Skip to main content

Molecular Vectors for Gene Delivery to Cancer Cells

  • Chapter
  • 117 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer gene therapy relies on nucleic acid carriers. Because of their diversity, viruses fulfill most requirements for gene delivery in clinical situations. However, parallel evolution of viruses and their hosts has made foreign protein particles, as well as infected cells, effective targets for the immune system. Although the latter consequence can be turned into therapeutic benefit, the former excludes repetitive treatment, which is the only reasonable approach for a chronic disease such as cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Remy JS, Sirlin C, Vierling P, Behr JP. Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem 1994; 5(6):647–654.

    Article  PubMed  CAS  Google Scholar 

  2. Clamme JP, Bernacchi S, Vuilleumier C, Duportail G, Mely Y. Gene transfer by cationic surfactants is essentially limited by the trapping of the surfactant/DNA complexes onto the cell membrane: a fluorescence investigation. Biochim Biophys Acta 2000; 1467(2):347–361.

    Article  PubMed  CAS  Google Scholar 

  3. Blessing T, Remy JS, Behr JP. Template oligomerization of cations bound to DNA produces calibrated nanometric particles. J Amer Chem Soc 1998; 120:8519–8520.

    Article  CAS  Google Scholar 

  4. Blessing T, Remy JS, Behr JP. Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc Natl Acad Sci USA 1998; 95(4):1427–1431.

    Article  PubMed  CAS  Google Scholar 

  5. Dauty E, Remy JS, Blessing T, Behr JP. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc 2001; 123(38):9227–9234.

    Article  PubMed  CAS  Google Scholar 

  6. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000; 275(3):1625–1629.

    Article  PubMed  CAS  Google Scholar 

  7. Su H, Raymond L, Rockey DD, Fischer E, Hackstadt T, Caldwell HD. A recombinant chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci USA 1996; 93(20):11143–11148.

    Article  PubMed  CAS  Google Scholar 

  8. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72(2):1438–1445.

    PubMed  CAS  Google Scholar 

  9. Quarto N, Amalric F. Heparan sulfate proteoglycans as transducers of FGF2 signalling. J Cell Sci 1994; 107(Pt 11):3201–3212.

    PubMed  CAS  Google Scholar 

  10. Tyagi M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001: 276(5):3254–3261.

    Article  PubMed  CAS  Google Scholar 

  11. Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA 1989; 86(18):6982–6986.

    Article  PubMed  CAS  Google Scholar 

  12. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer Proc Natl Acad SH UISA 1Q9 93(22): 1 234Q-1 7354

    Google Scholar 

  13. Labat-Moleur F, Steffan AM, Brisson C, et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther 1996; 3(11):1010–1017.

    PubMed  CAS  Google Scholar 

  14. Mounkes LC, Zhong W, Cipres-Palacin G, Heath TD, Debs RJ. Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem 1998; 273(40):26164–26170.

    Article  PubMed  CAS  Google Scholar 

  15. Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 1994; 5(2):183–192.

    PubMed  CAS  Google Scholar 

  16. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997; 15(6):542–546.

    Article  PubMed  CAS  Google Scholar 

  17. Hart SL, Collins L, Gustafsson K, Fabre JW. Integrin-mediated transfection with peptides containing arginine- glycine-aspartic acid domains. Gene Ther 1997; 4(11):1225–1230.

    Article  PubMed  CAS  Google Scholar 

  18. Harbottle RP, Cooper KG, Hart SL, et al. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum Gene Ther 1998: 9(7):1037–1047.

    Article  PubMed  CAS  Google Scholar 

  19. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrinmediated endocvtosis nathwav. Gene Ther 1999: 6(1).138–14S

    Article  PubMed  CAS  Google Scholar 

  20. Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001; 8(1):28–40.

    Article  PubMed  CAS  Google Scholar 

  21. Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block copolymers. Hum Gene Ther 1996; 7(17):2123–2133.

    Article  PubMed  CAS  Google Scholar 

  22. Erbacher P, Bettinger T, Belguise-Valladier P, et al. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J Gene Med 1999; 1(3):210–222.

    Article  PubMed  CAS  Google Scholar 

  23. Vinogradov S, Batrakova E, Li S, Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 1999; 10(5):851–860.

    Article  PubMed  CAS  Google Scholar 

  24. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1):113–131.

    Article  PubMed  CAS  Google Scholar 

  25. Fisher KD, Ulbrich K, Subr V, et al. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther 2000; 7(15):1337–1343.

    Article  PubMed  CAS  Google Scholar 

  26. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem 2001; 12(4):529–537.

    Article  PubMed  CAS  Google Scholar 

  27. Gabizon A, Horowitz AT, Goren D, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 1999; 10(2):289–298.

    Article  PubMed  CAS  Google Scholar 

  28. Lin AJ, Slack NL, Ahmad A, et al. Structure and structure-function studies of lipid/plasmid DNA complexes. J Drug Target 2000; 8(1):13–27.

    Article  PubMed  CAS  Google Scholar 

  29. Zelphati O, Szoka FC, Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 1996; 93(21):11493–11498.

    Article  PubMed  CAS  Google Scholar 

  30. Demeneix B, Behr J, Boussif O, Zanta MA, Abdallah B, Remy J. Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev 1998; 30(1–):85–95.

    Article  PubMed  Google Scholar 

  31. Haensler J, Szoka FC, Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4(5):372–379.

    Article  PubMed  CAS  Google Scholar 

  32. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR, Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 1996; 93(10).4897–4902.

    Article  PubMed  CAS  Google Scholar 

  33. Boussif O, Lezoualch F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92(16):7297–7301.

    Article  PubMed  CAS  Google Scholar 

  34. Fajac I, Allo JC, Souil E, et al. Histidylated polylysine as a synthetic vector for gene transfer into immortalized cystic fibrosis airway surface and airway gland serous cells. J Gene Med 2000; 2(5):368–378.

    Article  PubMed  CAS  Google Scholar 

  35. Putnam D, Gentry CA, Pack DW, Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 2001; 98(3):1200–1205.

    Article  PubMed  CAS  Google Scholar 

  36. Han S, Mahato RI, Kim SW. Water-soluble lipopolymer for gene delivery. Bioconjug Chem 2001: 12(3):337–345.

    Article  CAS  Google Scholar 

  37. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 2001; 3(2):135–144.

    Article  PubMed  CAS  Google Scholar 

  38. Brunner S, Furtbauer E, Sauer T, Kursa M, Wagner E. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 2002; 5(1):80–86.

    Article  PubMed  CAS  Google Scholar 

  39. Schatzlein AG. Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs 2001; 12(4):275–304.

    Article  PubMed  CAS  Google Scholar 

  40. Ringenbach L, Bohbot A, Tiberghien P, Oberling F, Feugeas 0. Polyethylenimine-mediated transfection of human monocytes with the IFN-gamma gene: an approach for cancer adoptive immunotherapy. Gene Ther 1998; 5(11):1508–1516.

    Article  PubMed  CAS  Google Scholar 

  41. Poulain L, Ziller C, Muller CD, et al. Ovarian carcinoma cells are effectively transfected by polyethylenimine (PEI) derivatives. Cancer Gene Ther 2000; 7(4):644–652.

    Article  PubMed  CAS  Google Scholar 

  42. Merlin JL, Dolivet G, Dubessy C, et al. Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives. Cancer Gene Ther 2001; 8(3):203–210.

    Article  PubMed  CAS  Google Scholar 

  43. Mahato RI, Lee M, Han S, Maheshwari A, Kim SW. Intratumoral delivery of p2CMVmIL12 using water-soluble lipopolymers. Mol Ther 2001; 4(2):130–138.

    Article  PubMed  CAS  Google Scholar 

  44. Aoki K, Furuhata S, Hatanaka K, et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 2001; 8(7):508–514.

    Article  PubMed  CAS  Google Scholar 

  45. Lisziewicz J, Gabrilovich DI, Varga G, et al. Induction of potent human immunodeficiency virus type 1-specific T-cell- restricted immunity by genetically modified dendritic cells. J Virol 2001; 75(16):7621–7628.

    Article  PubMed  CAS  Google Scholar 

  46. Densmore CL, Kleinerman ES, Gautam A, et al. Growth suppression of established human osteosarcoma lung metastases in mice by aerosol gene therapy with PEI-p53 complexes. Cancer Gene Ther 2001; 8(9):619–627.

    Article  PubMed  CAS  Google Scholar 

  47. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270(32): 18997–19007.

    Article  PubMed  CAS  Google Scholar 

  48. Andreadis S, Fuller AO, Palsson BO. Cell cycle dependence of retroviral transduction: An issue of overlapping time scales. Biotechnol Bioeng 1998; 58(2–3):272–281.

    Article  PubMed  CAS  Google Scholar 

  49. Brunner S, Sauer T, Carotta S, Cotton M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 2000; 7(5):401–407.

    Article  PubMed  CAS  Google Scholar 

  50. Remy JS, Kichler A, Mordvinov V, Schuber F, Behr JP. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci USA 1995; 92(5):1744–1748.

    Article  PubMed  CAS  Google Scholar 

  51. Sebestyen MG, Ludtke JJ, Bassik MC, et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 1998; 16(1):80–85.

    Article  PubMed  CAS  Google Scholar 

  52. Sebestyen MG, Ludtke JJ, Bassik MC, et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 1998; 16(1):80–85.

    Article  PubMed  CAS  Google Scholar 

  53. Neves C, Byk G, Scherman D, Wils P. Coupling of a targeting peptide to plasmid DNA by covalent triple helix formation. FEBS Lett 1999; 453(1–2):41–45.

    Article  PubMed  CAS  Google Scholar 

  54. Ciolina C, Byk G, Blanche F, Thuillier V, Scherman D, Wils P. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 1999; 10(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  55. Branden LJ, Mohamed AJ, Smith CI. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17(8):784–787.

    Article  PubMed  CAS  Google Scholar 

  56. Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96(1):91–96.

    Article  PubMed  CAS  Google Scholar 

  57. Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst 1998; 15(2):143–198.

    Article  PubMed  CAS  Google Scholar 

  58. Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001; 12(8):861–870.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuber, G., Remy, JS., Erbacher, P., Belguise, P., Behr, JP. (2004). Molecular Vectors for Gene Delivery to Cancer Cells. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics