Advertisement

Strategies for the Chemoprevention of Prostate Cancer

  • Ronald Lieberman
  • Jacob Kagan
  • Margaret G. House
  • Joseph Kelaghan
  • David J. Kansal
  • Howard L. Parnes
Chapter
Part of the Current Clinical Urology book series (CCU)

Abstract

Carcinogenesis is a multistep process driven by genetic and epigenetic alterations that disrupt the regulatory pathways controlling cellular proliferation, programmed cell death (apoptosis), angiogenesis, and differentiation (1–3). The age-dependent incidence of most cancers and the recognition that precursor lesions, representing intermediate stages between normal and malignant cells, may precede invasive cancer by 20 yr or more, suggests that malignant transformation generally occurs over decades (4–10) (Fig. 1). The protracted nature of this process provides an opportunity to intervene before the malignant phenotype is established. This may be done with life-style changes such as diet and exercise, or by chemoprevention, the administration of natural or synthetic agents to reverse, inhibit, slow, or prevent the development of cancer (11).

Keywords

Prostate Cancer Androgen Receptor Proliferate Cell Nuclear Antigen Natl Cancer Inst Prostate Cancer Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lippman SM, Hong WK. Cancer prevention science and practice. Cancer Res 2002; 62: 5119–5125.PubMedGoogle Scholar
  2. 2.
    Vogelstein B, Kinzler K, eds. Genetic Basis of Human Cancer. McGraw-Hill, New York, 1998.Google Scholar
  3. 3.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.PubMedCrossRefGoogle Scholar
  4. 4.
    Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 1993; 7: 139–146.PubMedCrossRefGoogle Scholar
  5. 5.
    Foulds L. The experimental Study of Tumor Progression, vols. I–III. Academic Press, London, 1954.Google Scholar
  6. 6.
    Zukerberg L. The molecular basis of dysplasia. Semin Diagn Pathol 2002; 19: 48–53.PubMedGoogle Scholar
  7. 7.
    Sakr WA, Partin AW. Histological markers of risk and the role of high-grade prostatic intraepithelial neoplasia. Urology 2001; 57: 115–120.PubMedCrossRefGoogle Scholar
  8. 8.
    Theise ND, Park YN, Kojiro M. Dysplastic nodules and hepatocarcinogenesis. Clin Liver Dis 2002; 6: 497–512.PubMedCrossRefGoogle Scholar
  9. 9.
    Krishnamurthy S, Sneige N. Molecular and biologic markers of premalignant lesions of human breast. Adv Anat Pathol 2002; 9: 185–197.PubMedCrossRefGoogle Scholar
  10. 10.
    Boone CW, Kelloff GJ. Endpoint markers for clinical trials of chemopreventive agents derived from the properties of epithelial precancer (intraepithelial neoplasia) measured by computer-assisted image analysis. Cancer Surv 1998; 32: 133–147.PubMedGoogle Scholar
  11. 11.
    Sporn MB, Suh N. Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer 2002; 2: 537–543.PubMedCrossRefGoogle Scholar
  12. 12.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.PubMedCrossRefGoogle Scholar
  13. 13.
    Kagan J. Molecular biology of chromosomal aberrations in leukemia/lymphoma. Hematol Pathol 1993; 7: 159–201.PubMedGoogle Scholar
  14. 14.
    Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994; 372: 143–149.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998; 20: 189–193.PubMedCrossRefGoogle Scholar
  16. 16.
    Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002; 196: 1–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 2002; 3: 755–763.PubMedCrossRefGoogle Scholar
  18. 18.
    Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002;21:5483–5495.Google Scholar
  19. 19.
    Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 2000; 249: 135–164.PubMedCrossRefGoogle Scholar
  20. 20.
    Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001; 13: 477–483.PubMedCrossRefGoogle Scholar
  21. 21.
    Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001; 1: 157–162.PubMedCrossRefGoogle Scholar
  22. 22.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001; 61 (suppl 2): 1–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411: 355–365.PubMedCrossRefGoogle Scholar
  25. 25.
    Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002; 1602: 114–130.PubMedGoogle Scholar
  26. 26.
    Sawyers CL. Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Cancer Cell 2002; 1: 13–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Backman S, Stambolic V, Mak T. PTEN function in mammalian cell size regulation. Curr Opin Neurobiol 2002; 12: 516–522.PubMedCrossRefGoogle Scholar
  28. 28.
    Mills GB, Lu Y, Fang X, et al. The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis, and therapy. Semin Oncol 2001; 28: 125–141.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu J, Babaian DC, Liebert M, Steck PA, Kagan J. Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Mol Carcinog 2000; 29: 143–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Gittes RF. Carcinoma of the prostate. N Engl J Med 1991; 324: 236–245.PubMedCrossRefGoogle Scholar
  32. 32.
    Epstein J. Pathologic features that predict progression of disease following radical prostatectomy. In: Foster CS, Bostwick D, eds. Pathology of the Prostate, vol. 34. WB Saunders, Philadelphia, 1998. pp. 228–244.Google Scholar
  33. 33.
    Dai WS, Kuller LH, LaPorte RE, Gutai JP, Falvo-Gerard L, Caggiula A. The epidemiology of plasma testosterone levels in middle-aged men. Am J Epidemiol 1981; 114: 804–816.PubMedGoogle Scholar
  34. 34.
    Prehn RT. On the prevention and therapy of prostate cancer by androgen administration. Cancer Res 1999; 59: 4161–4164.PubMedGoogle Scholar
  35. 35.
    Brawley OW, Knopf K, Thompson I. The epidemiology of prostate cancer part II: The risk factors. Semin Urol Oncol 1998; 16: 193–201.PubMedGoogle Scholar
  36. 36.
    Brawley OW, Barnes S, Parnes H. The future of prostate cancer prevention. Ann NY Acad Sci 2001; 952: 145–152.PubMedCrossRefGoogle Scholar
  37. 37.
    Cook LS, Goldoft M, Schwartz SM, Weiss NS. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol 1999; 161: 152–155.PubMedCrossRefGoogle Scholar
  38. 38.
    Grignon DJ, Sakr WA. Atypical adenomatous hyperplasia of the prostate: a critical review. Eur Urol 1996; 30: 206–211.PubMedGoogle Scholar
  39. 39.
    Cheng L, Shan A, Cheville JC, Qian J, Bostwick DG. Atypical adenomatous hyperplasia of the prostate: a premalignant lesion? Cancer Res 1998; 58: 389–391.PubMedGoogle Scholar
  40. 40.
    De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999; 155: 1985–1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Bostwick DG, Sakr W. Prostatic intraepithelial neoplasia. In: Foster CS, Bostwick D, eds. Pathology of the Prostate, vol. 34. WB Saunders, Philadelphia, 1998, pp. 95–113.Google Scholar
  42. 42.
    Babaian RJ. Extended field prostate biopsy enhances cancer detection. Urology 2000; 55: 453–456.PubMedCrossRefGoogle Scholar
  43. 43.
    Steiner MS. High grade prostatic intraepithelial neoplasia is a disease. Curr Urol Rep 2001; 2: 195–198.PubMedCrossRefGoogle Scholar
  44. 44.
    Shin M, Takayama H, Nonomura N, Wakatsuki A, Okuyama A, Aozasa K. Extent and zonal distribution of prostatic intraepithelial neoplasia in patients with prostatic carcinoma in Japan: analysis of whole-mounted prostatectomy specimens. Prostate 2000; 42: 81–87.PubMedCrossRefGoogle Scholar
  45. 45.
    Sakr WA, Billis A, Ekman P, Wilt T, Bostwick DG. Epidemiology of high-grade prostatic intraepithelial neoplasia. Scand J Urol Nephrol Suppl 2000: 11–18.Google Scholar
  46. 46.
    Bostwick DG. Prostatic intraepithelial neoplasia (PIN): current concepts. J Cell Biochem Suppl 1992; 16H: 10–19.CrossRefGoogle Scholar
  47. 47.
    Jeronimo C, Usadel H, Henrique R, et al. Quantitation of GSTP1 methylation in non-neoplastic pro-static tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 2001; 93: 1747–1752.PubMedCrossRefGoogle Scholar
  48. 48.
    Jeronimo C, Varzim G, Henrique R, et al. I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2002; 11: 445–450.PubMedGoogle Scholar
  49. 49.
    Zimniak P, Nanduri B, Pikula S, et al. Naturally occurring human glutathione S-transferase GSTP1–1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem 1994; 224: 893–899.PubMedCrossRefGoogle Scholar
  50. 50.
    Henderson CJ, McLaren AW, Moffat GJ, Bacon EJ, Wolf CR. Pi-class glutathione S-transferase: regulation and function. Chem Biol Interact 1998; 111–112: 69–82.CrossRefGoogle Scholar
  51. 51.
    Ryberg D, Skaug V, Hewer A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 1997; 18: 1285–1289.PubMedCrossRefGoogle Scholar
  52. 52.
    De Marzo AM, Putzi MJ, Nelson WG. New concepts in the pathology of prostatic epithelial carcinogenesis. Urology 2001; 57: 103–114.PubMedCrossRefGoogle Scholar
  53. 53.
    Carter BS, Bova GS, Beaty TH, et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol 1993; 150: 797–802.PubMedGoogle Scholar
  54. 54.
    Narod SA, Dupont A, Cusan L, et al. The impact of family history on early detection of prostate cancer. Nat Med 1995; 1: 99–101.PubMedCrossRefGoogle Scholar
  55. 55.
    Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN. Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 1998; 62: 1425–1438.PubMedCrossRefGoogle Scholar
  56. 56.
    Cussenot O, Valeri A. Heterogeneity in genetic susceptibility to prostate cancer. 2001; 12: 11–16.Google Scholar
  57. 57.
    Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: 78–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Monroe KR, Yu MC, Kolonel LN, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1995; 1: 827–829.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–1374.PubMedCrossRefGoogle Scholar
  60. 60.
    Berthon P, Valeri A, Cohen-Akenine A, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 1998; 62: 1416–1424.PubMedCrossRefGoogle Scholar
  61. 61.
    Xu J, Meyers D, Freije D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20: 175–179.PubMedCrossRefGoogle Scholar
  62. 62.
    Gibbs M, Stanford JL, McIndoe RA, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64: 776–787.PubMedCrossRefGoogle Scholar
  63. 63.
    Tavtigian SV, Simard J, Teng DH, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–180.PubMedCrossRefGoogle Scholar
  64. 64.
    Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30: 181–184.PubMedCrossRefGoogle Scholar
  65. 65.
    Rokman A, Ikonen T, Seppala EH, et al. Germline alterations of the RNASEL gene, a candidate HPC 1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 2002; 70: 1299–1304.PubMedCrossRefGoogle Scholar
  66. 66.
    Rennert H, Bercovich D, Hubert A, et al. A novel founder mutation in the RNASEL gene, 471 delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet 2002; 71: 981–984.PubMedCrossRefGoogle Scholar
  67. 67.
    Casey G, Neville PJ, Plummer SJ, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 2002; 32: 581–583.PubMedCrossRefGoogle Scholar
  68. 68.
    Emmert-Buck MR, Vocke CD, Pozzatti RO, et al. Allelic loss on chromosome 8p12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 1995; 55: 2959–2962.PubMedGoogle Scholar
  69. 69.
    Kagan J, Stein J, Babaian RJ, et al. Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene 1995; 11: 2121–2126.PubMedGoogle Scholar
  70. 70.
    Brooks JD, Bova GS, Ewing CM, et al. An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 1996; 56: 3814–3822.PubMedGoogle Scholar
  71. 71.
    Mottaz AE, Markwalder R, Fey MF, et al. Abnormal p53 expression is rare in clinically localized human prostate cancer: comparison between immunohistochemical and molecular detection of p53 mutations. Prostate 1997; 31: 209–215.PubMedCrossRefGoogle Scholar
  72. 72.
    Salem CE, Tomasic NA, Elmajian DA, et al. p53 protein and gene alterations in pathological stage C prostate carcinoma. J Urol 1997; 158: 510–514.PubMedCrossRefGoogle Scholar
  73. 73.
    Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 1993; 53: 3369–3373.PubMedGoogle Scholar
  74. 74.
    Navone NM, Troncoso P, Pisters LL, et al. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 1993; 85: 1657–1669.PubMedCrossRefGoogle Scholar
  75. 75.
    Sakurada A, Suzuki A, Sato M, et al. Infrequent genetic alterations of the PTEN/MMAC1 gene in Japanese patients with primary cancers of the breast, lung, pancreas, kidney, and ovary. Jpn J Cancer Res 1997; 88: 1025–1028.PubMedCrossRefGoogle Scholar
  76. 76.
    Cairns P, Okami K, Halachmi S, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997–5000.PubMedGoogle Scholar
  77. 77.
    Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.PubMedCrossRefGoogle Scholar
  78. 78.
    Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC 1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.PubMedCrossRefGoogle Scholar
  79. 79.
    Sun H, Lesche R, Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999; 96: 6199–6204.PubMedCrossRefGoogle Scholar
  80. 80.
    Narla G, Heath KE, Reeves HL, et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 2001; 294: 2563–2566.PubMedCrossRefGoogle Scholar
  81. 81.
    Bostwick DG, Burke HB, Wheeler TM, et al. The most promising surrogate endpoint biomarkers for screening candidate chemopreventive compounds for prostatic adenocarcinoma in short-term phase II clinical trials. J Cell Biochem Suppl 1994; 19: 283–289.PubMedGoogle Scholar
  82. 82.
    Isaacs W, De Marzo A, Nelson W. Focus on prostate cancer. Cancer Cell 2002; 2: 113.PubMedCrossRefGoogle Scholar
  83. 83.
    Partin AW, Marks LS. Prostate-specific antigen and new serum biomarkers for evaluation of chemopreventive agents. Urology 2001; 57: 132–136.PubMedCrossRefGoogle Scholar
  84. 84.
    Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 1999; 54: 523–527.PubMedCrossRefGoogle Scholar
  85. 85.
    Pollak M, Beamer W, Zhang JC. Insulin-like growth factors and prostate cancer. Cancer Metastasis Rev 1998; 17: 383–390.PubMedCrossRefGoogle Scholar
  86. 86.
    Giovannucci E. Insulin-like growth factor-I and binding protein-3 and risk of cancer. Horm Res 1999; 51 (suppl 3): 34–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Sulik M, Guzinska-Ustymowicz K. Expression of Ki-67 and PCNA as proliferating markers in prostate cancer. Rocz Akad Med Bialymst 2002; 47: 262–269.PubMedGoogle Scholar
  88. 88.
    Montironi R, Magi Galluzzi CM, Marina S, Diamanti L. Quantitative characterization of the frequency and location of cell proliferation and death in prostate pathology. J Cell Biochem Suppl 1994; 19: 238–245.PubMedGoogle Scholar
  89. 89.
    Herrmann JL, Beham AW, Sarkiss M, et al. Bcl-2 suppresses apoptosis resulting from disruption of the NF-kappa B survival pathway. Exp Cell Res 1997; 237: 101–109.PubMedCrossRefGoogle Scholar
  90. 90.
    McDonnell TJ, Troncoso P, Brisbay SM, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940–6944.PubMedGoogle Scholar
  91. 91.
    Bostwick DG, Wheeler TM, Blute M, et al. Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology 1996; 48: 47–57.PubMedCrossRefGoogle Scholar
  92. 92.
    DeWeese TL, Hruszkewycz AM, Marnett LJ. Oxidative stress in chemoprevention trials. Urology 2001; 57: 137–140.PubMedCrossRefGoogle Scholar
  93. 93.
    Meyer-Kirchrath J, Schror K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr Med Chem 2000; 7: 1121–1129.PubMedCrossRefGoogle Scholar
  94. 94.
    Devens BH, Weeks RS, Burns MR, Carlson CL, Brawer MK. Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis 2000; 3: 275–279.PubMedCrossRefGoogle Scholar
  95. 95.
    Urban D, Myers R, Manne U, et al. Evaluation of biomarker modulation by fenretinide in prostate cancer patients. Eur Urol 1999; 35: 429–438.PubMedCrossRefGoogle Scholar
  96. 96.
    Goluboff ET, Prager D, Rukstalis D, et al. Safety and efficacy of exisulind for treatment of recurrent prostate cancer after radical prostatectomy. J Urol 2001; 166: 882–886.PubMedCrossRefGoogle Scholar
  97. 97.
    Bostwick DG, Montironi R, Sesterhenn IA. Diagnosis of prostatic intraepithelial neoplasia: Prostate Working Group/consensus report. Scand J Urol Nephrol Suppl 2000: 3–10.Google Scholar
  98. 98.
    Kronz JD, Allan CH, Shaikh AA, Epstein JI. Predicting cancer following a diagnosis of high-grade prostatic intraepithelial neoplasia on needle biopsy: data on men with more than one follow-up biopsy. Am J Surg Pathol 2001; 25: 1079–1085.PubMedCrossRefGoogle Scholar
  99. 99.
    Bratt O. Hereditary prostate cancer: clinical aspects. J Urol 2002; 168: 906–913.PubMedCrossRefGoogle Scholar
  100. 100.
    Spitz MR, Currier RD, Fueger JJ, Babaian RJ, Newell GR. Familial patterns of prostate cancer: a case-control analysis. J Urol 1991; 146: 1305–1307.PubMedGoogle Scholar
  101. 101.
    Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol 2002; 20: 3001–3015.PubMedCrossRefGoogle Scholar
  102. 102.
    Lieberman R, Bermejo C, Akaza H, Greenwald P, Fair W, Thompson I. Progress in prostate cancer chemoprevention: modulators of promotion and progression. Urology 2001; 58: 835–842.PubMedCrossRefGoogle Scholar
  103. 103.
    Boon K, Osorio EC, Greenhut SF, et al. An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA 2002; 99: 11287–11292.PubMedCrossRefGoogle Scholar
  104. 104.
    Strausberg RL, Camargo AA, Riggins GJ, et al. An international database and integrated analysis tools for the study of cancer gene expression. Pharmacogenomics J 2002; 2: 156–164.PubMedCrossRefGoogle Scholar
  105. 105.
    Kelloff GJ, Lieberman R, Steele VE, et al. Agents, biomarkers, and cohorts for chemopreventive agent development in prostate cancer. Urology 2001; 57: 46–51.PubMedCrossRefGoogle Scholar
  106. 106.
    Huggins C, Stevens RE, Hodges CV. Studies on prostatic cancer II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg 1941; 43: 209–223.CrossRefGoogle Scholar
  107. 107.
    Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001; 93: 1687–1697.PubMedCrossRefGoogle Scholar
  108. 108.
    Labrie F, Dupont A, Belanger A, et al. Combination therapy in stage C and D prostatic cancer: rationale and five year clinical experience. Cancer Metastasis Rev 1987; 6: 615–636.PubMedCrossRefGoogle Scholar
  109. 109.
    Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996; 28: 251–265.PubMedCrossRefGoogle Scholar
  110. 110.
    Ferguson J, Zincke H, Ellison E, Bergstrahl E, Bostwick DG. Decrease of prostatic intraepithelial neoplasia following androgen deprivation therapy in patients with stage T3 carcinoma treated by radical prostatectomy. Urology 1994; 44: 91–95.PubMedCrossRefGoogle Scholar
  111. 111.
    van der Kwast TH, Labrie F, Tetu B. Prostatic intraepithelial neoplasia and endocrine manipulation. Eur Urol 1999; 35: 508–510.PubMedCrossRefGoogle Scholar
  112. 112.
    Bostwick DG, Qian J. Effect of androgen deprivation therapy on prostatic intraepithelial neoplasia. Urology 2001; 58: 91–93.PubMedCrossRefGoogle Scholar
  113. 113.
    Bosland MC, McCormick DL, Melamed J, Walden PD, Zeleniuch-Jacquotte A, Lumey LH. Chemoprevention strategies for prostate cancer. Eur J Cancer Prev 2002; 11 (suppl 2): S18–S27.PubMedGoogle Scholar
  114. 114.
    Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.PubMedCrossRefGoogle Scholar
  115. 115.
    Raghow S, Kuliyev E, Steakley M, Greenberg N, Steiner MS. Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Res 2000; 60: 4093–4097.PubMedGoogle Scholar
  116. 116.
    Alberts S. Personal communication.Google Scholar
  117. 117.
    Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138: 863–870.PubMedCrossRefGoogle Scholar
  118. 118.
    Lau KM, Leav I, Ho SM. Rat estrogen receptor-alpha and -beta, and progesterone receptor mRNA expression in various prostatic lobes and microdissected normal and dysplastic epithelial tissues of the Noble rats. Endocrinology 1998; 139: 424–427.PubMedCrossRefGoogle Scholar
  119. 119.
    Steiner MS, Raghow S, Neubauer BL. Selective estrogen receptor modulators for the chemoprevention of prostate cancer. Urology 2001; 57: 68–72.PubMedCrossRefGoogle Scholar
  120. 120.
    Waters DJ. High-grade prostatic intraepithelial neoplasia in dogs. Eur Urol 1999; 35: 456–458.PubMedCrossRefGoogle Scholar
  121. 121.
    Leav I, Merk FB, Kwan PW, Ho SM. Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate 1989; 15: 23–40.PubMedCrossRefGoogle Scholar
  122. 122.
    Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS. Toremifene prevents prostate cancer in the trans-genic adenocarcinoma of mouse prostate model. Cancer Res 2002; 62: 1370–1376.PubMedGoogle Scholar
  123. 123.
    Steiner MS, Pound CR, Gingrich JR. Acapodene (Gtx-006) reduces high grade prostatic intrepithelial neoplasia ( HGPIN) in a phase II clinical trial. Proc AACR 2002: 105A.Google Scholar
  124. 124.
    Seth K, Agrawal AK, Aziz MH, et al. Induced expression of early response genes/oxidative injury in rat pheochromocytoma (PC12) cell line by 6-hydroxydopamine: implication for Parkinson’s disease. Neurosci Lett 2002; 330: 89–93.PubMedCrossRefGoogle Scholar
  125. 125.
    Nelson WG, De Marzo AM, DeWeese TL. The molecular pathogenesis of prostate cancer: implications for prostate cancer prevention. Urology 2001; 57: 39–45.PubMedCrossRefGoogle Scholar
  126. 126.
    Zhou LZ, Johnson AP, Rando TA. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med 2001; 31: 1405–1416.PubMedCrossRefGoogle Scholar
  127. 127.
    Ripple MO, Henry WF, Rago RP, Wilding G. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 1997; 89: 40–48.PubMedCrossRefGoogle Scholar
  128. 128.
    Menter DG, Sabichi AL, Lippman SM. Selenium effects on prostate cell growth. Cancer Epidemiol Biomarkers Prev 2000; 9: 1171–1182.PubMedGoogle Scholar
  129. 129.
    Waters DJ, Shen S, Cooley DM, et al. Effects of dietary selenium supplementation on DNA damage and apoptosis in canine prostate. J Natl Cancer Inst 2003; 95: 237–241.PubMedCrossRefGoogle Scholar
  130. 130.
    Clinton SK. Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev 1998; 56: 35–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst 2002; 94: 391–398.PubMedCrossRefGoogle Scholar
  132. 132.
    Giovannucci E. A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 2002; 227: 852–859.Google Scholar
  133. 133.
    Heber D, Lu QY. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood) 2002; 227: 920–923.Google Scholar
  134. 134.
    Kucuk O, Sarkar FH, Sakr W, et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 2001; 10: 861–868.PubMedGoogle Scholar
  135. 135.
    Chen L, Stacewicz-Sapuntzakis M, Duncan C, et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst 2001; 93: 1872–1879.PubMedCrossRefGoogle Scholar
  136. 136.
    Denis L, Morton MS, Griffiths K. Diet and its preventive role in prostatic disease. Eur Urol 1999; 35: 377–387.PubMedCrossRefGoogle Scholar
  137. 137.
    Bosland MC, Kato I, Melamed J, et al. Chemoprevention trials in men with prostate specific antigen failure or at high risk for recurrence after radical prostatectomy. Urology 2001; 57: 202–204.PubMedCrossRefGoogle Scholar
  138. 138.
    Morton MS, Chan PS, Cheng C, et al. Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 1997; 32: 122–128.PubMedCrossRefGoogle Scholar
  139. 139.
    Collins BM, McLachlan JA, Arnold SF. The estrogenic and antiestrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids 1997; 62: 365–372.PubMedCrossRefGoogle Scholar
  140. 140.
    Bergan R, Kyle E, Nguyen P, Trepel J, Ingui C, Neckers L. Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta- 1-integrin. Clin Exp Metastasis 1996; 14: 389–398.PubMedCrossRefGoogle Scholar
  141. 141.
    Bergan RC, Waggle DH, Carter SK, Horak I, Slichenmyer W, Meyers M. Tyrosine kinase inhibitors and signal transduction modulators: rationale and current status as chemopreventive agents for prostate cancer. Urology 2001; 57: 77–80.PubMedCrossRefGoogle Scholar
  142. 142.
    Liu Y, Kyle E, Lieberman R, Crowell J, Kellof G, Bergan RC. Focal adhesion kinase (FAK) phosphorylation is not required for genistein-induced FAK-beta-1-integrin complex formation. Clin Exp Metastasis 2000; 18: 203–212.PubMedCrossRefGoogle Scholar
  143. 143.
    Jarred RA, Keikha M, Dowling C, et al. Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Epidemiol Biomarkers Prev 2002; 11: 1689–1696.PubMedGoogle Scholar
  144. 144.
    Suzuki K, Koike H, Matsui H, et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int J Cancer 2002; 99: 846–852.PubMedCrossRefGoogle Scholar
  145. 145.
    Takimoto C. Personal communcation.Google Scholar
  146. 146.
    Takimoto C, Zeisel S. Personal communication.Google Scholar
  147. 147.
    Kennedy AR. Chemopreventive agents: protease inhibitors. Pharmacol Ther 1998; 78: 167–209.PubMedCrossRefGoogle Scholar
  148. 148.
    Kennedy A. Personal communcation.Google Scholar
  149. 149.
    Norman AW. The vitamin D endocrine system: manipulation of structure-function relationships to provide opportunities for development of new cancer chemopreventive and immunosuppressive agents. J Cell Biochem Suppl 1995; 22: 218–225.PubMedCrossRefGoogle Scholar
  150. 150.
    Haussler MR, Haussler CA, Jurutka PW, et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J Endocrinol 1997; 154 (suppl): S57–S73.Google Scholar
  151. 151.
    Krishnan AV, Peehl DM, Feldman D. Inhibition of prostate cancer growth by vitamin D: regulation of target gene expression. J Cell Biochem 2003; 88: 363–371.PubMedCrossRefGoogle Scholar
  152. 152.
    Schwartz GG, Hulka BS. Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res 1990; 10: 1307–1311.PubMedGoogle Scholar
  153. 153.
    Polek TC, Weigel NL. Vitamin D and prostate cancer. J Androl 2002;23:9–17.Google Scholar
  154. 154.
    Gross C, Stamey T, Hancock S, Feldman D. Treatment of early recurrent prostate cancer with 1,25- dihydroxyvitamin D3 (calcitriol). J Urol 1998;159:2035–2039; discussion 2039–2040.Google Scholar
  155. 155.
    Beer TM, Lemmon D, Lowe BA, Henner WD. High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma. Cancer 2003; 97: 1217–1224.PubMedCrossRefGoogle Scholar
  156. 156.
    Kubota T, Koshizuka K, Koike M, Uskokovic M, Miyoshi I, Koeffler HP. 19-Nor-26,27-bishomo-vitamin D3 analogs: a unique class of potent inhibitors of proliferation of prostate, breast, and hematopoietic cancer cells. Cancer Res 1998; 58: 3370–3375.PubMedGoogle Scholar
  157. 157.
    Walczak J, Wood H, Wilding G, Williams T Jr, Bishop CW, Carducci M. Prostate cancer prevention strategies using antiproliferative or differentiating agents. Urology 2001; 57: 81–85.PubMedCrossRefGoogle Scholar
  158. 158.
    Luk GD, Baylin SB. Ornithine decarboxylase as a biologic marker in familial colonic polyposis. N Engl J Med 1984; 311: 80–83.PubMedCrossRefGoogle Scholar
  159. 159.
    Garewal HS, Sampliner R, Gerner E, Steinbronn K, Alberts D, Kendall D. Ornithine decarboxylase activity in Barrett’s esophagus: a potential marker for dysplasia. Gastroenterology 1988; 94: 819–821.PubMedGoogle Scholar
  160. 160.
    Dunzendorfer U, Russell DH. Altered polyamine profiles in prostatic hyperplasia and in kidney tumors. Cancer Res 1978; 38: 2321–2324.PubMedGoogle Scholar
  161. 161.
    Mohan RR, Challa A, Gupta S, et al. Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin Cancer Res 1999; 5: 143–147.PubMedGoogle Scholar
  162. 162.
    Heston WD, Kadmon D, Lazan DW, Fair WR. Copenhagen rat prostatic tumor ornithine decarboxylase activity (ODC) and the effect of the ODC inhibitor alpha-difluoromethylornithine. Prostate 1982; 3: 383–389.PubMedCrossRefGoogle Scholar
  163. 163.
    Gupta S, Ahmad N, Marengo SR, MacLennan GT, Greenberg NM, Mukhtar H. Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res 2000; 60: 5125–5133.PubMedGoogle Scholar
  164. 164.
    Messing EM, Love RR, Tutsch KD, et al. Low-dose difluoromethylornithine and polyamine levels in human prostate tissue. J Natl Cancer Inst 1999; 91: 1416–1417.PubMedCrossRefGoogle Scholar
  165. 165.
    Simoneau AR, Gerner EW, Phung M, McLaren CE, Meyskens FL Jr. Alpha-difluoromethylornithine and polyamine levels in the human prostate: results of a phase IIa trial. J Natl Cancer Inst 2001; 93: 57–59.PubMedCrossRefGoogle Scholar
  166. 166.
    Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002; 94: 252–266.PubMedCrossRefGoogle Scholar
  167. 167.
    Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 Inhibitors. JAMA 2001; 286: 954–959.PubMedCrossRefGoogle Scholar
  168. 168.
    Kirschenbaum A, Liu X, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 2001; 58: 127–131.PubMedCrossRefGoogle Scholar
  169. 169.
    Zha S, Gage WR, Sauvageot J, et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61: 8617–8623.PubMedGoogle Scholar
  170. 170.
    Roberts RO, Jacobson DJ, Girman CJ, Rhodes T, Lieber MM, Jacobsen SJ. A population-based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin Proc 2002; 77: 219–225.PubMedCrossRefGoogle Scholar
  171. 171.
    Nelson JE, Harris RE. Inverse association of prostate cancer and non-steroidal anti-inflammatory drugs (NSAIDs): results of a case-control study. Oncol Rep 2000; 7: 169–170.PubMedGoogle Scholar
  172. 172.
    Michalowski J. COX-2 inhibitors: cancer trials test new uses for pain drug. J Natl Cancer Inst 2002; 94: 248–249.PubMedCrossRefGoogle Scholar
  173. 173.
    Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275: 11397–11403.PubMedCrossRefGoogle Scholar
  174. 174.
    Johnson AJ, song X, Hsu A, Chen C. Apoptosis signaling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cells. Adv Enzyme Regul 2001; 41: 221–235.PubMedCrossRefGoogle Scholar
  175. 175.
    Piazza GA, Rahm AL, Krutzsch M, et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 1995; 55: 3110–3116.PubMedGoogle Scholar
  176. 176.
    Goluboff ET. Exisulind, a selective apoptotic antineoplastic drug. Expert Opin Investig Drugs 2001; 10: 1875–1882.PubMedCrossRefGoogle Scholar
  177. 177.
    Piazza GA, Thompson WJ, Pamukcu R, et al. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res 2001; 61: 3961–3968.PubMedGoogle Scholar
  178. 178.
    Klein EA, Thompson IM, Lippman SM, et al. SELECT: the next prostate cancer prevention trial. Selenum and Vitamin E Cancer Prevention Trial. J Urol 2001; 166: 1311–1315.Google Scholar
  179. 179.
    Kim J, Sabichi AL, Troncoso P, et al. A preoperative model for testing chemopreventive agents in prostate cancer. Proc AACR 2002; 43: 639A.Google Scholar
  180. 180.
    Lieberman R. Androgen deprivation therapy for prostate cancer chemoprevention: current status and future directions for agent development. Urology 2001; 58: 83–90.PubMedCrossRefGoogle Scholar
  181. 181.
    Nigro ND, Bull AW, Boyd ME. Inhibition of intestinal carcinogenesis in rats: effect of difluoromethylornithine with piroxicam or fish oil. J Natl Cancer Inst 1986; 77: 1309–1313.PubMedGoogle Scholar
  182. 182.
    Thompson IM Jr, Kouril M, Klein EA, Coltman CA, Ryan A, Goodman P. The Prostate Cancer Prevention Trial: current status and lessons learned. Urology 2001; 57: 230–234.PubMedCrossRefGoogle Scholar
  183. 183.
    Hoque A, Albanes D, Lippman SM, et al. Molecular epidemiologic studies within the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Causes Control 2001; 12: 627–633.CrossRefGoogle Scholar
  184. 184.
    Sudduth SL, Koronkowski MJ. Finasteride: the first 5 alpha-reductase inhibitor. Pharmacotherapy 1993;13:309–325; discussion 325–329.Google Scholar
  185. 185.
    Gormley GJ, Stoner E, Bruskewitz RC, et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. N Engl J Med 1992; 327: 1185–1191.PubMedCrossRefGoogle Scholar
  186. 186.
    Vaughan D, Imperato-McGinley J, McConnell J, et al. Long-term (7 to 8-year) experience with finasteride in men with benign prostatic hyperplasia. Urology 2002; 60: 1040–1044.PubMedCrossRefGoogle Scholar
  187. 187.
    Ross RK, Bernstein L, Lobo RA, et al. 5-alpha-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 1992; 339: 887–889.PubMedCrossRefGoogle Scholar
  188. 188.
    Imperato-McGinley J, Miller M, Wilson JD, Peterson RE, Shackleton C, Gajdusek DC. A cluster of male pseudohermaphrodites with 5 alpha-reductase deficiency in Papua New Guinea. Clin Endocrinol (Oxf) 1991;34:293–298.Google Scholar
  189. 189.
    Imperato-McGinley J, Gautier T, Zirinsky K, et al. Prostate visualization studies in males homozygous and heterozygous for 5 alpha-reductase deficiency. J Clin Endocrinol Metab 1992; 75: 1022–1026.PubMedCrossRefGoogle Scholar
  190. 190.
    Stoner E. Three-year safety and efficacy data on the use of finasteride in the treatment of benign pro-static hyperplasia. Urology 1994;43:284–292; discussion 292–294.Google Scholar
  191. 190a.
    Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003; 349: 213–222.CrossRefGoogle Scholar
  192. 190b.
    Lippman SM. Personal comunication.Google Scholar
  193. 191.
    Roehrborn CG, Boyle P, Nickel JC, Hoefner K, Andriole G. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology 2002; 60: 434–441.PubMedCrossRefGoogle Scholar
  194. 192.
    Andriole G. Personal communication.Google Scholar
  195. 193.
    Klein EA, Thompson IM, Lippman SM, et al. SELECT: the Selenium and Vitamin E Cancer Prevention Trial: rationale and design. Prostate Cancer Prostatic Dis 2000; 3: 145–151.CrossRefGoogle Scholar
  196. 194.
    Ip C, Thompson HJ, Zhu Z, Ganther HE. In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 2000; 60: 2882–2886.PubMedGoogle Scholar
  197. 195.
    McKenzie RC, Arthur JR, Beckett GJ. Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 2002; 4: 339–351.PubMedCrossRefGoogle Scholar
  198. 196.
    Chigbrow M, Nelson M. Inhibition of mitotic cyclin B and cdc2 kinase activity by selenomethionine in synchronized colon cancer cells. Anticancer Drugs 2001; 12: 43–50.PubMedCrossRefGoogle Scholar
  199. 197.
    Gasparian AV, Yao YJ, Lu J, et al. Selenium compounds inhibit I kappa B kinase (IKK) and nuclear factor-kappa B (NF-kappa B) in prostate cancer cells. Mol Cancer Ther 2002; 1: 1079–1087.PubMedGoogle Scholar
  200. 198.
    Gopalakrishna R, Gundimeda U. Antioxidant regulation of protein kinase C in cancer prevention. J Nutr 2002; 132: 3819S - 3823S.PubMedGoogle Scholar
  201. 199.
    Willett WC, Polk BF, Morris JS, et al. Prediagnostic serum selenium and risk of cancer. Lancet 1983; 2: 130–134.PubMedCrossRefGoogle Scholar
  202. 200.
    Coates RJ, Weiss NS, Daling JR, Morris JS, Labbe RF. Serum levels of selenium and retinol and the subsequent risk of cancer. Am J Epidemiol 1988; 128: 515–523.PubMedGoogle Scholar
  203. 201.
    Knekt P, Aromaa A, Maatela J, et al. Serum selenium and subsequent risk of cancer among Finnish men and women. J Natl Cancer Inst 1990; 82: 864–868.PubMedCrossRefGoogle Scholar
  204. 202.
    Criqui MH, Bangdiwala S, Goodman DS, et al. Selenium, retinol, retinol-binding protein, and uric acid. Associations with cancer mortality in a population-based prospective case-control study. Ann Epidemiol 1991; 1: 385–393.PubMedCrossRefGoogle Scholar
  205. 203.
    Yoshizawa K, Willett WC, Morris SJ, et al. Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 1998; 90: 1219–1224.PubMedCrossRefGoogle Scholar
  206. 204.
    Woodson K, Triantos S, Hartman T, Taylor PR, Virtamo J, Albanes D. Long-term alpha-tocopherol supplementation is associated with lower serum vascular endothelial growth factor levels. Anticancer Res 2002; 22: 375–378.PubMedGoogle Scholar
  207. 205.
    Mahoney CW, Azzi A. Vitamin E inhibits protein kinase C activity. Biochem Biophys Res Commun 1988; 154: 694–697.CrossRefGoogle Scholar
  208. 206.
    Chatelain E, Boscoboinik DO, Bartoli GM, et al. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta 1993; 176: 83–89.CrossRefGoogle Scholar
  209. 207.
    Hartman TJ, Dorgan JF, Woodson K, et al. Effects of long-term alpha-tocopherol supplementation on serum hormones in older men. Prostate 2001; 46: 33–38.PubMedCrossRefGoogle Scholar
  210. 208.
    Traber MG, Packer L. Vitamin E: beyond antioxidant function. Am J Clin Nutr 1995; 62: 1501S - 1509S.PubMedGoogle Scholar
  211. 209.
    Hsing AW, Comstock GW, Abbey H, Polk BF. Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J Natl Cancer Inst 1990; 82: 941–946.PubMedCrossRefGoogle Scholar
  212. 210.
    Knekt P, Aromaa A, Maatela J, et al. Serum vitamin E and risk of cancer among Finnish men during a 10-year follow-up. Am J Epidemiol 1988; 127: 28–41.Google Scholar
  213. 211.
    Comstock GW, Helzlsouer KJ, Bush TL. Prediagnostic serum levels of carotenoids and vitamin E as related to subsequent cancer in Washington County, Maryland. Am J Clin Nutr 1991; 53: 260S - 264S.Google Scholar
  214. 212.
    Eichholzer M, Stahelin HB, Gey KF, Ludin E, Bernasconi F. Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective Basel study. Int J Cancer 1996; 66: 145–150.PubMedCrossRefGoogle Scholar
  215. 213.
    Chan JM, Stampfer MJ, Ma J, Rimm EB, Willett WC, Giovannucci EL. Supplemental vitamin E intake and prostate cancer risk in a large cohort of men in the United States. Cancer Epidemiol Biomarkers Prev 1999; 8: 893–899.Google Scholar
  216. 214.
    Clark LC, Combs GF Jr, Turnbull BW, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276: 1957–1963.PubMedCrossRefGoogle Scholar
  217. 215.
    The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med 1994; 330: 1029–1035.Google Scholar
  218. 216.
    Heinonen OP, Albanes D, Virtamo J, et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 1998; 90: 440–446.PubMedCrossRefGoogle Scholar
  219. 217.
    Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 1998; 153: 141–148.PubMedCrossRefGoogle Scholar
  220. 218.
    Cher ML, Bova GS, Moore DH, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996; 56: 3091–3102.PubMedGoogle Scholar
  221. 219.
    Dahiya R, McCarville J, Hu W, et al. Chromosome 3p24–26 and 3p22–12 loss in human prostatic adenocarcinoma. Int J Cancer 1997; 71: 20–25.PubMedCrossRefGoogle Scholar
  222. 220.
    Chu LW, Troncoso P, Johnston DA, Liang JC. Genetic markers useful for distinguishing between organ-confined and locally advanced prostate cancer. Genes Chromosomes Cancer 2003; 36: 303–312.PubMedCrossRefGoogle Scholar
  223. 221.
    Cooney KA, Wetzel JC, Consolino CM, Wojno KJ. Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 1996; 56: 4150–4153.PubMedGoogle Scholar
  224. 222.
    Visakorpi T, Kallioniemi AH, Syvanen AC, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995; 55: 342–347.PubMedGoogle Scholar
  225. 223.
    Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ. Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res 1994; 54: 6370–6373.PubMedGoogle Scholar
  226. 224.
    Latil A, Baron JC, Cussenot O, et al. Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 1994; 11: 119–125.PubMedCrossRefGoogle Scholar
  227. 225.
    Bova GS, Carter BS, Bussemakers MJ, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869–3873.PubMedGoogle Scholar
  228. 226.
    Trybus TM, Burgess AC, Wojno KJ, Glover TW, Macoska JA. Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res 1996; 56: 2263–2267.PubMedGoogle Scholar
  229. 227.
    Ittmann M. Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res 1996; 56: 2143–2147.PubMedGoogle Scholar
  230. 228.
    Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res 1996; 56: 1142–1145.PubMedGoogle Scholar
  231. 229.
    Yin Z, Spitz MR, Babaian RJ, Strom SS, Troncoso P, Kagan J. Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 1999; 18: 7576–7583.PubMedCrossRefGoogle Scholar
  232. 230.
    Osman I, Scher H, Dalbagni G, Reuter V, Zhang ZF, Cordon-Cardo C. Chromosome 16 in primary prostate cancer: a microsatellite analysis. Int J Cancer 1997; 71: 580–584.PubMedCrossRefGoogle Scholar
  233. 231.
    Gao X, Zacharek A, Grignon DJ, et al. Localization of potential tumor suppressor loci to a 2 Mb region on chromosome 17q in human prostate cancer. Oncogene 1995; 11: 1241–1247.PubMedGoogle Scholar
  234. 232.
    Yin Z, Babaian RJ, Troncoso P, et al. Limiting the location of putative human prostate cancer tumor suppressor genes on chromosome 18q. Oncogene 2001; 20: 2273–2280.PubMedCrossRefGoogle Scholar
  235. 233.
    Walczak J, Wood H, Wilding G, Williams T Jr, Bishop C, Carducci M. Prostate cancer prevention strategies using antiproliferative or differentiating agents. Urology 2001; 57: 81–85.PubMedCrossRefGoogle Scholar
  236. 234.
    Myers C, Koki A, Pamukcu R, Wechter W, Padley RJ. Proapoptotic anti-inflammatory drugs. Urology 2001; 57: 73–76.PubMedCrossRefGoogle Scholar
  237. 235.
    Fleshner N, Fair WR, Huryk R, Heston WD. Vitamin E inhibits the high-fat diet promoted growth of established human prostate LNCaP tumors in nude mice. J Urol 1999; 161: 1651–1654.PubMedCrossRefGoogle Scholar
  238. 236.
    Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42: 73–78.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ronald Lieberman
  • Jacob Kagan
  • Margaret G. House
  • Joseph Kelaghan
  • David J. Kansal
  • Howard L. Parnes

There are no affiliations available

Personalised recommendations