Skip to main content

Abstract

Human beings are exposed to two sources of radiation in the environment: natural and man-made. Natural sources include radioactive radon, radioisotopes with a long half-life, such as potassium in the body, cosmic rays (energetic γ-rays and particles from the sun and interstellar space), and some rocks. Various sources of artificial radiation include medical X-rays, nuclear medicine for cancer treatment, and some consumer products containing radioisotopes. Natural sources of radiation account for 82% of total exposure for humans. A common radioactive element is radium, one of whose decay products, radon, poses health concerns. Radon emanates from rock, soil, and underground water as a gas. In the solar system, various radioisotopes of radon gas form from decay of radioactive uranium and thorium elements found naturally. The contributing effects from natural and man-made radiation sources on human beings is shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Friedlander, J. W. Kennedy, E. S. Macias, et al., Nuclear and Radiochemistry, Wiley, New York, 1981.

    Google Scholar 

  2. E. Steinnes, in Geomedicine (J. Lag, ed.), CRC, Boca Raton, FL, 1990, pp. 163–169.

    Google Scholar 

  3. R. H. Clarke and T. R. E. Southwood, Nature 338, 197–198 (1989).

    Article  CAS  Google Scholar 

  4. D. J. Steck, R. W. Field, and C. F. Lynch, Environ. Health Perspect. 107, 123–127 (1999).

    Article  CAS  Google Scholar 

  5. C. Bowie and S. H. U. Bowie, Lancet 337, 409–413 (1991).

    Article  CAS  Google Scholar 

  6. N. R. Varley and A. G. Flowers, Environ. Geochem. Health 15, 145–151 (1993).

    Article  CAS  Google Scholar 

  7. R. L. Jones, Environ. Geochem. Health 7, 21–24 (1995).

    CAS  Google Scholar 

  8. B. LeHvesque, D. Gauvin, R. McGregor, et al., Health Phys. 72(6), 907–914 (1997).

    Google Scholar 

  9. IARC (International Agency for Research on Cancer), Man-made Mineral Fibres and Radon, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 43, International Agency for Research on Cancer, Lyon, 1988.

    Google Scholar 

  10. G. Sharman, Environ. Geochem. Health 14, 113–120 (1992).

    Article  CAS  Google Scholar 

  11. C. Baird, Environmental Chemistry, Freeman, New York, 1998.

    Google Scholar 

  12. H. U. Wanner, IARC Sci. Publ. 109, 19–30 (1993).

    CAS  Google Scholar 

  13. W. Jedrychowski, E. Flak, J. Wesolowski, et al., Central Eur. J. Public Health 3(3), 150–160 (1995).

    Google Scholar 

  14. K. K. Nielson, V. C. Rogers, R. B. Holt, et al., Health Phys. 73(4), 668–678 (1997).

    CAS  Google Scholar 

  15. EPA Radon Proficiency Program (RPP) Handbook, US Environmental Protection Agency, Washington, DC, 1996; available from http://www.epa.gov/iaq/radon/handbook.

  16. M. Kawano and S. Nakatani, in The Natural Radiation Environment (J. A. S. Adams and W. M. Lowder, eds.), 1964, pp. 291–312, University of Chicago Press.

    Google Scholar 

  17. K. Megumi and T. Mamuro, J. Geophys. Res. 77, 3051–3056 (1972).

    Google Scholar 

  18. D. K. Talbot, J. D. Appleton, T. K. Ball, et al. A comparison of field and laboratory analytical methods for radon site investigation, J. Geochem. Explor. 65(1), pp. 79–90. (1998).

    Article  CAS  Google Scholar 

  19. S. A. Durrani and R. Ilic, (eds.), Solid State Nuclear Track Detection, Pergamon, Oxford, 1997, p. 304.

    Google Scholar 

  20. S. A. Durrani, Radiati. Measure. 34, 5–13 (2001).

    Article  CAS  Google Scholar 

  21. A. Canabo, F. O. Lopez, A. A. Arnaud, et al., Radiati. Measure. 34, 483–486 (2001).

    Article  Google Scholar 

  22. V. S. Y. Koo, C. W. Y. Yip, J. P. Y. Ho, et al., Appl. Radiati. Isotopes 56, 953–956 (2002).

    Article  CAS  Google Scholar 

  23. K. Jamil, F. Rehman, S. Ali, et al., Nucl. Instrum. Methods Phys. Res. A 388, 267–272 (1997).

    Article  CAS  Google Scholar 

  24. J. I. Fabrikant, Health Phys. 59(1), 89 (1990).

    CAS  Google Scholar 

  25. P. W. Abrahams, Sci. Total Environ. 291, 1–32 (2001).

    Article  Google Scholar 

  26. B. S. Cohen, Health Phys. 74(5), 554–560 (1998).

    Article  CAS  Google Scholar 

  27. P. Polpong and S. Bovornkitti, J. Med. Assoc. Thailand 81(1), 47–57 (1998).

    CAS  Google Scholar 

  28. A. P. Jones, Atmos. Environ. 33, 4535–4564 (1999).

    Article  CAS  Google Scholar 

  29. D. L. Henshaw, J. P. Eatough, and R. B. Richardson, Lancet 335, 1008–1012 (1990).

    Article  CAS  Google Scholar 

  30. K. Steindorf, J. Lubin, H. E. Wichmann, et al., Int. J. Epidemiol. 24(3), 485–492 (1995).

    Article  CAS  Google Scholar 

  31. J. H. Lubin, L. TomaHsek, C. Edling, et al., Estimating lung cancer mortality from residential radon using data for low exposures of miners, Radiati. Res. 147(2), 126–134 (1997).

    Article  CAS  Google Scholar 

  32. J. H. Lubin and J. D. Boice, J. Natl. Cancer Inst. 89(1), 49–57 (1997).

    Article  CAS  Google Scholar 

  33. N. P. Lucie, Lancet 2(8654), 99–100 (1989).

    Article  CAS  Google Scholar 

  34. S. P. Wolff, Nature 352(6333), 288 (1991).

    Article  CAS  Google Scholar 

  35. D. J. Etherington, D. F. Pheby, and F. I. Bray, Eur. J. Cancer 32(7), 1189–1197 (1996).

    Article  Google Scholar 

  36. F. Lagarde, G. Pershagen, G. Akerblom, et al., Health Phys. 72(2), 269–276 (1997).

    CAS  Google Scholar 

  37. The National Research Council, 4th Committee on Biological Effects of Ionizing Radiation, BEIR IV Report, National, Washington, DC, 1988.

    Google Scholar 

  38. Z. Smerhovsky, K. Landa, P. Rössner, et al., Mutat. Res. 514, 165–176 (2002).

    CAS  Google Scholar 

  39. BEIR VI Report (2000) National Research Council, 6th Committee on Biological Effects of Ionizing Radiation, BEIR VI Report National Academic Press, Washington, DC, 2000.

    Google Scholar 

  40. H. Friedmann, Eur. J. Radiol. 35, 221–222 (2000).

    Article  Google Scholar 

  41. N. R. Varley and A. G. Flowers, Radiat. Prot. Dosim. 77, 171–176 (1998).

    CAS  Google Scholar 

  42. D. Miles, J. O. O’Brien, and M. Owen, Br. J. Cancer 79, 1621–1622 (1999).

    CAS  Google Scholar 

  43. S. Darby, E. Whitley, P. Silcocks, et al., Br. J. Cancer 78, 394–408 (1988).

    Google Scholar 

  44. A. V. Nero, M. B. Schwehr, W. W. Nazaro, et al., Science 234(4779), 992–997 (1986).

    Article  CAS  Google Scholar 

  45. F. Marcinowski, R. M. Lucas, and W. M. Yeager, Health Phys. 66(6), 699–706 (1994).

    CAS  Google Scholar 

  46. R. W. Field, D. J. Steck, B. J. Smith, et al., Sci. Total Environ. 272, 67–72 (2001).

    Article  CAS  Google Scholar 

  47. H. J. Albering, J. A. Hoogewer, and J. C. Kleinjans, Health Phys. 70(1), 64–69 (1996).

    Article  CAS  Google Scholar 

  48. F. Bochicchio, G. Campos-Venuti, C. Nuccetelli, et al., Health Phys. 71(5), 741–748 (1996).

    CAS  Google Scholar 

  49. K. N. Yu, E. C. M. Yung, M. J. Stokes, et al., Health Phys. 75(2), 159–164 (1998).

    CAS  Google Scholar 

  50. S. E. Hampson, J. A. Andrews, M. E. Lee, et al., Risk Anal. 18(3), 343–350 (1998).

    Article  CAS  Google Scholar 

  51. US Environmental Protection Agency, Consumer’s Guide to Radon Reduction; US EPA Office of Air and Radiation, Washington, DC, 1992; available from http://www.epa.gov/iaq/radon/pubs/consguid.

    Google Scholar 

  52. US EPA, How to Reduce Radon Levels in Your Home, Office of Radiation and Indoor Air Report No. 402-K92-003, US EPA Office of Air and Radiation, Washington, DC, 1985.

    Google Scholar 

  53. J. E. Fitzgerald, et al., A Preliminary Evaluation of the Control of Indoor Radon Daughter Levels in New Structures, EPA Office of Radiation Programs, Report No. EPA-520/4-76-018.

    Google Scholar 

  54. A. P. Becker, Evaluation of Waterborne Radon Impact on Indoor Air Quality and Assessment of Control Options, PB84246404 (1984).

    Google Scholar 

  55. G. W. Reid, S. Hataway, and P. Lassovszwy, Health Phys. 48(5) (1985).

    Google Scholar 

  56. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, Annex B: Natural sources of radiation UNIPUB, New York, 1977.

    Google Scholar 

  57. R. A. Wadden and P. A. Scheff, Indoor Air Pollution Wiley, New York, 1983.

    Google Scholar 

  58. S. Ericson and H. Schmied, in Modified Design in New Construction Prevents Infiltration of Soil Gas That Carries Radon (in Radon and its Decay Products: Occurrence, Properties and Health Effects, ACS Symp. Series No 331. P. H. Hopke, ed.), American Chemical Society, Washington, DC, 1987, p. 526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gökmen, A., Gökmen, İ.G., Hung, YT. (2005). Radon Pollution Control. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Advanced Air and Noise Pollution Control. Handbook of Environmental Engineering, vol 2. Humana Press. https://doi.org/10.1007/978-1-59259-779-6_9

Download citation

Publish with us

Policies and ethics