Advertisement

Hereditary Prostate Cancer and Genetic Risk

  • Phillippa J. Neville
  • Graham Casey
  • John S. Witte
Chapter
  • 139 Downloads
Part of the Current Clinical Urology book series (CCU)

Abstract

Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer-related deaths among men in the United States; in 2002, approx 189,000 men were diagnosed with—and 30,200 men died from—this disease (1). Moreover, prostate cancer is one of the most familial of common cancers. In comparison with men who have no family history of prostate cancer, those who have a first-degree relative diagnosed with this disease have a two—fourfold greater risk, and those with three or more first-degree relatives with prostate cancer have an approx 11-fold increased risk (2–7).

Keywords

Prostate Cancer BRCA2 Mutation Natl Cancer Inst Prostate Cancer Risk Hereditary Prostate Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American CS. Cancer Facts and Figures 2002. American Cancer Society, 2002.Google Scholar
  2. 2.
    Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 1992; 89: 3367 - 3371.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayes RB, Liff JM, Pottern LM, et al. Prostate cancer risk in U.S. blacks and whites with a family history of cancer. Int J Cancer 1995; 60: 361 - 364.PubMedCrossRefGoogle Scholar
  4. 4.
    Monroe KR, Yu MC, Kolonel LN, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1995; 1: 827 - 829.PubMedCrossRefGoogle Scholar
  5. 5.
    Whittemore AS, Wu AH, Kolonel LN, et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 1995; 141: 732 - 740.PubMedGoogle Scholar
  6. 6.
    Gronberg H, Xu J, Smith JR, et al. Early age at diagnosis in families providing evidence of linkage to the hereditary prostate cancer locus (HPC1) on chromosome 1. Cancer Res 1997; 57: 4707 - 4709.PubMedGoogle Scholar
  7. 7.
    Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate 1990; 17: 337 - 347.PubMedCrossRefGoogle Scholar
  8. 8.
    Kupelian PA, Klein EA, Witte JS, Kupelian VA, Suh JH. Familial prostate cancer: a different disease? J Urol 1997; 158: 2197 - 2201.PubMedCrossRefGoogle Scholar
  9. 9.
    Kupelian PA, Kupelian VA, Witte JS, Macklis R, Klein EA. Family history of prostate cancer in patients with localized prostate cancer: an independent predictor of treatment outcome. J Clin Oncol 1997; 15: 1478 - 1480.PubMedGoogle Scholar
  10. 10.
    Klein EA, Kupelian PA, Witte JS. Does a family history of prostate cancer result in more aggressive disease? Prostate Cancer Prostatic Dis 1998; 1: 297 - 300.PubMedCrossRefGoogle Scholar
  11. 11.
    Rodriguez C, Calle EE, Miracle-McMahill HL, et al. Family history and risk of fatal prostate cancer. Epidemiology 1997; 8: 653 - 657.PubMedGoogle Scholar
  12. 12.
    Bauer JJ, Srivastava S, Connelly RR, et al. Significance of familial history of prostate cancer to traditional prognostic variables, genetic biomarkers, and recurrence after radical prostatectomy. Urology 1998; 51: 970 - 976.PubMedCrossRefGoogle Scholar
  13. 13.
    Bova GS, Partin AW, Isaacs SD, et al. Biological aggressiveness of hereditary prostate cancer: longterm evaluation following radical prostatectomy. J Urol 1998; 160: 660 - 663.PubMedCrossRefGoogle Scholar
  14. 14.
    Kerber RA, Slattery ML. Comparison of self-reported and database-linked family history of cancer data in a case-control study. Am J Epidemiol 1997; 146: 244 - 248.PubMedCrossRefGoogle Scholar
  15. 15.
    Miller BA, Kolonel LN, Bernstein L, et al. Racial/Ethnic Patterns of Cancer in the United States 1988-1992. NIH Pub. No. 96-4104. National Cancer Institute, Bethesda, MD, 1996.Google Scholar
  16. 16.
    Powell IJ, Schwartz K, Hussain M. Removal of the financial barrier to health care: does it impact on prostate cancer at presentation and survival? A comparative study between black and white men in a Veterans Affairs system. Urology 1995; 46: 825 - 830.PubMedCrossRefGoogle Scholar
  17. 17.
    Powell IJ. Prostate cancer and African-American men. Oncology (Huntingt), 11:599-605; discussion 606-515 passim, 1997.Google Scholar
  18. 18.
    Robbins AS, Whittemore AS, Van Den Eeden SK. Race, prostate cancer survival, and membership in a large health maintenance organization. J Natl Cancer Inst 1998; 90: 986 - 990.PubMedCrossRefGoogle Scholar
  19. 19.
    Stanford JL, Stephenson RA, Coyle LM, et al. Prostate Cancer Trends 1973-1995, SEER Program. NIH Pub. No. 99-4543. National Cancer Institute, Bethesda, MD, 1999.Google Scholar
  20. 20.
    Schapira MM, McAuliffe TL, Nattinger AB. Treatment of localized prostate cancer in African-American compared with Caucasian men. Less use of aggressive therapy for comparable disease. Med Care 1995; 33: 1079 - 1088.PubMedCrossRefGoogle Scholar
  21. 21.
    Harlan L, Brawley O, Pommerenke F, Wali P, Kramer B. Geographic, age, and racial variation in the treatment of local/regional carcinoma of the prostate. J Clin Oncol 1995; 13: 93 - 100.PubMedGoogle Scholar
  22. 22.
    Merrill RM, Weed DL, Feuer EJ. The lifetime risk of developing prostate cancer in white and black men. Cancer Epidemiol Biomarkers Prev 1997; 6: 763 - 768.PubMedGoogle Scholar
  23. 23.
    Smith DS, Carvalhal GF, Mager DE, Bullock AD, Catalona WJ. Use of lower prostate specific antigen cutoffs for prostate cancer screening in black and white men. J Urol 1998; 160: 1734 - 1738.PubMedCrossRefGoogle Scholar
  24. 24.
    Demark-Wahnefried W, Schildkraut JM, Iselin CE, et al. Treatment options, selection, and satisfaction among African American and white men with prostate carcinoma in North Carolina. Cancer 1998; 83: 320 - 330.PubMedCrossRefGoogle Scholar
  25. 25.
    Fowler JE Jr, Bigler SA, Kilambi NK, Land SA. Results of transition zone biopsy in black and white men with suspected prostate cancer. Urology 1999; 53: 346 - 350.PubMedCrossRefGoogle Scholar
  26. 26.
    Jarvik GP. Complex segregation analyses: uses and limitations. Am J Hum Genet 1998; 63: 942 - 946.PubMedCrossRefGoogle Scholar
  27. 27.
    Carter BS, Bova GS, Beaty TH, et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol 1993; 150: 797 - 802.PubMedGoogle Scholar
  28. 28.
    Narod SA, Dupont A, Cusan L, et al. The impact of family history on early detection of prostate cancer. Nat Med 1995; 1: 99 - 101.PubMedCrossRefGoogle Scholar
  29. 29.
    Cannon-Albright L, Eeles R. Progress in prostate cancer. Nat Genet 1995; 9: 336 - 338.PubMedCrossRefGoogle Scholar
  30. 30.
    Eeles RA, Durocher F, Edwards S, et al. Linkage analysis of chromosome 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group U.K. Familial Prostate Cancer Study Collaborators. Am J Hum Genet 1998: 62: 653 - 658.PubMedCrossRefGoogle Scholar
  31. 31.
    Haseman JK, Elston RC. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 1972; 2: 3 - 19.PubMedCrossRefGoogle Scholar
  32. 32.
    Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222 - 228.PubMedGoogle Scholar
  33. 33.
    Fulker DW, Cardon LR. A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet 1994; 54: 1092 - 1103.PubMedGoogle Scholar
  34. 34.
    Kruglyak L, Lander ES. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 1995; 57: 439 - 454.PubMedGoogle Scholar
  35. 35.
    Eeles RA. Genetic predisposition to prostate cancer. Prostate Cancer Prostatic Dis 1999; 2: 9 - 15.PubMedCrossRefGoogle Scholar
  36. 36.
    Nwosu V, Carpten J, Trent JM, Sheridan R. Heterogeneity of genetic alterations in prostate cancer: evidence of the complex nature of the disease. Hum Mol Genet 2001; 10: 2313 - 2318.PubMedCrossRefGoogle Scholar
  37. 37.
    Ostrander EA, Stanford JL. Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 2000; 67: 1367 - 1375.PubMedCrossRefGoogle Scholar
  38. 38.
    Simard J, Dumont M, Soucy P, Labrie F. Perspective: prostate cancer susceptibility genes. Endocrinology 2002; 143: 2029 - 2040.PubMedCrossRefGoogle Scholar
  39. 39.
    Singh R, Eeles RA, Durocher F, et al. High risk genes predisposing to prostate cancer development-do they exist? Prostate Cancer Prostatic Dis 2000; 3: 241 - 247.PubMedCrossRefGoogle Scholar
  40. 40.
    Tavtigian SV, Simard J, Teng DH, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172 - 180.PubMedCrossRefGoogle Scholar
  41. 41.
    Rebbeck TR, Walker AH, Zeigler-Johnson C, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000; 67: 1014 - 1019.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang L, McDonnell SK, Elkins DA, et al. Role of HPC2/ELAC2 in hereditary prostate cancer. Cancer Res 2001; 61: 6494 - 6499.PubMedGoogle Scholar
  43. 43.
    Suarez BK, Gerhard DS, Lin J, et al. Polymorphisms in the prostate cancer susceptibility gene HPC2/ELAC2 in multiplex families and healthy controls. Cancer Res 2001; 61: 4982 - 4984.PubMedGoogle Scholar
  44. 44.
    Rokman A, Ikonen T, Mononen N, et al. ELAC2/HPC2 involvement in hereditary and sporadic prostate cancer. Cancer Res 2001; 61: 6038 - 6041.PubMedGoogle Scholar
  45. 45.
    Xu J, Zheng SL, Carpten JD, et al. Evaluation of linkage and association of HPC2/ELAC2 in patients with familial or sporadic prostate cancer. Am J Hum Genet 2001; 68: 901 - 911.PubMedCrossRefGoogle Scholar
  46. 46.
    Camp NJ, Tavtigian SV. Meta-analysis of associations of the Ser217Leu and Ala541Thr variants in ELAC2 (HPC2) and prostate cancer. Am J Hum Genet 2003; 71: 1475 - 1478.CrossRefGoogle Scholar
  47. 47.
    Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371 - 1374.PubMedCrossRefGoogle Scholar
  48. 48.
    Berthon P, Valeri A, Cohen-Akenine A, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet 1998; 62: 1416 - 1424.PubMedCrossRefGoogle Scholar
  49. 49.
    Goode EL, Stanford JL, Chakrabarti L, et al. Linkage analysis of 150 high-risk prostate cancer families at 1q24-25. Genet Epidemiol 2000; 18: 251 - 275.PubMedCrossRefGoogle Scholar
  50. 50.
    McIndoe RA, Stanford JL, Gibbs M, et al. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24-25. Am J Hum Genet 1997; 61: 347 - 353.PubMedCrossRefGoogle Scholar
  51. 51.
    Cooney KA, McCarthy JD, Lange E, et al. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997; 89: 955 - 959.PubMedCrossRefGoogle Scholar
  52. 52.
    Hsieh CL, Oakley-Girvan I, Gallagher RP, et al. Re: prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997; 89: 1893 - 1894.PubMedCrossRefGoogle Scholar
  53. 53.
    Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM. Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 2001; 68: 1197 - 1206.PubMedCrossRefGoogle Scholar
  54. 54.
    Xu J, Zheng SL, Chang B, et al. Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet 2001; 108: 335 - 345.PubMedCrossRefGoogle Scholar
  55. 55.
    Gronberg H, Smith J, Emanuelsson M, et al. In Swedish families with hereditary prostate cancer linkage to the HPC1 locus on chromosome 1q24-25 is restricted to families with early-onset prostate cancer. Am J Hum Genet 1999; 65: 134 - 140.PubMedCrossRefGoogle Scholar
  56. 56.
    Goode EL, Stanford JL, Peters MA, et al. Clinical characteristics of prostate cancer in an analysis of linkage to four putative susceptibility loci. Clin Cancer Res 2001; 7: 2739 - 2749.PubMedGoogle Scholar
  57. 57.
    Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30: 181 - 184.PubMedCrossRefGoogle Scholar
  58. 58.
    Hassel BA, Zhou A, Sotomayor C, Maran A, Silverman RH. A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J 1993; 12: 3297 - 3304.PubMedGoogle Scholar
  59. 59.
    Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA 1993; 90: 5893 - 5895.PubMedCrossRefGoogle Scholar
  60. 60.
    Rennert H, Bercovich D, Hubert A, et al. A novel founder mutation in the RNASEL gene 471 delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet 2002; 71: 981 - 984.PubMedCrossRefGoogle Scholar
  61. 61.
    Rokman A, Ikonen T, Seppala EH, et al. Germline alterations of the RNASEL gene a candidate HPC 1 gene at 1q25 in patients and families with prostate cancer. Am J Hum Genet 2002; 70: 1299 - 1304.PubMedCrossRefGoogle Scholar
  62. 62.
    Casey G, Neville PJ, Plummer SJ, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 2002; 32: 581 - 583.PubMedCrossRefGoogle Scholar
  63. 63.
    The SAS System, release 6.12. SAS, Carey, NC, 1996.Google Scholar
  64. 64.
    Wang L, McDonnell SK, Elkins DA, et al. Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am J Hum Genet 2002; 71: 116 - 123.PubMedCrossRefGoogle Scholar
  65. 65.
    MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R. Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151 - 159.PubMedCrossRefGoogle Scholar
  66. 66.
    Macoska JA, Trybus TM, Benson PD, et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 1995; 55: 5390 - 5395.PubMedGoogle Scholar
  67. 67.
    Vocke CD, Pozzatti RO, Bostwick DG, et al. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12-21. Cancer Res 1996; 56: 2411 - 2416.PubMedGoogle Scholar
  68. 68.
    Prasad MA, Trybus TM, Wojno KJ, Macoska JA. Homozygous and frequent deletion of proximal 8p sequences in human prostate cancers: identification of a potential tumor suppressor gene site. Genes Chromosomes Cancer 1998; 23: 255 - 262.PubMedCrossRefGoogle Scholar
  69. 69.
    Bova GS, Carter BS, Bussemakers MJ, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869 - 3873.PubMedGoogle Scholar
  70. 70.
    Kagan J, Stein J, Babaian RJ, et al. Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene 1995; 11: 2121 - 2126.PubMedGoogle Scholar
  71. 71.
    Xu J, Zheng SL, Hawkins GA, et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23. Am J Hum Genet 2001; 69: 341 - 350.PubMedCrossRefGoogle Scholar
  72. 72.
    Wiklund F, Jonsson BA, Goransson I, Bergh A, Gronberg H. Linkage analysis of prostate cancer susceptibility: confirmation of linkage at 8p22-23. Hum Genet 2003; 112: 414 - 418.PubMedGoogle Scholar
  73. 73.
    Mietus-Snyder M, Glass CK, Pitas RE. Transcriptional activation of scavenger receptor expression in human smooth muscle cells requires AP-1/c-Jun and C/EBPbeta: both AP-1 binding and JNK activation are induced by phorbol esters and oxidative stress. Arterioscler Thromb Vasc Biol 1998; 18.Google Scholar
  74. 74.
    Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997; 386: 292 - 296.PubMedCrossRefGoogle Scholar
  75. 75.
    Thomas CA, Li Y, Kodama T, et al. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000; 191: 147 - 156.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu J, Zheng SL, Komiya A, et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002; 32: 321 - 325.PubMedCrossRefGoogle Scholar
  77. 77.
    Xu J, Zheng SL, Komiya A, et al. Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am J Hum Genet 2003; 72: 208 - 212.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu J, Meyers D, Freije D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20: 175 - 179.PubMedCrossRefGoogle Scholar
  79. 79.
    Lange EM, Chen H, Brierley K, et al. Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res 1999; 5: 4013 - 4020.PubMedGoogle Scholar
  80. 80.
    Schleutker J, Matikainen M, Smith J, et al. A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland: frequent HPCX linkage in families with late-onset disease. Clin Cancer Res 2000; 6: 4810 - 4815.PubMedGoogle Scholar
  81. 81.
    Peters MA, Jarvik GP, Janer M, et al. Genetic linkage analysis of prostate cancer families to Xq27-28. Hum Hered 2001; 51: 107 - 113.PubMedCrossRefGoogle Scholar
  82. 82.
    Bochum S, Paiss T, Vogel W, Herkommer K, Hautmann R, Haeussler J. Confirmation of the prostate cancer susceptibility locus HPCX in a set of 104 German prostate cancer families. Prostate 2002; 52: 12 - 19.PubMedCrossRefGoogle Scholar
  83. 83.
    Stephan DA, Howell GR, Teslovich TM, et al. Physical and transcript map of the hereditary prostate cancer region at xq27. Genomics 2002; 79: 41 - 50.PubMedCrossRefGoogle Scholar
  84. 84.
    Berry R, Schroeder JJ, French AJ, et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 2000; 67: 82 - 91.PubMedCrossRefGoogle Scholar
  85. 85.
    Bock CH, Cunningham JM, McDonnell SK, et al. Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am J Hum Genet 2001; 68: 795 - 801.PubMedCrossRefGoogle Scholar
  86. 86.
    Cancel-Tassin G, Latil A, Valeri A, et al. PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet 2001; 9: 135 - 142.PubMedCrossRefGoogle Scholar
  87. 87.
    Gibbs M, Chakrabarti L, Stanford JL, et al. Analysis of chromosome 1q42.2-43 in 152 families with high risk of prostate cancer. Am J Hum Genet 1999; 64: 1087 - 1095.PubMedCrossRefGoogle Scholar
  88. 88.
    Berry R, Schaid DJ, Smith JR, et al. Linkage analyses at the chromosome 1 loci 1q24-25 (HPC1) 1q42.2-43 (PCAP) and 1p36 (CAPB) in families with hereditary prostate cancer. Am J Hum Genet 2000; 66: 539 - 546.PubMedCrossRefGoogle Scholar
  89. 89.
    Suarez BK, Lin J, Witte JS, et al. Replication linkage study for prostate cancer susceptibility genes. Prostate 2000; 45: 106 - 114.PubMedCrossRefGoogle Scholar
  90. 90.
    Bergthorsson JT, Johannesdottir G, Arason A, et al. Analysis of HPC 1 HPCX and PCaP in Icelandic hereditary prostate cancer. Hum Genet 2000; 107: 372 - 375.PubMedCrossRefGoogle Scholar
  91. 91.
    Whittemore AS, Lin IG, Oakley-Girvan I, et al. No evidence of linkage for chromosome 1q42.2-43 in prostate cancer. Am J Hum Genet 1999; 65: 254 - 256.PubMedCrossRefGoogle Scholar
  92. 92.
    Hsieh CL, Oakley-Girvan I, Balise RR, et al. A genome screen of families with multiple cases of prostate cancer: evidence of genetic heterogeneity. Am J Hum Genet 2001; 69: 148 - 158.PubMedCrossRefGoogle Scholar
  93. 93.
    Gibbs M, Stanford JL, McIndoe RA, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64: 776 - 787.PubMedCrossRefGoogle Scholar
  94. 94.
    Isaacs SD, Kiemeney LA, Baffoe-Bonnie A, Beaty TH, Walsh PC. Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 1995; 87: 991 - 996.PubMedCrossRefGoogle Scholar
  95. 95.
    Bello MJ, Vaquero J, de Campos JM, et al. Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors. Int J Cancer 1994; 57: 172 - 175.PubMedCrossRefGoogle Scholar
  96. 96.
    White PS, Maris JM, Beltinger C, et al. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proc Natl Acad Sci USA 1995; 92: 5520 - 5524.PubMedCrossRefGoogle Scholar
  97. 97.
    Smith JS, Alderete B, Minn Y, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 1999; 18: 4144 - 4152.PubMedCrossRefGoogle Scholar
  98. 98.
    Bauer A, Savelyeva L, Claas A, Praml C, Berthold F, Schwab M. Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosomes Cancer 2001; 31: 228 - 239.PubMedCrossRefGoogle Scholar
  99. 99.
    Suarez BK, Lin J, Burmester JK, et al. A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 2000; 66: 933 - 944.PubMedCrossRefGoogle Scholar
  100. 100.
    Witte JS, Suarez BK, Theil B, et al. Genome-wide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci. The Prostate, in press.Google Scholar
  101. 101.
    Paris PL, Witte JS, Kupelian PA, et al. Identification and fine mapping of a region showing a high frequency of allelic imbalance on chromosome 16q23.2 that corresponds to a prostate cancer susceptibility locus. Cancer Res 2000; 60: 3645 - 3649.PubMedGoogle Scholar
  102. 102.
    Mangelsdorf M, Ried K, Woollatt E, et al. Chromosomal fragile site FRA16D and DNA instability in cancer. Cancer Res 2000; 60: 1683 - 1689.PubMedGoogle Scholar
  103. 103.
    Paige AJ, Taylor KJ, Stewart A, et al. A 700-kb physical map of a region of 16q23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D\. Cancer Res 2000; 60: 1690 - 1697.PubMedGoogle Scholar
  104. 104.
    Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457 - 4463.PubMedGoogle Scholar
  105. 105.
    Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 2000; 60: 2140 - 2145.PubMedGoogle Scholar
  106. 106.
    Paige AJ, Taylor KJ, Taylor C, et al. WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci USA 2001; 98: 11417 - 11422.PubMedCrossRefGoogle Scholar
  107. 107.
    Bednarek AK, Keck-Waggoner CL, Daniel RL, et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 2001; 61: 8068 - 8073.PubMedGoogle Scholar
  108. 108.
    Sellers TA, Potter JD, Rich SS, et al. Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst 1994; 86: 1860 - 1865.PubMedCrossRefGoogle Scholar
  109. 109.
    Tulinius H, Egilsson V, Olafsdottir GH, Sigvaldason H. Risk of prostate, ovarian, and endometrial cancer among relatives of women with breast cancer. BMJ 1992; 305: 855 - 857.PubMedCrossRefGoogle Scholar
  110. 110.
    Anderson DE, Badzioch MD. Breast cancer risks in relatives of male breast cancer patients. J Natl Cancer Inst 1992; 84: 1114 - 1117.PubMedCrossRefGoogle Scholar
  111. 111.
    Gronberg H, Bergh A, Damber JE, Emanuelsson M. Cancer risk in families with hereditary prostate carcinoma. Cancer 2000; 89: 1315 - 1321.PubMedCrossRefGoogle Scholar
  112. 112.
    Valeri A, Fournier G, Morin V, et al. Early onset and familial predisposition to prostate cancer significantly enhance the probability for breast cancer in first degree relatives. Int J Cancer 2000; 86: 883 - 887.PubMedCrossRefGoogle Scholar
  113. 113.
    Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1998; 62: 676 - 689.PubMedCrossRefGoogle Scholar
  114. 114.
    Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94: 1358 - 1365.PubMedCrossRefGoogle Scholar
  115. 115.
    Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 1999; 91: 1310 - 1316.CrossRefGoogle Scholar
  116. 116.
    Edwards SM, Kote-Jarai Z, Meitz J, et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003; 72: 1 - 12.PubMedCrossRefGoogle Scholar
  117. 117.
    Brothman AR, Steele MR, Williams BJ, et al. Loss of chromosome 17 loci in prostate cancer detected by polymerase chain reaction quantitation of allelic markers. Genes Chromosomes Cancer 1995; 13: 278 - 284.PubMedCrossRefGoogle Scholar
  118. 118.
    Gao X, Zacharek A, Salkowski A, et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 1995; 55: 1002 - 1005.PubMedGoogle Scholar
  119. 119.
    Gudmundsson J, Johannesdottir G, Bergthorsson JT, et al. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-q13. Cancer Res 1995; 55: 4830 - 4832.PubMedGoogle Scholar
  120. 120.
    Hyytinen ER, Frierson HF Jr, Boyd JC, Chung LW, Dong JT. Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 1999; 25: 108 - 114.Google Scholar
  121. 121.
    Thorlacius S, Olafsdottir G, Tryggvadottir L, et al. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat Genet 1996; 13: 117 - 119.PubMedCrossRefGoogle Scholar
  122. 122.
    Sigurdsson S, Thorlacius S, Tomasson J, et al. BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 1997; 75: 758 - 761.PubMedCrossRefGoogle Scholar
  123. 123.
    Tulinius H, Olafsdottir GH, Sigvaldason H, et al. The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 2002; 39: 457 - 462.PubMedCrossRefGoogle Scholar
  124. 124.
    Gronberg H, Ahman AK, Emanuelsson M, Bergh A, Damber JE, Borg A. BRCA2 mutation in a family with hereditary prostate cancer. Genes Chromosomes Cancer 2001; 30: 299 - 301.PubMedCrossRefGoogle Scholar
  125. 125.
    Hubert A, Peretz T, Manor O, et al. The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 1999; 65: 921 - 924.PubMedCrossRefGoogle Scholar
  126. 126.
    Lehrer S, Fodor F, Stock RG, et al. Absence of 185delAG mutation of the BRCA1 gene and 6174delT mutation of the BRCA2 gene in Ashkenazi Jewish men with prostate cancer. Br J Cancer 1998; 78: 771 - 773.PubMedCrossRefGoogle Scholar
  127. 127.
    Nastiuk KL, Mansukhani M, Terry MB, et al. Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 1999; 40: 172 - 177.PubMedCrossRefGoogle Scholar
  128. 128.
    Vazina A, Baniel J, Yaacobi Y, et al. The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 2000; 83: 463 - 466.PubMedCrossRefGoogle Scholar
  129. 129.
    Wilkens EP, Freije D, Xu J, et al. No evidence for a role of BRCA1 or BRCA2 mutations in Ashkenazi Jewish families with hereditary prostate cancer. Prostate 1999; 39: 280 - 284.PubMedCrossRefGoogle Scholar
  130. 130.
    Abeliovich D, Kaduri L, Lerer I, et al. The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women. Am J Hum Genet 1997; 60: 505 - 514.PubMedGoogle Scholar
  131. 131.
    Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336: 1401 - 1408.PubMedCrossRefGoogle Scholar
  132. 132.
    Thompson D, Easton D. Variation in cancer risks by mutation position, in BRCA2 mutation carriers. Am J Hum Genet 2001; 68: 410 - 419.PubMedCrossRefGoogle Scholar
  133. 133.
    Gayther SA, de Foy KA, Harrington P, et al. The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 2000; 60: 4513 - 4518.PubMedGoogle Scholar
  134. 134.
    Thorlacius S, Struewing JP, Hartge P, et al. Population-based study of risk of breast cancer in carriers of BRCA2 mutation. Lancet 1998; 352: 1337 - 1339.PubMedCrossRefGoogle Scholar
  135. 135.
    Witte JS, Goddard KA, Conti DV, et al. Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 2000; 67: 92 - 99.PubMedCrossRefGoogle Scholar
  136. 136.
    Paiss T, Worner S, Kurtz F, et al. Linkage of aggressive prostate cancer to chromosome 7q31-33 in German prostate cancer families. Eur J Hum Genet 2003; 11: 17 - 22.PubMedCrossRefGoogle Scholar
  137. 137.
    Slager SL, Schaid DJ, Cunningham JM, et al. Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 2003; 72: 759 - 762.PubMedCrossRefGoogle Scholar
  138. 138.
    Neville PJ, Conti DV, Paris PL, et al. Prostate cancer aggressiveness locus on chromosome 7q32-q33 identified by linkage and allelic imbalance studies. Neoplasia 2002; 4: 424 - 431.PubMedCrossRefGoogle Scholar
  139. 139.
    Neville PJ, Conti DV, Krumroy LM, et al. Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 2003; 36: 332 - 339.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Phillippa J. Neville
  • Graham Casey
  • John S. Witte

There are no affiliations available

Personalised recommendations