Skip to main content

Identification of Hybridization Accessible Sequence in Messenger RNA

  • Chapter
  • 117 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A major obstacle to employing short complementary nucleic acid strands for modulating gene expression is the apparent randomness with which target mRNAs are inhibited (1). We have hypothesized that the inability to predict mRNA structure in vivo is a significant component of this problem because it is not known which regions of an mRNA molecule are accessible for basepairing or other recognition processes. A number of strategies have been developed to ask if a region of mRNA is single-stranded and free of bound protein, but all have their limitations. Accordingly, we have attempted to develop a different approach to this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1(7):503–514.

    Article  PubMed  CAS  Google Scholar 

  2. Tyagi S, Bratu SP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nature Biotechnology 1998; 16:49–53.

    Article  PubMed  CAS  Google Scholar 

  3. Sokol DL, Zhang X, Gewirtz AM. Direct in vivo detection of hybridization between antisense oligodeoxynucleotides and target mRNA. Proc Natl Acad Sci USA 1998; 95:11,538–11,543.

    Article  Google Scholar 

  4. Crooke ST. Advances in understanding the pharmacological properties of antisense oligonucleotides. Adv Pharmacol 1997; 40:1–49.

    Article  PubMed  CAS  Google Scholar 

  5. Lavignon M, et al. Inhibition of murine leukemia viruses by nuclease-resistant alpha-oligonucleotides. Antisense Res Dev 1992; 2(4):315–324.

    PubMed  CAS  Google Scholar 

  6. Monia BP, et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268(19):14514–14522.

    PubMed  CAS  Google Scholar 

  7. Gewirtz AM, Stein CA, Glazer PM. Facilitating oligonucleotide delivery: helping antisense deliver on its promise. Proc Natl Acad Sci USA 1996; 93(8):3161–3163.

    Article  PubMed  CAS  Google Scholar 

  8. Dewanjee MK, et al. Kinetics of hybridization of mRNA of c-myc oncogene with Inlabeled antisense oligodeoxynucleotide probes by high-pressure liquid chromatography. Biotechniques 1994; 16(5):844–846,848,850.

    PubMed  CAS  Google Scholar 

  9. Monia BP, et al. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci USA 1996; 93(26):15481–15484.

    Article  PubMed  CAS  Google Scholar 

  10. Sczakiel G, Homann M, Rittner K. Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. Antisense Res Dev 1993; 3(1):45–52.

    PubMed  CAS  Google Scholar 

  11. Milner N, Mir KU, Southern EM. Selecting effective antisense reagents on combinatorial oligonucleotide arrays [see comments]. Nat Biotechnol 1997; 15(6):537–541.

    Article  PubMed  CAS  Google Scholar 

  12. Sohail M, Southern EM. Selecting optimal antisense reagents. Adv Drug Deliv Rev 2000; 44(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  13. Ho SP, et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries [see comments]. Nat Biotechnol 1998; 16(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  14. Scherr M, et al. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res 2000; 28(13):2455–2461.

    Article  PubMed  CAS  Google Scholar 

  15. Ho SP, et al. RNA mapping: selection of potent oligonucleotide sequences for antisense experiments. Methods Enzymol 2000; 314:168–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gifford, L.K., Lu, P., Gewirtz, A.M. (2004). Identification of Hybridization Accessible Sequence in Messenger RNA. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics