Skip to main content

Quantitative Nuclear Grade

Clinical Applications of the Quantitative Measurement of Nuclear Structure Using Image Analysis

  • Chapter
Cancer Chemoprevention

Abstract

Changes in nuclear structure occur in response to normal physiological processes such as cell division, apoptosis, cell differentiation, and senescence, as well as in disease-related processes such as cancer, where they are manifested in response to numerous alterations in gene expression (1). Therefore, the accurate and reproducible measurement of nuclear structure changes can provide important objective information when assessing and managing the pathologic disease process (24). Several studies have demonstrated that transformation of a normal cell into a malignant cell requires a series of genetic changes (or hits) (57) such as mutations, DNA methylation events in promoters or exons, chromosome deletions, insertions, amplifications, and translocations (713). Additionally, several classes of well-characterized nuclear organelles (spliceosomes, centrosomes, telomeres, and nucleosomes), gene families (HMGA, SWI/SNF modifiers, RARs, MARs, etc.), and key structural and regulatory proteins (e.g., nuclear matrix proteins, HMG proteins, nuclear histones H1, H2A, H2B, H3, and H4, and SWI/SNF complex) have been identified as being important to maintenance of nuclear chromatin structure and function (1327). One example in this area involves work on the combinatorial chemistry of the histone tails of the nucleosome’s protein core. There is evidence that acetylation, methylation, phosphorylation, glycosylation, and ubiquination of the histone tail can produce changes in chromatin structure directly related to differential patterns of gene expression (27).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein GS, Berezney R, Getzenberg RH, eds. Nuclear structure and cancer. J Cell Biochem Suppl 2000;35:1–157.

    Article  Google Scholar 

  2. Bartels PH Computer-generated diagnosis and image analysis: an overview. Cancer 1992;69:1636–1638.

    Google Scholar 

  3. Palcic B. Nuclear texture: can it be used as a surrogate endpoint biomarker? J Cell Biochem 1994;Suppl 19:40–46.

    Google Scholar 

  4. Veltri, RW, Partin AW, Miller MC. Quantitative nuclear grade (QNG): a new image analysis-based biomarker of clinically relevant nuclear structure alterations. J Cell Biochem 2000;35:151–157.

    Article  Google Scholar 

  5. Fearon ER. A genetic basis for multi-step pathway of colorectal tumorigenesis. Princess Takamatsu Symp 1991;22:37–48.

    PubMed  CAS  Google Scholar 

  6. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993;9:138–141.

    Article  PubMed  CAS  Google Scholar 

  7. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001;1:157–162.

    Article  PubMed  CAS  Google Scholar 

  8. Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene 2001;20:3156–3165.

    Article  PubMed  CAS  Google Scholar 

  9. Lalani el-N, Laniado ME, Abel PD. Molecular and cellular biology of prostate cancer. Cancer Metastasis Rev 1997;16:29–66.

    Article  Google Scholar 

  10. Fearon ER. Molecular genetic studies of the adenoma-carcinoma sequence. Adv Intern Med 1994;39:123–147.

    PubMed  CAS  Google Scholar 

  11. Sidranski D, von Eschenbach A, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 1991;252:706–708.

    Article  Google Scholar 

  12. Spruck CH, Ohneseit PF, Gonzalez-Zulueta M, et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 1994;54:784–788.

    PubMed  CAS  Google Scholar 

  13. Stein GS, Montecino M, van Wijnen AJ, et al. Nuclear structure-gene interrelationships: implications for aberrant gene expression in cancer. Cancer Res 2000;60:2067–2076.

    PubMed  CAS  Google Scholar 

  14. Konety BR, Getzenberg RH. Nuclear structural proteins as biomarkers of cancer. J Cell Biochem 1999;32:183–191.

    Article  PubMed  Google Scholar 

  15. Holth LT, Chadee DN, Spencer VA, et al. Chromatin, nuclear matrix and cytoskeleton: role of cell structure in neoplastic transformation (review). Int J Oncol 1998;13:827–837.

    PubMed  CAS  Google Scholar 

  16. Getzenberg RH. Nuclear matrix and regulation of gene expression: tissue specificity. J Cell Biochem 1994;55:22–31.

    Article  PubMed  CAS  Google Scholar 

  17. Leman ES, Getzenberg RH. Nuclear matrix proteins as biomarkers in prostate cancer. J Cell Biochem 2002;86:213–223.

    Article  PubMed  CAS  Google Scholar 

  18. Reeves R, Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta 2001;1519:13–29.

    PubMed  CAS  Google Scholar 

  19. Sutherland HGE, Mumford GK, Newton K, et al. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet 2001;10:1995–2011.

    Article  PubMed  CAS  Google Scholar 

  20. Robertson K. DNA methylation and chromatin—unraveling the tangled web. Oncogene 2002;21:5361–5379.

    Article  PubMed  CAS  Google Scholar 

  21. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001;293:1068–1070.

    Article  PubMed  CAS  Google Scholar 

  22. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002;12:5400–5413.

    Article  CAS  Google Scholar 

  23. Berger SL, Felsenfeld G. Chromatin goes global. Mol Cell 2001;8:263–268.

    Article  PubMed  CAS  Google Scholar 

  24. Davie JR, Samuel SK, Spencer VA, et al. Organization of chromatin in cancer cells: role of signaling pathways. Biochem Cell Biol 1999;77:265–275.

    Article  PubMed  CAS  Google Scholar 

  25. Klochendler-Yeivin A, Yaniv M. Chromatin modifiers and tumor suppression. Biochim Biophys Acta 2001;1551:1–10.

    Google Scholar 

  26. Duensing S, Munger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta 2001;1471:81–88.

    Google Scholar 

  27. Jenewein T, Allis CD. Translating the histone code. Science 2002;293:1074–1079.

    Article  Google Scholar 

  28. Prescott JL, Montie J, Pugh TW, Veltri RW. Clinical sensitivity of p53 mutation detection in matched bladder tumor, bladder wash, and voided urine specimens. Cancer 2001;91:2127–2135.

    Article  PubMed  CAS  Google Scholar 

  29. Solkolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in the urine. J Mol Diag 2000;2:116–123.

    Google Scholar 

  30. Steiner G, Schoenberg MP, Linn JF, et al. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med 1997;3:621–624.

    Article  PubMed  CAS  Google Scholar 

  31. Cairns P, Sidransky D. Molecular methods for the diagnosis of cancer. Biochim Biophys Acta 1999;1423:C11–C18.

    PubMed  CAS  Google Scholar 

  32. Sturgeon C. Practice guidelines for tumor marker use in the clinic. Clin Chem 2002;48:1151–1159.

    PubMed  CAS  Google Scholar 

  33. Macgregor PF, Squire JA. Application of microarrays to analysis of gene expression in cancer. Clin Chem 2002;48:1170–1177.

    PubMed  CAS  Google Scholar 

  34. Khan J, Bittner ML, Chen Y, et al. DNA microarray technology: the anticipated impact on the study of human disease. Biochim Biophys Acta 1999;1423:M17–M28.

    PubMed  CAS  Google Scholar 

  35. Bacus JW, Grace LJ. Optical microscope system for standardized cell measurements and analyses. Appl Opt 1987;26:3280–3293.

    Article  Google Scholar 

  36. Gibas Z, Gibas L. Cytogenetics of bladder cancer. Cancer Genet Cytogenet 1997;95:108–115.

    Article  PubMed  CAS  Google Scholar 

  37. Slaton JW, Dinney CPN, Veltri RW, et al. DNA ploidy enhances the cytologic prediction of recurrent transitional cell carcinoma of the bladder. J Urol 1997;158:806–811.

    Article  PubMed  CAS  Google Scholar 

  38. Veltri RW, O’Dowd GJ, Orozco R, Miller MC. The role of biopsy pathology, quantitative nuclear morphometry, and biomarkers in the preoperative prediction of prostate cancer staging and prognosis. Semin Urol Oncol 1998;16:106–117.

    PubMed  CAS  Google Scholar 

  39. Wojcik EM, Miller MC, O’Dowd GJ, Veltri RW. Value of computer-assisted quantitative nuclear grading in differentiation of normal urothelial cells from low and high grade TCC. Anal Quant Cytol Histol 1998;20:69–76.

    PubMed  CAS  Google Scholar 

  40. Palcic B, MacAulay C. Malignancy associated changes: can they be employed clinically? In Compendium on Computerized Cytology and Histology Laboratory. Weid GL, Bartels PH, Rosenthal DL, Schenck U, eds. Tutorials of Cytology, Chicago; 1994: pp. 157–165.

    Google Scholar 

  41. Diamond DA, Berry SJ, Umbricht C, et al. Computerized image analysis of nuclear shape as a prognostic factor for prostatic cancer. Prostate 1982;3:321–332.

    Article  PubMed  CAS  Google Scholar 

  42. Partin AW, Walsh AC, Pitcock RV, et al: A comparison of nuclear morphometry and Gleason grade as a predictor of prognosis in stage A2 prostate cancer: a critical analysis. J Urol 1989;142:1254–1258.

    PubMed  CAS  Google Scholar 

  43. Veltri RW, Miller MC, Slaton JW, et al. Computer-assisted quantitative nuclear grading (QNG) can predict bladder cancer recurrence using bladder cancer cytology samples. J Urol 1997;157:342.

    Google Scholar 

  44. Badalament RA, Miller MC, Peller PA, et al. An algorithm for predicting non-organ confined prostate cancer using the results obtained from sextant core biopsies with PSA level. J Urol 1996;156:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  45. Veltri RW, Miller MC, Mangold LA et al. Prediction of pathological stage in patients with clinical stage T1c prostate cancer: the new challenge. J Urol 2002;68:100–104.

    Google Scholar 

  46. Veltri RW, Miller MC, Partin AW, et al. Ability to predict biochemical progression using Gleason score and computer-generated quantitative nuclear grade derived from cancer cell nuclei. Urology 1996;48:685–691.

    Article  PubMed  CAS  Google Scholar 

  47. Potter SR, Miller MC, Mangold LA, et al. Genetically engineered neural networks for predicting prostate cancer progression after radical prostatectomy. Urology 1999;54:791–795.

    Article  PubMed  CAS  Google Scholar 

  48. Reckwitz T, Potter SR, Snow PB, et al. Artificial neural networks in urology: Update 2000. Prostate Cancer Prostatic Dis 1999;2:222–226.

    Article  PubMed  Google Scholar 

  49. Veltri RW, Chaudhari M, Miller MC, et al. Comparison of logistic regression and neural net modeling for predic tion of prostate cancer pathologic stage. Clin Chem 2002;48:1828–1834.

    PubMed  CAS  Google Scholar 

  50. Veltri, RW, Miller MC, Partin, AW, et al. Prediction of prostate cancer stage using quantitative biopsy pathology. Cancer 2001;91:2322–2328.

    Article  PubMed  CAS  Google Scholar 

  51. Veltri RW, Miller MC, An G. Standardization, analytical validation, and quality control of intermediate endpoint biomarkers. Urology 2001;57:164–170.

    Article  PubMed  CAS  Google Scholar 

  52. Haese A, Chaudhari M, Miller MC, et al. Quantitative biopsy pathology for the prediction of pathologically organ confined prostate cancer: a multiinstitutional validation study. Cancer 2003;97:969–978.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Veltri, R.W., Partin, A.W., Miller, M.C. (2005). Quantitative Nuclear Grade. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics