparative Pathobiology. Alan R. Liss, New York, NY, 1986, pp. 71–90.

    Google Scholar 

  21. Wheeler EL, Schwass DE, Crawford L, Berry DL. Modulation of benzo(a)pyrene metabolism by dietary sulfur amino acids. In: Finley JW, Schwass DE, eds. Xenobiotic Metabolism: Nutritional Effects. American Chemical Society, Washington, DC, 1985, pp 151–161.

    Chapter  Google Scholar 

  22. Evarts RP, Mostafa MH. Effects of indole and tryptophan on cytochrome P-450, dimethylnitrosamine demethylase, and arylhydrocarbon hydroxylase activities. Biochem Pharmacol 1981; 30: 517–522.

    Article  CAS  Google Scholar 

  23. Arcos JC, Myers SC, Neuburger BJ, Argus MF. Comparative effects of indole and aminoacetonitrile derivatives on dimethylnitrosamine-demethylase and aryl hydrocarbon hydroxylase activities. Cancer Let 1980; 9: 161–167.

    Article  CAS  Google Scholar 

  24. Paine AJ. Effect of amino acids and inducers on the activity of the microsomal mono-oxygenase system in rat liver cell culture. Chem Biol Interactions 1976; 13: 307–315.

    Article  CAS  Google Scholar 

  25. Anderson KE, Kappas A. Hormones and liver function, chapter 6. In: Schiff L, Schiff ER, eds. Diseases of the Liver. J. B. Lippincott, Philadelphia, PA, 1982, pp. 167–235.

    Google Scholar 

  26. Anderson KE, Kappas A, Conney AH, Bradlow HL, Fishman J. The influence of dietary protein and carbohydrate on the principal oxidative biotransformations of estradiol in normal subjects. J Clin Endocrinol Metab 1984; 59: 103–107.

    Article  CAS  Google Scholar 

  27. Kappas A, Anderson KE, Conney AH, Pantuck EJ, Fishman J, Bradlow HL. Nutrition-endocrine interactions: Induction of reciprocal changes in the A4–5a-reduction of testosterone and the cytochrome P-450-dependent oxidation of estradiol by dietary macronutrients in man. Proc Natl Acad Sci USA 1983; 80: 7646–7649.

    Article  CAS  Google Scholar 

  28. Anderson KE, Rosner W, New MI, Pang S, Wissel PS, Kappas A. Diet-hormone interactions: protein/ carbohydrate ratio alters reciprocally the plasma levels of testosterone and cortisol and their respective binding globulins in man. Life Sci 1987; 40: 1761–1768.

    Article  CAS  Google Scholar 

  29. Kappas A, Bradlow HL, Bickers DL, Alvares AP. Induction of a deficiency of steroid A4–5a-reductase in liver by a porphyrinogenic drug. J Clin Invest 1977; 59: 159–164.

    Article  CAS  Google Scholar 

  30. Kitt TM, Park GD, Spector R, Lawton W, Tsalikian E. Renal clearances of oxypurinol and inulin on an isocaloric, low-protein diet. Clin Pharmacol Ther 1988; 43: 681–687.

    Article  CAS  Google Scholar 

  31. Park GD, Spector R, Kitt TM. Effect of dietary protein on renal tubular clearance of drugs in humans. Clin Pharmacokinet 1989; 17: 441–451.

    Article  CAS  Google Scholar 

  32. Berlinger WG, Park GD, Spector R. The effect of dietary protein on the clearance of allopurinol and oxypurinol. N Engl J Med 1985; 313: 771–776.

    Article  CAS  Google Scholar 

  33. Welling PG, Lions LL, Craig WA, Trochta GA. Influence of diet and fluid on bioavailability of theophylline. Clin Pharmacol Ther 1975; 17: 475–480.

    CAS  Google Scholar 

  34. Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 1975; 292: 181–184.

    Article  CAS  Google Scholar 

  35. Nutt JG, Woodward WR, Hammerstad JP, Carter JH, Anderson JL. The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med 1984; 310: 483–488.

    Article  CAS  Google Scholar 

  36. Pincus JH, Barry K. Influence of dietary protein on motor fluctuations in Parkinson’s disease. Arch Neurol 1987; 44 (3): 270–272.

    Article  CAS  Google Scholar 

  37. Tsui JK, Ross S, Poulin K, et al. The effect of dietary protein on the efficacy of L-dopa: a double-blind study. Neurology 1989; 39 (4): 549–552.

    Article  CAS  Google Scholar 

  38. Robertson DR, Higginson I, Macklin BS, Renwick AG, Waller DG, George CF. The influence of protein containing meals on the pharmacokinetics of levodopa in healthy volunteers. Br J Clin Pharmacol 1991; 31 (4): 413–417.

    Article  CAS  Google Scholar 

  39. Eriksson T, Granerus AK, Linde A, Carlsson A. “On-off” phenomenon in Parkinson’s disease: relationship between dopa and other large neutral amino acids in plasma. Neurology 1988; 38 (8): 1245–1248.

    Article  CAS  Google Scholar 

  40. Brannan T, Martinez-Tica J, Yahr MD. Effect of dietary protein on striatal dopamine formation following L-dopa administration: an in vivo study. Neuropharmacology 1991; 30 (10): 1125–1127.

    Article  CAS  Google Scholar 

  41. Carter JH, Nutt JG, Woodward WR, Hatcher LF, Trotman TL. Amount and distribution of dietary protein affects clinical response to levodopa in Parkinson’s disease. Neurology 1989; 39 (4): 552–556.

    Article  CAS  Google Scholar 

  42. Karstaedt PJ, Pincus JH. Protein redistribution diet remains effective in patients with fluctuating parkinsonism. Arch Neurol 1992; 49 (2): 149–151.

    Article  CAS  Google Scholar 

  43. Bracco F, Malesani R, Saladini M, Battistin L. Protein redistribution diet and antiparkinsonian response to levodopa. Eur Neurol 1991; 31 (2): 68–71.

    Article  CAS  Google Scholar 

  44. Pare S, Barr SI, Ross SE. Effect of daytime protein restriction on nutrient intakes of free-living Parkinson’s disease patients. Am J Clin Nutr 1992; 55 (3): 701–707.

    CAS  Google Scholar 

  45. Berry EM, Growdon JH, Wurtman JJ, Caballero B, Wurtman RJ. A balanced carbohydrate: protein diet in the management of Parkinson’s disease. Neurology 1991; 41 (8): 1295–1297.

    Article  CAS  Google Scholar 

  46. Pantuck EJ, Hsiao KC, Loub WD, Wattenberg LW, Kuntzman R, Conney AH. Stimulatory effect of vegetables on intestinal drug metabolism in the rat. J Pharmacol Exp Ther 1976; 198: 278–283.

    CAS  Google Scholar 

  47. Pantuck EJ, Pantuck CB, Garland WA, et al. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979; 25: 88–95.

    CAS  Google Scholar 

  48. Loub WD, Wattenberg LW, Davis DW. Arylhydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Nat Cancer Inst 1975; 54: 985–988.

    CAS  Google Scholar 

  49. Chung FL, Wang M, Hecht SS. Effects of dietary indoles and isothiocyanates on N-nitrosodimethylamine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone a-hydroxylation and DNA methylation in rat liver. Carcinogenesis 1985; 4: 539–543.

    Article  Google Scholar 

  50. Ramsdell HS, Eaton DL. Modification of aflatoxin B 1 biotransformation in vitro and DNA binding in vivo by dietary broccoli in rats. J Toxicol Env Health 1988; 25: 269–284.

    Article  CAS  Google Scholar 

  51. Bhattacharya RK, Firozi PF. Effect of plant flavonoids on microsome catalyzed reactions of aflatoxin B 1 leading to activation and DNA adduct formation. Cancer Letters 1988; 39: 85–91.

    Article  CAS  Google Scholar 

  52. Goeger DE, Shelton DW, Hendricks JD, Bailey GS. Mechanisms of anti-carcinogenesis by indole3-carbinol: Effect on the distribution and metabolism of aflatoxin B1 in rainbow trout. Carcinogenesis 1986; 7: 2025–2031.

    Article  CAS  Google Scholar 

  53. Pantuck EJ, Pantuck CB, Anderson KE, Wattenberg LW, Conney AH, Kappas A. Effect of brussels sprouts and cabbage on drug conjugation in humans. Clin Pharmacol Ther 1984; 35: 161–169.

    Article  CAS  Google Scholar 

  54. Ovesen L, Lyduch S, Idorn ML. The effect of a diet rich in brussels sprouts on warfarin pharmacokinetics. Eur J Clin Pharmacol 1988; 33: 521–523.

    Article  Google Scholar 

  55. Bailey, DG, Spence JD, Edgar B, B ayleff CD, Arnold JM. Ethanol enchances the hemodynamic effects of felodipine. Clin Invest Med 1989; 12: 237–262.

    Google Scholar 

  56. Greenblatt DJ, Patki KC, von Moltke LL, Shader RI. Drug interactions with grapefruit juice: an update. J Clin Psychopharmacol 2001; 21 (4): 357–359.

    Article  CAS  Google Scholar 

  57. Edwards DJ, Fitzsimmons ME, Schuetz EG, et al. 6’,7’-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther 1999; 65 (3): 237–244.

    Article  CAS  Google Scholar 

  58. Fugh-Berman A. Herb-drug interactions. Lancet 2000; 355 (9198): 134–138.

    Article  CAS  Google Scholar 

  59. Fugh-Berman A, Ernst E. Herb-drug interactions: review and assessment of report reliability. Br J Clin Pharmacol 2001; 52 (5): 587–595.

    Article  CAS  Google Scholar 

  60. Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: a systematic review. Drugs 2001; 61 (15): 2163–2175.

    Article  CAS  Google Scholar 

  61. Vaes LP, Chyka PA. Interactions of warfarin with garlic, ginger, ginkgo, or ginseng: nature of the evidence. Ann Pharmacother 2000; 34 (12): 1478–1482.

    Article  CAS  Google Scholar 

  62. Engelsen J, Nielsen JD, Winther K. Effect of coenzyme Q10 and Ginkgo biloba on warfarin dosage in stable, long-term warfarin treated outpatients. A randomised, double blind, placebo-crossover trial. Thromb Haemost 2002; 87 (6): 1075–1076.

    CAS  Google Scholar 

  63. Page RL, 2nd, Lawrence JD. Potentiation of warfarin by dong quai. Pharmacotherapy 1999; 19 (7): 870–876.

    Article  Google Scholar 

  64. Chan TY. Interaction between warfarin and danshen (Salvia miltiorrhiza). Ann Pharmacother 2001; 35 (4): 501–504.

    Article  CAS  Google Scholar 

  65. Gurley BJ, Gardner SF, Hubbard MA, et al. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther 2002; 72 (3): 276–287.

    Article  CAS  Google Scholar 

  66. Henderson L, Yue QY, Bergquist C, Gerden B, Arlett P. St John’s wort (Hypericum perforatum): drug interactions and clinical outcomes. Br J Clin Pharmacol 2002; 54 (4): 349–56.

    Article  CAS  Google Scholar 

  67. Anonymous. Drug interactions with St. John’s wort. Med Lett Drugs Ther 2000; 42 (1081): 56.

    Google Scholar 

  68. Ioannides C. Pharmacokinetic interactions between herbal remedies and medicinal drugs. Xenobiotica 2002; 32 (6): 451–478.

    Article  CAS  Google Scholar 

  69. Vazquez I, Aguera-Ortiz LF. Herbal products and serious side effects: a case of ginseng-induced manic episode. Acta Psychiatr Scand 2002;105(1):76–77; discussion 77–78.

    Google Scholar 

  70. Deahl M. Betel nut-induced extrapyramidal syndrome: an unusual drug interaction. Mov Disord 1989; 4 (4): 330–332.

    Article  CAS  Google Scholar 

  71. Harada T, Ohtaki E, Misu K, Sumiyoshi T, Hosoda S. Congestive heart failure caused by digitalis toxicity in an elderly man taking a licorice-containing chinese herbal laxative. Cardiology 2002; 98 (4): 218.

    Article  Google Scholar 

  72. Brouwers AJ, van der Meulen J. [‘Licorice hypertension’ also caused by licorice tea]. Ned Tijdschr Geneeskd 2001;145(15):744–747.

    Google Scholar 

  73. Drouillard DD, Vesell ES, Dvorchik BH. Studies on theobromine disposition in normal subjects. Clin Pharmacol Ther 1978; 23: 296–302.

    CAS  Google Scholar 

  74. Shively CA, White DM, Tarka J, et al. Diet-induced alterations in theobromine disposition and toxicity in the rat. Toxicol App Pharmacol 1986; 84: 593–598.

    Article  CAS  Google Scholar 

  75. Denlinger CL, Stryker KK, Slusher LB, Vesell ES. Studies on theophylline metabolism: autoinduction and inhibition by antipyrine. Clin Pharmacol Ther 1987; 41: 522–530.

    Article  CAS  Google Scholar 

  76. Monks TJ, Caldwell J, Smith RL. Influence of methylxanthine-containing foods on theophylline metabolism and kinetics. Clin Pharmacol Ther 1979; 26: 513–524.

    CAS  Google Scholar 

  77. Fraser HS, Bulpitt CJ, Kahn C, Mould G, Mucklow JC, Dollery CT. Factors affecting antipyrine metabolism in West African villagers. Clin Pharmacol Ther 1976; 20: 369–376.

    CAS  Google Scholar 

  78. Vesell ES, Shively CA, Passananti GT. Failure of cola nut chewing to alter antipyrine disposition in normal male subjects from a small town in South Central Pennsylvania. Clin Pharmacol Ther 1979; 26: 287–293.

    CAS  Google Scholar 

  79. Carrillo JA, Herraiz AG, Ramos SI, Benitez J. Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients. J Clin Psychopharmacol 1998; 18 (4): 311–316.

    Article  CAS  Google Scholar 

  80. Pantuck EJ, Hsiao KC, Maggio A, Nakamura K, Kuntzman R, Conney AH. Effect of cigarette smoking on phenacetin metabolism. Clin Pharmacol Ther 1974; 15: 9–17.

    CAS  Google Scholar 

  81. Lajinsky W, Shubik P. Benzo(a)pyrene and other polynuclear hydrocarbons in charcoal-broiled meat. Science 1964; 145: 53–55.

    Article  Google Scholar 

  82. Pantuck EJ, Hsiao K-C, Kuntzman R, Conney AH. Intestinal metabolism of phenacetin in the rat: Effect of charcoal-broiled beef and rat chow. Science 1975; 187: 744–746.

    Article  CAS  Google Scholar 

  83. Conney AH, Pantuck EJ, Hsiao KC, et al. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1976; 20: 633–642.

    CAS  Google Scholar 

  84. Kappas A, Alvares AP, Anderson KE, et al. Effect of charcoal-broiled beef on antipyrine and theophylline metabolism. Clin Pharmacol Ther 1978; 23: 445–450.

    CAS  Google Scholar 

  85. Pantuck EJ, Hsiao K-C, Conney AH, et al. Effect of charcoal-broiled beef on phenacetin metabolism in man. Science 1976; 194: 1055–1057.

    Article  CAS  Google Scholar 

  86. Anderson KE, Schneider J, Pantuck EJ, et al. Acetaminophen metabolism in subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1983; 34: 369–374.

    Article  CAS  Google Scholar 

  87. Roe DA: Diet-drug interactions and incompatibilities. In: Hathcock JN, Coon J, eds. Nutrition and Drug Interactions. Academic Press, New York, NY, 1978, pp. 319–345.

    Chapter  Google Scholar 

  88. Cooper AJ. Tyramine and irreversible monoamine oxidase inhibitors in clinical practice. Br J Psychiatry Suppl 1989; 6: 38–45.

    Google Scholar 

  89. McCabe BJ. Dietary tyramine and other pressor amines in MAOI regimens: a review. J Am Diet Assoc 1986; 86 (8): 1059–1064.

    CAS  Google Scholar 

  90. Diamond MA, Murray RH, Schmid P. Treatment of idiopathic postural hypotension with oral tyramine (TY) and monamine oxidase inhibitor (MI). J Clin Res 1969; 17: 237.

    Google Scholar 

  91. Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D. Hypertensive episode associated with phenelzine and tap beer—a reanalysis of the role of pressor amines in beer. J Clin Psychopharmacol 1994; 14 (1): 5–14.

    Article  CAS  Google Scholar 

  92. Shulman KI, Tailor SA, Walker SE, Gardner DM. Tap (draft) beer and monoamine oxidase inhibitor dietary restrictions. Can J Psychiatry 1997; 42 (3): 310–312.

    CAS  Google Scholar 

  93. Spivak SD. Procarbazine. Ann Intern Med 1974; 81: 795–800.

    Article  Google Scholar 

  94. DiMartini A. Isoniazid, tricyclics and the iheese reaction.”Int Clin Psychopharmacol 1995; 10 (3): 197–198.

    Article  CAS  Google Scholar 

  95. Simpson GM, de Leon J. Tyramine and new monoamine oxidase inhibitor drugs. Br J Psychiatry 1989; 6: 32–37.

    Google Scholar 

  96. Amsterdam JD. A double-blind, placebo-controlled trial of the safety and efficacy of selegiline transdermal system without dietary restrictions in patients with major depressive disorder. J Clin Psychiatry 2003; 64 (2): 208–214.

    Article  CAS  Google Scholar 

  97. Elsworth JD, Glover V, Reynolds GP, et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology (Berl) 1978; 57 (1): 33–38.

    Article  CAS  Google Scholar 

  98. Bryson HM, Milne RJ, Chrisp P. Selegiline: an appraisal of the basis of its pharmacoeconomic and quality-of-life benefits in Parkinson’s disease. Pharmacoeconomics 1992; 2 (2): 118–136.

    Article  CAS  Google Scholar 

  99. Mann JJ, Aarons SF, Frances AJ, Brown RD. Studies of selective and reversible monoamine oxidase inhibitors. J Clin Psychiatry 1984; 45: 62–66.

    CAS  Google Scholar 

  100. Medical Economics Company. Physicians’ Desk Reference. Medical Economics Co., Montvale, NJ, 2001.

    Google Scholar 

  101. Roth M, Mountjoy CQ, Amrein R. Moclobemide in elderly patients with cognitive decline and depression: an international double-blind, placebo-controlled trial. Br J Psychiatry 1996; 168 (2): 149–157.

    Article  CAS  Google Scholar 

  102. Bonnet U. Moclobemide: therapeutic use and clinical studies. CNS Drug Rev 2003; 9 (1): 97–140.

    Article  CAS  Google Scholar 

  103. Tamai H, Yokoyama A, Okuyama K, et al. Comparison of cyanamide and disulfiram in effects on liver function. Alcohol Clin Exp Res 2000; 24 (4 suppl): 97–99.

    Google Scholar 

  104. Morgan BLG. Food and Drug Interaction Guide. Simon and Schuster, New York, NY, 1986.

    Google Scholar 

  105. Wolfsthal SD, Wiser TH. Chlorpropamide and an Antabuse-like reaction. Ann Intern Med 1985; 103 (1): 158.

    Article  CAS  Google Scholar 

  106. Fett DL, Vukov LF. An unusual case of severe griseofulvin-alcohol interaction. Ann Emerg Med 1994; 24 (1): 95–97.

    Article  CAS  Google Scholar 

  107. Van Tyle JH. Ketoconazole. Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacotherapy 1984; 4 (6): 343–373.

    Google Scholar 

  108. Carlsson A, Henning M, Lindberg P, et al. On the disulfiram-like effect of coprine, the pharmacologically active principle of Coprinus atramentarius. Acta Pharmacol Toxicol (Copenh) 1978; 42 (4): 292–297.

    Article  CAS  Google Scholar 

  109. Tottmar O, Lindberg P. Effects on rat liver acetaldehyde dehydrogenases in vitro and in vivo by coprine, the disulfiram-like constituent of Coprinus atramentarius. Acta Pharmacol Toxicol (Copenh) 1977; 40 (4): 476–481.

    Article  CAS  Google Scholar 

  110. Lindros KO, Badger T, Ronis M, Ingelman-Sundberg M, Koivusalo M. Phenethyl isothiocyanate, a new dietary liver aldehyde dehydrogenase inhibitor. J Pharmacol Exp Ther 1995; 275 (1): 79–83.

    CAS  Google Scholar 

  111. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP. Lack of disulfiram-like reaction with metronidazole and ethanol. Ann Pharmacother 2002; 36 (6): 971–974.

    Article  CAS  Google Scholar 

  112. Williams CS, Woodcock KR. Do ethanol and metronidazole interact to produce a disulfiram-like reaction? Ann Pharmacother 2000; 34 (2): 255–257.

    Article  CAS  Google Scholar 

  113. Tillonen J, Vakevainen S, Salaspuro V, et al. Metronidazole increases intracolonic but not peripheral blood acetaldehyde in chronic ethanol-treated rats. Alcohol Clin Exp Res 2000; 24 (4): 570–575.

    Article  CAS  Google Scholar 

  114. Lassman HB, Hubbard JW, Chen BL, Puri SK. Lack of interaction between cefpirome and alcohol. J Antimicrob Chemother 1992; 29 (suppl A): 47–50.

    Article  CAS  Google Scholar 

  115. Watanabe N, Asakawa N, Toyosawa T, et al. Effect of cefclidin and E1077, new cephalosporins, on the alcohol-metabolizing system in rats. Jpn J Antibiot 1992; 45 (4): 364–370.

    CAS  Google Scholar 

  116. Fekety FR. Safety of parenteral third-generation cephalosporins. Am J Med 1990; 88 (4A): 38S - 44S.

    Article  CAS  Google Scholar 

  117. Marcon G, Spolaor A, Scevola M, Zolli M, Carlassara GB. [Disulfiram-like effect of cefonicid: first observation]. Recenti Prog Med 1990; 81 (1): 47–48.

    CAS  Google Scholar 

  118. Saito A. Cefmetazole postmarketing surveillance in Japan. J Antimicrob Chemother 1989; 23 (suppl D): 131–139.

    Article  Google Scholar 

  119. Kitson TM. The effect of cephalosporin antibiotics on alcohol metabolism: a review. Alcohol 1987; 4 (3): 143–148.

    Article  CAS  Google Scholar 

  120. Shearer MJ, Bechtold H, Andrassy K, et al. Mechanism of cephalosporin-induced hypoprothrombinemia: relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J Clin Pharmacol 1988; 28 (1): 88–95.

    Article  CAS  Google Scholar 

  121. Uchida K, Matsubara T. Effect of flomoxef on blood coagulation and alcohol metabolism. Infection 1991; 19 (suppl 5): S284 - S295.

    Article  CAS  Google Scholar 

  122. Cohen H, Scott SD, Mackie IJ, et al. The development of hypoprothrombinaemia following antibiotic therapy in malnourished patients with low serum vitamin K1 levels. Br J Haematol 1988; 68 (1): 63–66.

    Article  CAS  Google Scholar 

  123. Breen GA, St Peter WL. Hypoprothrombinemia associated with cefmetazole. Ann Pharmacother 1997; 31 (2): 180–184.

    CAS  Google Scholar 

  124. Yang CS, Brady JF, Hong JY. Dietary effects on cytochromes P450, xenobiotic metabolism, and toxicity. FASEB J 1992; 6: 737–744.

    CAS  Google Scholar 

  125. Zannoni VG, Sato PH, Rikans LE. Diet-drug interactions and incompatibilities. In: Hathcock JN, Coon J, eds. Nutrition and Drug Interactions. Academic Press, New York, NY, 1978, pp. 347–370.

    Chapter  Google Scholar 

  126. Holloway DE, Peterson FJ. Ascorbic acid in drug metabolism. In: Roe DA, Campbell TC, eds. Drugs and Nutrients: The Interactive Effects. Marcel Dekker, New York, NY, 1984, pp. 225–295.

    Google Scholar 

  127. Horio F, Ozaki K, Kohmura M, Yoshida A, Makino S, Hayashi Y. Ascorbic acid requirement for the induction of microsomal drug-metabolizing enzymes in a rat mutant unable to synthesize ascorbic acid. J Nutr 1986; 116: 2278–2289.

    CAS  Google Scholar 

  128. Beattie AD, Sherlock S. Ascorbic acid deficiency in liver disease. Gut 1976; 17: 571–575.

    Article  CAS  Google Scholar 

  129. Smithard DJ, Langman MJS. The effect of vitamin supplementation upon antipyrine metabolism in the elderly. Br J Clin Pharmacol 1978; 5: 181–185.

    Article  CAS  Google Scholar 

  130. Ginter E, Vejmolova J. Vitamin C-status and pharmacokinetic profile of antipyrine in man. Br J Clin Pharmacol 1981; 12: 256–258.

    CAS  Google Scholar 

  131. Holloway DE, Hutton SW, Peterson FJ, Duane WC. Lack of effect of subclinical ascorbic acid deficiency upon antipyrine metabolism in man. Am J Clin Nutr 1982; 35: 917–924.

    CAS  Google Scholar 

  132. Trang JM, Blanchard J, Conrad KA, Harrison GG. The effect of vitamin C on the pharmacokinetics of caffeine in elderly men. Am J Clin Nutr 1982; 35: 487–494.

    CAS  Google Scholar 

  133. Yang CS, Yoo J-SH. Dietary effects on drug metabolism by the mixed-function oxidase system. Pharmacol Ther 1988; 38: 53–72.

    Article  CAS  Google Scholar 

  134. Houston JB. Effect of vitamin C supplement on antipyrine disposition in man. Br J Clin Pharmacol 1977; 4: 236–239.

    Article  CAS  Google Scholar 

  135. Wilson JT, Van Boxtel CJ, Alvan G, Sjoqvist F. Failure of vitamin C to affect the pharmacokinetic profile of antipyrine in man. J Clin Pharmacol 1976; 16: 265–270.

    Article  CAS  Google Scholar 

  136. Feetam CL, Leach RH, Meynell MJ. Lack of a clinically important interaction between warfarin and ascorbic acid. Toxicol Applied Pharm 1975; 31: 544–547.

    Article  CAS  Google Scholar 

  137. Houston JB, Levy G. Modification of drug biotransformation by vitamin C in man. Nature 1975; 255: 78–79.

    Article  CAS  Google Scholar 

  138. Houston JB, Levy G. Drug biotransformation interactions in man VI: Acetaminophen and ascorbic acid. J Pharm Sci 1976; 65: 1218–1221.

    Article  CAS  Google Scholar 

  139. Klawans HL, Ringel SP, Shenker DM. Failure of vitamin B6 to reverse the L-dopa effect in patients on a dopa decarboxylase inhibitor. J Neurol Neurosurg Psychiatry 1971; 34 (6): 682–686.

    Article  CAS  Google Scholar 

  140. Anderson KE, Pantuck EJ, Pantuck CB, Conney AH, Kappas A. A controlled diet reduces intraindividual variability in drug disposition (abstract). Clin Pharmacol Ther 1991; 49: 173.

    Google Scholar 

  141. Feldman CH, Hutchinson VE, Pippenger CE, Blumenfeld TA, Feldman BR, Davis WJ. Effect of dietary protein and carbohydrate on theophylline metabolism in children. Pediatrics 1980; 66: 956–962.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, K.E. (2004). Effects of Specific Foods and Non-Nutritive Dietary Components on Drug Metabolism. In: Boullata, J.I., Armenti, V.T. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-781-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-781-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5359-2

  • Online ISBN: 978-1-59259-781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics