Skip to main content

Nutrients That May Optimize Drug Effects

  • Chapter

Part of the book series: Nutrition and Health ((NH))

Abstract

Drug-nutrient interactions (DNIs) are often the result of physical and chemical interactions between drugs and nutrients. These interactions are influenced by several factors that can be defined as either physical-chemical properties (e.g., pH, dissolution, disintegration, binding) or physiological determinants (e.g., absorption and elimination process, gastrointestinal [GI] transit time, GI secretions, splanchnic blood flow, liver enzyme inhibition, or induction) (1,2). Clinically significant DNIs may result in therapeutic failure, drug toxicity, or nutrient deficiency. Less commonly considered, DNIs may even enhance drug effect. This chapter focuses on some clinically relevant DNIs that result in a beneficial increase of drug effect or reduction of drug toxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet 1999; 36: 233–254.

    CAS  Google Scholar 

  2. Schmidt LE, Dalhoff K. Food-drug interactions. Drugs 2002; 62: 1481–1502.

    CAS  Google Scholar 

  3. Edwards G, Breckenridge AM. Clinical pharmacokinetics of anthelmintic drugs. Clin Pharmacokinet 1988; 15: 67–93.

    CAS  Google Scholar 

  4. SmithKline Beecham Pharmaceuticals. Albenza package insert. Philadelphia, PA, 1999.

    Google Scholar 

  5. Lange H, Eggers R, Bircher J. Increased systemic availability of albendazole when taken with fatty meal. Eur J Clin Pharmacol 1988; 34: 315–317.

    CAS  Google Scholar 

  6. Awadzi K, Hero M, Opoku NO, et al. The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics. Trop Med Parasitol 1994; 45: 203–208.

    CAS  Google Scholar 

  7. Marriner SE, Morris DL, Dickson B, et al. Pharmacokinetics of albendazole in man. Eur J Clin Pharmacol 1986; 30: 705–708.

    CAS  Google Scholar 

  8. GlaxoSmithKline. Mepron package insert. Research triangle Park, NC, 1999.

    Google Scholar 

  9. Rolan PE, Mercer AJ, Weatherley BC, et al. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 1994; 37: 13–20.

    CAS  Google Scholar 

  10. Freeman CD, Klutman NE, Lamp KC, et al. Relative bioavailability of atovaquone suspension when administered with an enteral nutrition supplement. Ann Pharmacother 1998; 32: 1004–1007.

    CAS  Google Scholar 

  11. Falloon J, Sargent S, Piscitelli SC, et al. Atovaquone suspension in HIV-infected volunteers: pharmacokinetics, pharmacodynamics, and TMP-SMX interaction study. Pharmacotherapy 1999; 19: 1050–1056.

    CAS  Google Scholar 

  12. Dixon R, Pozniak AL, Watt HM, et al. Single-dose and steady-state pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob Agents Chemother 1996; 40: 556–560.

    CAS  Google Scholar 

  13. Scott LJ, Ormrod D, Goa KL. Cefuroxime axetil: an updated review of its use in the management of bacterial infections. Drugs 2001; 61: 1455–1500.

    CAS  Google Scholar 

  14. GlaxoSmithKline. Ceftin package insert. Research Triangle Park, NC, 2002.

    Google Scholar 

  15. Emmerson AM. Cefuroxime axetil. J Antimicrob Chemother 1988; 22: 101–104.

    CAS  Google Scholar 

  16. Williams PE, Harding SM. The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J Antimicrob Chemother 1984; 13: 191–196.

    CAS  Google Scholar 

  17. Finn A, Straughn A, Meyer M, et al. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Dispo 1987; 8: 519–526.

    CAS  Google Scholar 

  18. James NC, Donn KH, Collins JJ, et al. Pharmacokinetics of cefuroxime axetil and cefaclor: relationship of concentrations in serum to MICs for common respiratory pathogens. Antimicrob Agents Chemother 1991; 35: 1860–1863.

    CAS  Google Scholar 

  19. Ginsburg CM, McCracken Jr GH, Petruska M, et al. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother 1985; 28: 504–507.

    CAS  Google Scholar 

  20. Sommers DK, Van Wyk M, Moncrieff J. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharmacol 1984; 18: 535–539.

    CAS  Google Scholar 

  21. Garraffo R, Drugeon HB, Chiche D. Pharmacokinetics and pharmacodynamics of two oral forms of cefuroxime axetil. Fundamen Clin Pharmacol 1997; 11: 90–95.

    CAS  Google Scholar 

  22. Rowland M, Riegelman S, Epstein WL. Absorption kinetics of griseofulvin in man. J Pharm Sci 1968; 57: 984–989.

    CAS  Google Scholar 

  23. Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol 1961; 37: 529.

    CAS  Google Scholar 

  24. Aoyagi N, Ogata H, Kaniwa N, et al. Effect of food on the bioavailability of griseofulvin from microsize and PEG ultramicrosize (GIRS-PEG®) plain tablets. J Pharm Dyn 1982; 4: 120–124.

    Google Scholar 

  25. Ogunbona FA, Smith IF, Olawoye OS, et al. Fat contents of meals and bioavailability of griseofulvin in man. J Pharm Pharmacol 1985; 37: 283–284.

    CAS  Google Scholar 

  26. Kabasakalian P, Katz M, Rosenkrantz B, et al. Parameters affecting absorption of griseofulvin in a human subject using urinary metabolite excretion data. J Pharm Sci 1970; 59: 595–600.

    CAS  Google Scholar 

  27. Roche Laboratories. Accutane package insert. Nutley, NJ, 2002.

    Google Scholar 

  28. Colburn WA, Gibson DM, Wiens RE, et al. Food increases the bioavailability of isotretinoin. J Clin Pharmacol 1983; 23: 534–539.

    CAS  Google Scholar 

  29. Janssen Pharmaceutica. Sporanox package insert. Titusville, NJ, 2002.

    Google Scholar 

  30. van de Velde VJ, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996; 16: 424–428.

    Google Scholar 

  31. De Beule K, Ven Gestel J. Pharmacology of itraconazole. Drugs 2001; 61 (1): 27–37.

    Google Scholar 

  32. van Peer A, Woestenborghs R, Heykants J, et al. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol 1989; 36: 423–426.

    Google Scholar 

  33. Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993; 37: 778–784.

    CAS  Google Scholar 

  34. Barone JA, Moskovitz BL, Guarnieri J, et al: Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 1998; 18: 295–301.

    CAS  Google Scholar 

  35. Stevens DA. Itraconazole in cyclodextrin solution. Pharmacotherapy 1999; 19: 603–611.

    CAS  Google Scholar 

  36. Barone JA, Moskovitz BL, Guarnieri J, et al. Enhanced bioavailability of itraconazole in hydroxypropylß-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 1998; 42: 1862–1865.

    CAS  Google Scholar 

  37. Lange D, Pavao JH, Wu J, et al. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol 1997; 37: 535–540.

    CAS  Google Scholar 

  38. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997; 52: 235–237.

    CAS  Google Scholar 

  39. Cartledge JD, Midgely J, Gazzard BG. Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. J Clin Pathol 1997; 50: 477–480.

    CAS  Google Scholar 

  40. Munst GJ, Karlaganis G, Bircher J. Plasma concentrations of mebendazole during treatment echinococcosis: preliminary results. Eur J Clin Pharmacol 1980; 17: 375–378.

    CAS  Google Scholar 

  41. Dawson M, Watson TR. The effect of dose form on the bioavailability of mebendazole in man. Br J Clin Pharmacol 1985; 19: 87–90.

    CAS  Google Scholar 

  42. Bekhti A. Serum concentrations of mebendazole in patients with hydatid disease. Int J Clin Pharmacol Ther Toxicol 1985; 23: 633–641.

    CAS  Google Scholar 

  43. Janssen Pharmaceutica. Vermox package insert. Titusville, NJ, 1999.

    Google Scholar 

  44. Pharmacia. Cytotec package insert. Morpeth, England, 2002.

    Google Scholar 

  45. Karim A, Rozek LF, Smith ME, et al. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J Clin Pharmacol 1989; 29: 439–443.

    CAS  Google Scholar 

  46. Rutgeerts P, Vantrappen G, Hiele M, et al. Effects on bowel motility of misoprostol administered before and after meals. Alimen Pharmacol Ther 1991; 5: 533–542.

    CAS  Google Scholar 

  47. Gleckman R, Alvarez S, Joubert D. Drug therapy reviews: nitrofurantoin. Am J Hosp Pharm 1979; 36: 342–351.

    CAS  Google Scholar 

  48. Dramer DL, Dodd MC. The mode of action of nitrofurantoin compounds. J Bacteriol 1946; 51: 293–303.

    Google Scholar 

  49. Lorian V, Popoola B. The effect of nitrofurantoin on the morphology of gram-negative bacilli. J Infect Dis 1972; 125: 187–188.

    CAS  Google Scholar 

  50. Procter and Gamble Pharmaceuticals. Macrobid package insert. Cincinnati, OH, 2002.

    Google Scholar 

  51. Procter and Gamble Pharmaceuticals. Macrodantin package insert. Cincinnati, OH, 2002.

    Google Scholar 

  52. Procter and Gamble Pharmaceuticals. Furadantin package insert. Cincinnati, OH, 1999.

    Google Scholar 

  53. Dunn BL, Stamey TA. Antibacterial concentrations in prostatic fluid, 1- nitrofurantoin. J Urol 1967; 97: 505–507.

    CAS  Google Scholar 

  54. Conklin JD. Biopharmaceutics of nitrofurantoin. Pharmacology 1972; 8: 178–181.

    CAS  Google Scholar 

  55. Conklin JD. The pharmacokinetics of nitrofurantoin and its related bioavailability. Antibiot Chemother 1978; 25: 233–252.

    CAS  Google Scholar 

  56. Bates TR, Sequeira JA, Tembo AV. Effect of food on nitrofurantoin absorption. Clin Pharmacol Ther 1974; 16: 63–68.

    CAS  Google Scholar 

  57. Rosenberg HA, Bates TR. The influence of food on nitrofurantoin bioavailability. Clin Pharmacol Ther 1976; 20: 227–232.

    CAS  Google Scholar 

  58. Paul HE, Hayes KJ, Paul MF, et al. Laboratory studies with nitrofurantoin, relationship between crystal size, urinary excretion in the rat and man, and emesis in dogs. J Pharm Sci 1967; 56: 882–885.

    CAS  Google Scholar 

  59. Hailey FJ, Glascock HW. Gastrointestinal tolerance to a new macrocrystalline form of nitrofurantoin: a collaborative study. Curr Ther Res Clin Exp 1967; 9: 600–605.

    CAS  Google Scholar 

  60. Shirley SW, Ozog LS. Improved gastrointestinal tolerance to nitrofurantoin in the macrocrystalline form. Urol Dig 1970; 9: 8–10.

    Google Scholar 

  61. Kaslowski S, Radford N, Kincaid-Smith P. Crystalline and macrocrystalline nitrofurantoin in the treatment of urinary tract infection. N Engl J Med 1974; 280: 385–387.

    Google Scholar 

  62. Roche Pharmaceuticals. Invirase package insert. Nutley, NJ, 2000.

    Google Scholar 

  63. Roche Pharmaceuticals. Fortovase package insert. Nutley, NJ, 2000.

    Google Scholar 

  64. Muirhead GH, Shaw TJ, Williams PEO, et al. Pharmacokinetics of the HIV- proteinase inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers. Proceedings of the BPS, April 8–10, 1992, pp. 170P - 171 P.

    Google Scholar 

  65. Kenyon CJ, Brown F, McClelland GR, et al. The use of Pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor (saquinavir). Pharm Res 1998; 15: 417–422.

    CAS  Google Scholar 

  66. Hallberg L. Bioavailability of dietary iron in man. Ann Rev Nutr 1981; 1: 123–147.

    CAS  Google Scholar 

  67. Harju E. Clinical pharmacokinetics of iron preparations. Clin Pharmacokinet 1989; 17: 69–89.

    CAS  Google Scholar 

  68. Sayers MH, Lynch SR, Jacobs P, et al. The effect of ascorbic acid supplementation on the absorption of iron in maize, wheat and soy. Br J Hematol 1973; 31: 367–375.

    Google Scholar 

  69. Hallberg L, Brune M, Rossander L. Hum Nutr Appl Nutr 1986; 40: 97–113.

    CAS  Google Scholar 

  70. Hallberg L, Brune M, Rossander L. Int J Vit Nutr Res 1989; 30: 103–108.

    CAS  Google Scholar 

  71. Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytates. Am J Clin Nutr 1989; 49: 140–144.

    CAS  Google Scholar 

  72. Reddy NR. Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK, eds. Food Phytates. CRC Press, Boca Raton, FL, 2002, pp. 25–51.

    Google Scholar 

  73. Sharma DC, Mathur R. Correction o f anemia and iron deficiency in vegetarians by administration of ascorbic acid. Indian J Physiol Pharmacol 1995; 39: 403–406.

    CAS  Google Scholar 

  74. Cook JD, Monsen ER. Vitamin C, the common cold and iron absorption. Am J Clin Nutr 1977; 30: 235–241.

    CAS  Google Scholar 

  75. Hunt JR, Mullen LM, Lykken GI, et al. Ascorbic acid: effect on ongoing iron absorption and status in iron-depleted young women. Am J Clin Nutr 1990; 51: 649–655.

    CAS  Google Scholar 

  76. Seshadri S, Shah A, Bhade S. Haematologic response of anaemic preschool children to ascorbic acid supplementation. Hum Nutr Appl Nutr 1985; 39: 151–154.

    CAS  Google Scholar 

  77. Xu M, Gushi Y. Effect of vitamin C supplementations on iron deficiency anemia in Chinese children. Biomed Environ Sci 1992; 5: 125–129.

    Google Scholar 

  78. Derman DP, Bothwell TH, Torrance JD, et al. Iron absorption from ferritin and ferric hydroxide. Scand J Haematol 1982; 29: 18–24.

    CAS  Google Scholar 

  79. Ballot D, Baynes RD, Bothwell TH, et al. The effects of fruit juices and fruits on the absorption of iron from a rice meal. Br J Nutr 1987; 57: 331–343.

    CAS  Google Scholar 

  80. Hurrell R. How to ensure adequate iron absorption from iron-fortified food. Nutr Rev 2002;60: 7–15.

    Google Scholar 

  81. Baird IM, Walters RL, Sutton DR. Absorption of slow release iron and effects of ascorbic acid in normal subjects and after partial gastrectomy. Br Med J 1974; 4: 505–508.

    CAS  Google Scholar 

  82. Goldman AL, Braman SS. Isoniazid: a review with emphasis on adverse effects. Chest 1972; 62: 71–77.

    CAS  Google Scholar 

  83. Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA 1954; 156: 1549–1552.

    CAS  Google Scholar 

  84. Snider DE. Pyridoxine supplementation during isoniazid therapy. Tubercle 1980; 61: 191–196.

    Google Scholar 

  85. Pallone KA, Goldman MP, Fuller MA. Isoniazid-associated psychosis: case report and review of the literature. Ann Pharmacother 1993; 27: 167–170.

    CAS  Google Scholar 

  86. Figg WD. Peripheral neuropathy in HIV patients after isoniazid therapy initiated. Letter. DICP 1991; 25: 100–101.

    CAS  Google Scholar 

  87. Siskind MS, Thienemann D, Kirlin L. Isoniazid-induced neurotoxicity in chronic dialysis patients: report of three cases and review of the literature. Nephron 1993; 64: 303–306.

    CAS  Google Scholar 

  88. Alao AO, Yolles JC. Isoniazid-induced psychosis. Ann Pharmacother 1998; 32: 889–891.

    CAS  Google Scholar 

  89. Asnis DS, Bhat JG, Melchert AF. Reversible seizures and mental status changes in a dialysis patient on isoniazid preventive therapy. Ann Pharmacother 1993; 27: 444–446.

    CAS  Google Scholar 

  90. Gilhotra R, Malik K, Singh S, et al. Acute isoniazid toxicity: report of 2 cases and review of the literature. Int J Clin Pharmacol Ther Toxicol 1987; 25: 259–261.

    CAS  Google Scholar 

  91. Yarbrough BE, Wood JD. Isoniazid overdose treated with high-dose pyridoxine. Ann Emerg Med 1983; 12: 303–305.

    CAS  Google Scholar 

  92. Anonymous. American Thoracic Society and the Centers for Disease Control. Treatment of tuberculosis and tuberculosis infection in adults and children. Am Rev Respir Dis 1986; 1986; 134: 355–363.

    Google Scholar 

  93. Girling DJ. Adverse effects of antituberculosis drugs. Drugs 1982; 23: 56–74.

    CAS  Google Scholar 

  94. Nisar M, Watkin SW, Bucknall RC. Exacerbation of isoniazid-induced peripheral neuropathy by pyridoxine. Thorax 1990; 45: 419–420.

    CAS  Google Scholar 

  95. Pellock JM, Howell J, Kending EL, et al. Pyridoxine deficiency in children treated with isoniazid. Chest 1985; 87: 658–661.

    CAS  Google Scholar 

  96. Taketomo CK, Hodding JH, Kraus DM, eds. Pyridoxine. Pediatric Dosage Handbook. 7th ed. LexiComp, Hudson, OH, 2000, pp. 857–859.

    Google Scholar 

  97. Bannwarth B, Labat L, Moride Y, et al. Methotrexate in rheumatoid arthritis. An update. Drugs 1994; 47: 25–50.

    CAS  Google Scholar 

  98. Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001; 60: 729–735.

    CAS  Google Scholar 

  99. Lederle. Methotrexate package insert. Pearl River, NY, 2002.

    Google Scholar 

  100. Oritz Z, Shea B, Suarez-Almazor ME, et al. The efficacy of folic acid and folinic acid in reducing methotrexate gastrointestinal toxicity in rheumatoid arthritis. A metaanalysis of randomized controlled trials. J Rheumatol 1998; 25: 36–43.

    Google Scholar 

  101. Morgan SL, Baggott JE, Vaughn WH, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo controlled trial. Ann Intern Med 1994; 121: 833–841.

    CAS  Google Scholar 

  102. Dijkmans BAC. Folate supplementation and methotrexate. Br J Rheumatol 1995; 34: 1172–1174.

    CAS  Google Scholar 

  103. Shiroky JB, Neville C, Esdaile JM, et al. Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 1993; 36: 795–803.

    CAS  Google Scholar 

  104. Tishler M, Caspi D, Fishel B, et al. The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum 1988; 31: 906–908.

    CAS  Google Scholar 

  105. Morgan SL, Baggott JE, Lee JY, et al. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during long term, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol 1998; 25: 441–446.

    CAS  Google Scholar 

  106. van Ede AE, Laan RFJM, Blom HJ, et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology 2002; 41: 658–665.

    Google Scholar 

  107. Arnesen E, Refsum H, Bonaa KH, et al. Serum total homocysteine and coronary artery disease. Int J Epidemiol 1995; 24: 704–709.

    CAS  Google Scholar 

  108. Morgan SL, Baggott JE, Vaughn WH, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1990; 33: 9–18.

    CAS  Google Scholar 

  109. Jobanputra P, Hunter M, Clark D, et al. An audit of methotrexate and folic acid for rheumatoid arthritis, experience from a teaching center. Br J Rheumatol 1995; 34: 971–975.

    CAS  Google Scholar 

  110. Bressolle F, Kinowski JM, Morel J, et al. Folic acid alters methotrexate availability in patients with rheumatoid arthritis. J Rheumatol 2000; 27: 2110–2114.

    CAS  Google Scholar 

  111. Ortiz Z, Shea B, Suarez-Alamazor ME, et al. The efficacy of folic acid and folinic acid in reducing methotrexate gastrointestinal toxicity in rheumatoid arthritis. A metaanalysis of randomized controlled trials. J Rheumatol 1998; 25: 36–43.

    CAS  Google Scholar 

  112. van Ede AE, Laan RF, Rood MJ, et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001; 44: 1515–1524.

    Google Scholar 

  113. Doube A. Folic acid supplementation prevents deficient blood. Letter. J Rheumatol 1988; 25: 2473.

    Google Scholar 

  114. Lorenzi AR, Johnson AH, Gough A. Daily folate supplementation is adequate prophylaxis against methotrexate-induced nausea and vomiting and avoids the need for expensive ant-emetic prescription. Letter. Rheumatology 2000; 39: 812–813.

    CAS  Google Scholar 

  115. Strand V, Morgan SL, Baggott, et al. Folic acid supplementation and methotrexate efficacy: comment on articles by Schiff, Emery et al, and others. Letter. Arthritis Rheum 2000; 43: 2615–2616.

    CAS  Google Scholar 

  116. Thomas DM, Zalcberg JR. 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin Exp Pharmacol Physiol 1998; 25: 887–895.

    CAS  Google Scholar 

  117. Grogan L, Sotos GA, Allegra CJ. Leucovorin modulation of fluorouracil. Oncology (Huntington) 1993; 7: 63–72.

    CAS  Google Scholar 

  118. Parchure M, Ambaye RY, Gokhale S V. Combination of anticancer agents with folic aid in the treatment of murine leukemia P388. Chemotherapy 1984; 30: 119–124.

    CAS  Google Scholar 

  119. Schmitz JC, Stuart RK, Priest DG. Disposition of folic acid and its metabolites: a comparison with leucovorin. Clin Pharmacol Ther 1994; 55: 501–508.

    CAS  Google Scholar 

  120. Asbury RF, Boros L, Brower M, et al. 5-Fluorouracil and high-dose folic acid treatment for metastatic colon cancer. Am J Clin Oncol 1987; 10: 47–49.

    CAS  Google Scholar 

  121. Gensia Sicor Pharmaceuticals. Leucovorin Calcium package insert. Irvine, CA, 1998.

    Google Scholar 

  122. Hallikainen MA, Sarkkinen ES, Gylling H, et al. Comparison of the effects of plant sterol ester and plant stanol ester-enriched margarines in lowering serum cholesterol concentrations in hypercholesterolaemic subjects on a low-fat diet. Eur J Clin Nutr 2000; 54: 715–25.

    CAS  Google Scholar 

  123. Nestel P, Cehun M, Pomeroy S, et al. Cholesterol-lowering effects of plant sterol esters and nonesterified stanols in margarine, butter and low-fat foods. Eur J Clin Nutr 2001; 55: 1084–1090.

    CAS  Google Scholar 

  124. Nguyen TT. The cholesterol lowering action of plant stanol esters. J Nutr 1999; 129: 2109–2112.

    CAS  Google Scholar 

  125. Stein EA. Managing dyslipidemia in the high risk patient. Am J Cardiol 2002; 89 (suppl): 50C - 57C.

    Google Scholar 

  126. Blair SN, Capuzzi DM, Gottlieb SO, et al. Incremental reduction of serum total cholesterol and low-density lipoprotein cholesterol with the addition of plant stanol ester-containing spread to statin therapy. Am J Cardiol 2000; 86: 46–52.

    CAS  Google Scholar 

  127. Turley SD. State of the art in cholesterol management: targeting multiple pathways. Am J Manag Care 2002; 8: 29–32.

    Google Scholar 

  128. Dujovne CA, Ettinger MP, McNeer JF, et al. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol 2002; 90: 1092–1097.

    CAS  Google Scholar 

  129. Gagné C, Bays HE, Weiss SR, et al. Efficacy and safety of ezetimibe added to ongoing statin therapy for treatment of patients with primary hypercholesterolemia. Am J Cardiol 2002; 90: 1084–1091.

    Google Scholar 

  130. Merck and Co. and Schering-Plough Corp. Zetia package insert. Kenilworth, NJ, 2002.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Btaiche, I.F., Kraft, M.D. (2004). Nutrients That May Optimize Drug Effects. In: Boullata, J.I., Armenti, V.T. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-781-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-781-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5359-2

  • Online ISBN: 978-1-59259-781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics