Skip to main content

Drug-Nutrient Interactions That Impact Mineral Status

  • Chapter
Handbook of Drug-Nutrient Interactions

Part of the book series: Nutrition and Health ((NH))

  • 749 Accesses

Abstract

Concurrent administration of medications and nutrients can bring about interactions that change the absorption or metabolism of the medication or nutrient (1,2). There are many more dietary supplements and drugs that are now taken simultaneously and some interact with each other (3). Certain drugs may exhibit decreased absorption or activity as a result of chelation and adsorption. Mineral status may be altered because of decreased absorption, increased excretion, or an altered mineral metabolism (Fig. 1). The results of such interactions may be clinically insignificant or severe. This chapter discusses mineral bioavailability and absorption and reviews mineral requirements, their sources, deficiency, and toxicity signs, and normal levels in the serum (Tables 1 and 2). Drugs that will affect mineral status (Table 3) in contrast to those minerals expected to interfere with drug absorption or activity (Table 4) are reviewed. The tables in this chapter have been designed to provide a simple and practical guide for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maka D, Murphy L. Drug–nutrient interactions: a review. AACN clinical issues: Advanced practice in acute & critical care. Nutrition 2000; 11: 580–589.

    CAS  Google Scholar 

  2. Roe DA (ed.). In: Diet and Drug Interactions. Von Nostrand Reinhold, New York, NY, 1989, pp. 153–181.

    Google Scholar 

  3. Ly J, Percy L, Dhanani, S. Use of dietary supplements and their interactions with prescription drugs in the elderly. Am J Health Syst Pharm 2002; 59: 1759–1762.

    CAS  Google Scholar 

  4. Hansen C, Weiner E, Erbes HJ, Larrat V, Kaltuasser JP. Intestinal calcium absorption from different calcium preparations: influence of anion and solubility. Osteoporosis Int 1996; 6: 386–393.

    Article  CAS  Google Scholar 

  5. Fincher JH. Particle size of drugs and its relation to absorption and activity. J Pharm Sci 1968; 57: 1825–1835.

    Article  CAS  Google Scholar 

  6. Brittain HG. Effects of mechanical processing on phase composition. J Pharm Sci 2002; 7: 1573–580.

    Article  CAS  Google Scholar 

  7. Greger JL, Krashoc CL. Effects of a variety of calcium sources on mineral metabolism in anemic rats. Drug Nutrient Interactions 1988; 5: 387–394.

    CAS  Google Scholar 

  8. Wallace AW, Amsden GW. Is it really OK to take this with food? Old interactions with a new twist. J Clin Pharmacol 2002; 42: 437–443.

    Google Scholar 

  9. Scholz-Ahrens KE, Schaafsma G, van den Heuvel EG, Schrezenmeir J. Effects of prebiotics on mineral metabolism. Am J Clin Nutr 2001; 73: 459S–464S.

    CAS  Google Scholar 

  10. Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssignuier Y. Effect of soluble or partly soluble dietary fibers supplementation on absorption and balance of calcium, magnesium, iron, and zinc in healthy young men. Eur J Clin Nutr 1997; 51: 375–380.

    Article  CAS  Google Scholar 

  11. van den Heuvel EGHM, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 1999; 69: 544–548.

    Google Scholar 

  12. van den Heuvel EGHM, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme iron absorption in young, healthy men. Am J Clin Nutr 1998; 67: 445–451.

    Google Scholar 

  13. Davies NT, Nightingale R. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. Br J Nutr 1975; 34: 243–258.

    CAS  Google Scholar 

  14. Bosscher D, Van Caillie-Bertrand M, Deelstra H. Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas. Nutrition 2001; 17: 614–618.

    Article  CAS  Google Scholar 

  15. Zeyuan D, Bingying T, Xiaolin L, Jinming H, Yifeng C. Effect of green tea and black tea on the metabolisms of mineral elements in old rats. Biol Trace Elem Res 1998; 65: 75–86

    Article  CAS  Google Scholar 

  16. Gleerup A, Rossander-Hulten L, Gramatkovski E, Halberg L. Iron absorption from the whole diet: comparison of the effect of two different distributions of daily calcium intake. Am J Clin Nutr 1995; 61: 97–104.

    CAS  Google Scholar 

  17. Weaver CM, Heany RP. Calcium. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. Williams & Wilkins, Baltimore, MD, 1999, pp. 141–145.

    Google Scholar 

  18. Laaksonen M, Karkkainen M, Outila T, Vanninen T, Ray C, Lamberg-Allardt C. Vitamin D receptor gene BsmI-polymorphism in Finnish premenopausal and postmenopausal women: its association with bone mineral density, markers of bone turnover, and intestinal calcium absorption, with adjustment for lifestyle factors. J Bone Miner Metab 2002; 20: 383–390

    Article  CAS  Google Scholar 

  19. Kirkwood SC, Hockett RD Jr. Pharmacogenomic biomarkers. Dis Markers 2002; 18: 63–71.

    Article  CAS  Google Scholar 

  20. Shamberger RJ. Validity of hair mineral testing. Biol Trace Elem Res 2002; 87: 1–28.

    Article  CAS  Google Scholar 

  21. Utermohlen V. Diet, Nutrition, and Drug Interactions. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. Williams & Wilkins, Baltimore, MD, 1999, pp. 1619–1641.

    Google Scholar 

  22. Fitzgibbons LJ, Snoey ER. Severe metabolic alkalosis due to baking soda ingestion: case reports of two patients with unsuspected antacid overdose. J Emerg Med 1999; 17: 57–61.

    Article  CAS  Google Scholar 

  23. Bennett WM. Drug interactions and consequences of sodium restriction. Am J Clin Nutr 1997; 65: 678S–681S.

    CAS  Google Scholar 

  24. Stillman MT, Schlesinger PA. Nonsteroidal anti-inflammatory drug nephrotoxicity. Should we be concerned? Arch Intern Med 1990; 150: 268–270.

    Article  CAS  Google Scholar 

  25. Stachenfeld NS, Keefe DL. Estrogen effects on osmotic regulation of AVP and fluid balance. Am J Physiol Endocrinol Metab 2002; 283: E711–E721.

    CAS  Google Scholar 

  26. Kelly JJ, Mangos G, Williamson PM, Whitworth JA. Cortisol and hypertension.Clin Exp Pharmacol Physiol Suppl 1998; 25: S51–S56.

    Article  CAS  Google Scholar 

  27. Shirley DG, Singer DR, Sagnella GA, et al. Effect of a single test dose of lithium carbonate on sodium and potassium excretion in man. Clin Sci (Lond) 1991; 81: 59–63.

    CAS  Google Scholar 

  28. Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, Novarini A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 2002; 346: 77–84.

    Article  CAS  Google Scholar 

  29. Stier CT Jr, Itskovitz HD. Renal calcium metabolism and diuretics. Annu Rev Pharmacol Toxicol 1986; 26: 101–116.

    Article  Google Scholar 

  30. Silver J, Rubinger D, Friedlaender MM, Popovtzer MM. Sodium-dependent idiopathic hypercalciuria in renal-stone formers. Lancet 1983; 2: 484–486.

    Article  CAS  Google Scholar 

  31. Andoh TF, Johnson RJ, Lam T, Bennett WM. Subclinical renal injury induced by transient cyclosporine exposure is associated with salt-sensitive hypertension. Am J Transplant 2001; 1: 222–227.

    Article  CAS  Google Scholar 

  32. Navis G, Faber HJ, de Zeeuw D, de Jong PE. ACE inhibitors and the kidney. A risk-benefit assessment. Drug Saf 1996; 15: 200–211.

    Article  CAS  Google Scholar 

  33. Dorup I, Skajaa K, Clausen T, Kjeldsen K. Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br Med J (Clin Res Ed) 1988; 296: 455–458.

    Article  CAS  Google Scholar 

  34. Ponce SP, Jennings AE, Madias NE, Harrington JT. Drug-induced hyperkalemia. Medicine (Baltimore) 1985; 64: 357–370.

    CAS  Google Scholar 

  35. Food & Nutrition Board. Dietary Reference Intake for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Inst. Medicine Nat Academy Press, Washington DC, 1997: 38–50.

    Google Scholar 

  36. Reichel H, Deibert B, Geberth S, Schmidt-Gayk H, Ritz E. Frusemide therapy and intact parathyroid hormone plasma concentrations in chronic renal insufficiency. Nephrol Dial Transplant 1992; 7: 8–15.

    CAS  Google Scholar 

  37. Venkataraman PS, Han BK, Tsang RC, Daugherty CC. Secondary hyperparathyroidism and bone disease in infants receiving long-term furosemide therapy. Am J Dis Child 1983; 137: 1157–1161.

    CAS  Google Scholar 

  38. Hufnagle KG, Khan SN, Penn D, Cacciarelli A, Williams P Renal calcifications: a complication of longterm furosemide therapy in preterm infants. Pediatrics 1982; 70: 360–363.

    CAS  Google Scholar 

  39. Reusz GS, Dobos M, Vasarhelyi B, et al. Sodium transport and bone mineral density in hypercalciuria with thiazide treatment. Pediatr Nephrol 1998; 12: 30–34.

    Article  CAS  Google Scholar 

  40. LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE. Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2000; 133: 516–526.

    Article  Google Scholar 

  41. Gough H, Goggin T, Bissessar A, Baker M, Crowley M, Callaghan N. A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in out-patients with epilepsy. Q J Med 1986; 59: 569–577.

    CAS  Google Scholar 

  42. Farhat G, Yamout B, Mikati MA, Demirjian S, Sawaya R, El-Hajj Fuleihan G. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology 2002; 58: 1348–1353.

    Article  CAS  Google Scholar 

  43. Kes P, Reiner Z. Symptomatic hypomagnesemia associated with gentamicin therapy. Magnes Trace Elem 1990; 9: 54–60.

    CAS  Google Scholar 

  44. Humes HD, Sastrasinh M, Weinbert JM. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J Clin Invest 1984; 73: 134–147.

    Article  CAS  Google Scholar 

  45. Patschan D, Loddenkemper K, Buttgereit F.Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone 2001; 29: 498–505.

    Article  CAS  Google Scholar 

  46. Nordin BEC. Phosphorus. J Food Nutr 1989; 45: 62–75.

    Google Scholar 

  47. Shields HM. Rapid fall of serum phosphorus secondary to antacid therapy. Gastroenterology 1978; 75: 1137–1141.

    CAS  Google Scholar 

  48. Boutsen Y, Devogelaer JP, Malghem J, Noel H, Nagant de Deuxchaisnes C. Antacid-induced osteomalacia. Clin Rheumatol 1996; 15: 75–80.

    Article  CAS  Google Scholar 

  49. Foldes J, Balena R, Ho A, Parfitt AM, Kleerekoper M. Hypophosphatemic rickets with hypocalciuria following long-term treatment with aluminum-containing antacid. Bone 1991; 12: 67–71.

    Article  CAS  Google Scholar 

  50. al-Ghamdi SM, Cameron EC, Sutton RA. Magnesium deficiency: pathophysiologic and clinical overview. Am J Kidney Dis 1994; 24: 737–752.

    CAS  Google Scholar 

  51. Dorup I. Magnesium and potassium deficiency. Its diagnosis, occurrence and treatment in diuretic therapy and its consequences for growth, protein synthesis and growth factors. Acta Physiol Scand Suppl 1994; 618: 1–55.

    CAS  Google Scholar 

  52. Dyer SA, Sampson HW. Magnesium levels in alcohol-treated rodents using different consumption paradigms. Alcohol 1998; 16: 195–199.

    Article  CAS  Google Scholar 

  53. Bohmer T, Mathiesen B. Magnesium deficiency in chronic alcoholic patients uncovered by an intravenous loading test. Scand J Clin Lab Invest 1982; 42: 633–636.

    Article  CAS  Google Scholar 

  54. May JR. Adverse drug reactions and interactions. In Dipiro JT, Talbert RL, Hayes PE, Yee GC, Matzke CR, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach (2nd ed.) Appleton & Lange, Norwalk, 1993, pp. 71–83.

    Google Scholar 

  55. Jaing TH, Hung IJ, Chung HT, Lai CH, Liu WM, Chang KW. Acute hypermagnesemia: a rare complication of antacid administration after bone marrow transplantation. Clin Chim Acta 2002; 326: 201–203.

    Article  CAS  Google Scholar 

  56. Kivisto KT, Neuvonen PJ. Enhancement of absorption and effect of glipizide by magnesium hydroxide. Clin Pharmacol Ther 1991; 49: 39–43.

    Article  CAS  Google Scholar 

  57. Bothwell TH. Overview and mechanisms of iron regulation. Nutr Rev 1995; 53: 237–245.

    Article  CAS  Google Scholar 

  58. Goswami T, Rolfs A, Hediger MA. Iron transport: emerging roles in health and disease. Biochem Cell B iol 2002; 80: 679–689.

    Article  CAS  Google Scholar 

  59. Berdanier CD. Trace Minerals. In: Advanced Nutrition: Micronutrients. CRC Press, Boca Raton, 1998, pp. 183–219.

    Google Scholar 

  60. Macfarlane BJ, van der Riet WB, Bothwell TH, et al. Effect of traditional oriental soy products on iron absorption. Am J Clin Nutr 1990; 51: 873–880.

    CAS  Google Scholar 

  61. Philpott CC. Molecular aspects of iron absorption: Insights into the role of HFE in hemochromatosis. Hepatology 2002; 35: 993–1001.

    CAS  Google Scholar 

  62. Baynes RD, Stipanuk MH. Iron. In: Stipanuk MH, ed. Biochemical and Physiological Aspects of Human Nutrition. WB Saunders, Philadelphia, 2000, pp. 711–740.

    Google Scholar 

  63. El-Agouza I, Abu Shahla A, Sirdah M. The effect of iron deficiency anaemia on the levels of haemoglobin subtypes: possible consequences for clinical diagnosis. Clin Lab Haematol 2002; 24: 285–289.

    Article  CAS  Google Scholar 

  64. Campbell NRC, Hasinoff BB. Iron supplements: a common cause of drug interactions. Br J Clin Pharmacol 1991; 31: 251–256.

    Article  CAS  Google Scholar 

  65. Fleming DJ, Jacques PF, Massaro JM, D’Agostino RB Sr, Wilson PW, Wood RJ. Aspirin intake and the use of serum ferritin as a measure of iron status. Am J Clin Nutr 2001; 74: 219–226.

    CAS  Google Scholar 

  66. O’Neil-Cutting MA, Crosby WH. The effect of antacids on the absorption of simultaneously ingested iron. JAMA 1986; 255 (11): 1468–1470.

    Article  Google Scholar 

  67. Turnlund JR, Keyes WR, Anderson HL, Acord LL. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 1989; 49: 870–878.

    CAS  Google Scholar 

  68. Wapnir RA. Copper absorption and bioavailability. Am J Clin Nutr 1998; 67: 1054S–1060S.

    CAS  Google Scholar 

  69. Hunt JR, Vanderpool RA. Apparent copper absorption from a vegetarian diet. Am J Clin Nutr 2001; 74: 803–807.

    CAS  Google Scholar 

  70. Fischer PW, Giroux A, L’Abbe MR. The effect of dietary zinc on intestinal copper absorption. Am J Clin Nutr 1981; 34: 1670–1675.

    CAS  Google Scholar 

  71. Madaric A, Ginter E, Kadrabova J. Serum copper, zinc and copper/zinc ratio in males: influence of aging. Physiol Res 1994; 43: 107–111.

    CAS  Google Scholar 

  72. Sandstead HH. Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 1995; 61 (suppl): 62S–64S.

    Google Scholar 

  73. Sorenson JRJ. Copper chelates as possible active forms of the antiarthritic agents. J Medicinal Chem 1976; 19: 135–148.

    Article  CAS  Google Scholar 

  74. Fleet JC. Zinc, Copper and Manganese. In: Stipanuk MH, ed. Biochemical and Physiological Aspects of Human Nutrition. WB Saunders, Philadelphia, 2000, pp. 741–760.

    Google Scholar 

  75. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93: 178–193.

    Article  CAS  Google Scholar 

  76. Semrad CE. Zinc and intestinal function. Curr Gastroenterol Rep 1999; 1: 398–403.

    Article  CAS  Google Scholar 

  77. Henderson LM, Brewer GJ, Dressman JB, et al. Use of zinc tolerance test and 24–hour urinary zinc content to assess oral zinc absorption. J Am Coll Nutr 1996; 15: 79–83.

    Article  CAS  Google Scholar 

  78. Watkins DW, Khalafi R, Cassidy MM, Vahouny GV. Alterations in calcium, magnesium, iron, and zinc metabolism by dietary cholestyramine. Dig Dis Sci 1985; 30: 477–482.

    Article  CAS  Google Scholar 

  79. Hashimoto Y, Matsumoto T, Kojima A, et al. Zinc supplementation enhances the response to interferon therapy in patients with chronic hepatitis C. J Viral Hepat 2001; 8: 367–371.

    Article  Google Scholar 

  80. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 2002; 180: 5–22.

    Article  CAS  Google Scholar 

  81. Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997; 46: 1786–1791.

    Article  CAS  Google Scholar 

  82. Althuis MD, Jordan NE, Ludington EA, Wittes JT. Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr 2002; 76: 148–155.

    CAS  Google Scholar 

  83. Cerrato, P. Vitamins and minerals. RN 1997; 60: 52–56.

    CAS  Google Scholar 

  84. Kamath SM, Stoecker BJ, Davis-Whitenack ML, Smith MM, Adeleye BO, Sangiah S. Absorption, retention and urinary excretion of chromium-51 in rats pretreated with indomethacin and dosed with dimethylprostaglandin E2, misoprostol or prostacyclin. J Nutr 1997; 127: 478–482.

    CAS  Google Scholar 

  85. Ravina A, Slezak L, Mirsky N, et al. Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium. Diabet Med 1999; 16: 164–167.

    Article  CAS  Google Scholar 

  86. McLeod MN, Gaynes BN, Golden RN. Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patients. J Clin Psychiatry 1999; 60: 237–240.

    Article  CAS  Google Scholar 

  87. Tyrala EE, Borschel MW, Jacobs JR. Selenate fortification of infant formulas improves the selenium status of preterm infants. Am J Clin Nutr 1996; 64: 860–865.

    CAS  Google Scholar 

  88. Feller AG, Rudman D, Erve PR, et al. Subnormal concentrations of serum selenium and plasma carnitine in chronically tube-fed patients. Am J Clin Nutr 1987; 45: 476–483.

    CAS  Google Scholar 

  89. Williams DP, Pirmohamed M, Naisbitt DJ, et al. Neutrophil cytotoxicity of the chemically reactive metabolite(s) of clozapine: possible role in agranulocytosis. J Pharmacol Exp Ther 1997; 283: 1375–1382.

    CAS  Google Scholar 

  90. Nurge ME, Anderson CR, Bates E. Metabolic and nutritional implications of valproic acid. Nutr Res 1991; 11: 949–960.

    Article  CAS  Google Scholar 

  91. Verrotti A, Basciani F, Trotta D, Pomilio MP, Morgese G, Chiarelli F. Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy. Epilepsy Res. 2002; 48 (1–2): 71–75.

    Article  CAS  Google Scholar 

  92. Peretz AM, Neve JD, Famaey JP. Selenium in rheumatic diseases. Semin Arthritis Rheum 1991; 20: 305–316.

    Article  CAS  Google Scholar 

  93. Xiao P, Jia XD, Zhong WJ, Jin XP, Nordberg G. Restorative effects of zinc and selenium on cadmium-induced kidney oxidative damage in rats. Biomed Environ Sci 2002; 15: 67–74.

    Google Scholar 

  94. Hu Y-J, Chen Y, Zhang Y-Q, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997; 56: 331–341.

    Article  CAS  Google Scholar 

  95. Caffrey PB, Frenkel GD. Selenium compounds prevent the induction of drug resistance by cisplatin in human ovarian tumor xenografts in vivo. Cancer Chemother Pharmacol 2000; 46: 74–78.

    Article  CAS  Google Scholar 

  96. Cheung MC, Zhao XQ, Chait A, Albers JJ, Brown BG. Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol 2001; 21: 1320–1326.

    Article  CAS  Google Scholar 

  97. Food & Nutrition Board. Dietary Reference Intake for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Inst. Medicine Nat Academy Press, Washington DC, 1997, pp. 288–313.

    Google Scholar 

  98. Ekstrand J, Ehrnebo M. Absorption of fluoride from fluoride dentifrices. Caries Res 1980; 14: 96–102.

    Article  CAS  Google Scholar 

  99. Ekstrand J, Ziegler EE, Nelson SE, Fomon SJ. Absorption and retention of dietary and supplemental fluoride by infants. Adv Dent Res 1994; 8: 175–180.

    CAS  Google Scholar 

  100. Spak CJ, Ekstrand J, Zylberstein D. Bioavailability of fluoride added by baby formula and milk. Caries Res 1982; 16: 249–256.

    Article  CAS  Google Scholar 

  101. Bentley EM, Ellwood RP, Davies RM. Fluoride ingestion from toothpaste by young children. Br Dent J 1999; 186: 460–462.

    CAS  Google Scholar 

  102. Burt BA. The changing patterns of systemic fluoride intake. J Dent Res 1992; 71: 1228–1237.

    Article  CAS  Google Scholar 

  103. Fomon SJ, Ekstrand J, Ziegler EE. Fluoride intake and prevalence of dental fluorosis: trends in fluoride intake with special attention to infants. J Public Health Dent 2000; 60: 131–139.

    Article  CAS  Google Scholar 

  104. Savas S, Cetin M, Akdogan M, Heybeli N. Endemic fluorosis in Turkish patients: relationship with knee osteoarthritis. Rheumatol Int 2001; 21: 30–35.

    Article  CAS  Google Scholar 

  105. Alexandersen P, Riis BJ, Christiansen C. Monofluorophosphate combined with hormone replacement therapy induces a synergistic effect on bone mass by dissociating bone formation and resorption in postmenopausal women: a randomized study. J Clin Endocrinol Metab 1999; 84: 3013–3020.

    Article  CAS  Google Scholar 

  106. Davis BA, Raubertas RF, Pearson SK, Bowen WH. The effects of benzoate and fluoride on dental caries in intact and desalivated rats.Caries Res 2001; 35: 331–337.

    CAS  Google Scholar 

  107. Hendler SS. Rorvik D. In PDR for Nutritional Supplements, (1 st ed.), Thompson, Montvale, NJ, 2001 pp. 761–781.

    Google Scholar 

  108. Freake, HC. Iodine. In Stipanuk MH, Biochemical and Physiological Aspects of Human Nutrition. WB Saunders, Philadelphia, 2000.

    Google Scholar 

  109. Eaton SE, Euinton HA, Newman CM, Weetman AP, Bennet WM. Clinical experience of amiodaroneinduced thyrotoxicosis over a 3–year period: role of colour-flow Doppler sonography. Clin Endocrinol (Oxf) 2002; 56: 33–38.

    Article  CAS  Google Scholar 

  110. Loh KC. Amiodarone-induced thyroid disorders: a clinical review. Postgrad Med J 2000; 76: 133–140.

    Article  CAS  Google Scholar 

  111. Nobukuni K, Hayakawa N, Namba R, et al. The influence of long-term treatment with povidone-iodine on thyroid function. Dermatology 1997; 195 (suppl 2): 69–72

    Article  Google Scholar 

  112. Bogazzi F, Bartalena L, Campomori A, et al. Treatment with lithium prevents serum thyroid hormone increase after thionamide withdrawal and radioiodine therapy in patients with Graves’ disease. J Clin Endocrinol Metab 2002; 87: 4490–4495.

    Article  CAS  Google Scholar 

  113. Borello S, DeLeo ME, Galeotti T. Transcriptional regulation of MnSOD by manganese in the liver of manganese deficient mice and during rat development, Biochem. Int 1992; 28: 595–561.

    Google Scholar 

  114. Ragheb M. The clinical significance of lithium-nonsteroidal anti-inflammatory drug interactions. J Clin Psychopharmacol 1990; 10: 350–354.

    CAS  Google Scholar 

  115. No authors listed] Thimerosal in vaccines: a joint statement of the American Academy of Pediatrics and the Public Health Service. MMWR 1999;48:563–565.

    Google Scholar 

  116. Ball LK, Ball R, Pratt RD. An assessment of thimerosal use in childhood vaccines. Pediatrics 2001; 107: 1147–1154.

    Article  CAS  Google Scholar 

  117. Gelband H. The science and politics of dental amalgam. Int J Technol Assess Health Care 1998; 14: 123–134.

    Article  CAS  Google Scholar 

  118. Gonzalez-Reimers E, Aleman-Valls MR, Barroso-Guerrero F, et al. Hair zinc and copper in chronic alcoholics. Biol Trace Elem Res 2002; 85: 269–275.

    Article  CAS  Google Scholar 

  119. Lecomte E, Herbeth B, Pirollet P, et al. Effect of alcohol consumption on blood antioxidant nutrients and oxidative stress indicators. Am J Clin Nutr 1994; 60: 255–261.

    CAS  Google Scholar 

  120. Van Gossum A, Neve J. Low selenium status in alcoholic cirrhosis is correlated with aminopyrine breath test. Preliminary effects of selenium supplementation. Biol Trace Elem Res 1995; 47: 201–207.

    Google Scholar 

  121. Gullestad L, Dolva LO, Soyland E, Manger AT, Falch D, Kjekshus J.Oral magnesium supplementation improves metabolic variables and muscle strength in alcoholics. Alcohol Clin Exp Res 1992; 16: 986–990.

    Article  CAS  Google Scholar 

  122. Rylander R, Megevand Y, Lasserre B, Amstutz W, Granbom S. Moderate alcohol consumption and urinary excretion of magnesium and calcium. Scand J Clin Lab Invest 2001; 61: 401–405.

    Article  CAS  Google Scholar 

  123. Bjorneboe GE, Bjorneboe A, Johnsen J, et al. Calcium status and calcium-regulating hormones in alcoholics. Alcohol Clin Exp Res 1988; 12: 229–232.

    Article  CAS  Google Scholar 

  124. Harris SS, Dawson-Hughes B. Caffeine and bone loss in healthy postmenopausal women.Am J Clin Nutr 1994; 60: 573–578.

    CAS  Google Scholar 

  125. Ilich JZ, Kerstetter JE.Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 2000; 19: 715–737.

    Article  CAS  Google Scholar 

  126. Mahr G, Sorgel F, Granneman GR, et al. Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine. Clin Pharmacokinet 1992; 22: 90–97.

    Article  CAS  Google Scholar 

  127. Preston AM. Cigarette smoking-nutritional implications. Prog Food Nutr Sci 1991; 15: 183–217.

    CAS  Google Scholar 

  128. Goodman GE, Schaffer S, Bankson DD, Hughes MP, Omenn GS. Predictors of serum selenium in cigarette smokers and the lack of association with lung and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2001; 10: 1069–1076.

    CAS  Google Scholar 

  129. Hunter DJ, Morris JS, Chute CG, Kushner E, Colditz GA, Stampfer MJ, Speizer FE, Willett WC. Predictors of selenium concentration in human toenails. Am J Epidemiol 1990; 132: 114–122.

    CAS  Google Scholar 

  130. Krall EA, Dawson-Hughes B. Smoking and bone loss among postmenopausal women. J Bone Miner Res. 1991; 6: 331–338.

    Article  CAS  Google Scholar 

  131. Hollenbach KA, Barrett-Connor E, Edelstein SL, Holbrook T. Cigarette smoking and bone mineral density in older men and women. Am J Public Health 1993; 83: 1265–1270.

    Article  CAS  Google Scholar 

  132. Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 2001; 68: 259–270.

    Article  CAS  Google Scholar 

  133. Subar AF, Harlan LC, Mattson ME. Food and nutrient intake differences between smokers and nonsmokers in the US. Am J Public Health 1990; 80: 1323–1329.

    Article  CAS  Google Scholar 

  134. Wu T, Buck G, Mendola P.Maternal cigarette smoking, regular use of multivitamin/mineral supplements, and risk of fetal death: the 1988 National Maternal and Infant Health Survey. Am J Epidemiol 1998; 148: 215–221.

    Article  CAS  Google Scholar 

  135. Trewby PN, Kalfayan PY, Elkeles RS. Heroin and hyperkalaemia. Lancet 1981; 1: 327.

    Article  CAS  Google Scholar 

  136. Pearce CJ, Cox JG. Heroin and hyperkalaemia. Lancet 1980; 2: 923.

    Article  CAS  Google Scholar 

  137. Mohs ME, Watson RR, Leonard-Green T. Nutritional effects of marijuana, heroin, cocaine, and nicotine. J Am Diet Assoc 1990; 90: 1261–1267.

    CAS  Google Scholar 

  138. Watson RR, Mohs ME. Effects of morphine, cocaine, and heroin on nutrition. Prog Clin Biol Res 1990; 325: 413–418.

    CAS  Google Scholar 

  139. Farrow JA, Rees JM, Worthington-Roberts BS.Health, developmental, and nutritional status of adolescent alcohol and marijuana abusers. Pediatrics 1987; 79: 218–223.

    CAS  Google Scholar 

  140. Field MP, Cifuentes M, Sherrell RM, Shapses SA Determination of Ca isotope ratios in metabolic studies using sector field HR-ICP-MS. International Bone and Mineral Society and the European Calcified Tissue Society 2001; 28: S173.

    Google Scholar 

  141. Isolauri E. Probiotics in human disease. Am J Clin Nutr 2001; 73: 1142S–1146S.

    CAS  Google Scholar 

  142. Linjakumpu T, Hartikainen S, Klaukka T, Veijola J, Kivela SL, Isoaho R. Use of medications and polypharmacy are increasing among the elderly. J Clin Epidemiol 2002; 55: 809–817.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shapses, S.A., Schlussel, Y.R., Cifuentes, M. (2004). Drug-Nutrient Interactions That Impact Mineral Status. In: Boullata, J.I., Armenti, V.T. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-781-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-781-9_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5359-2

  • Online ISBN: 978-1-59259-781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics