Skip to main content

Modeling Human Colorectal Cancer in Mice for Chemoprevention Studies

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

New approaches to chemoprevention studies have evolved from a better understanding of the genetics and molecular biology of cancer. Previous research has focused on human cancer cell lines and xenografts of human cancer cells in immunologically compromised mice. Though these experimental approaches have provided much information on cancer cells, they have precluded any insight into the intricate cross-talk between transformed cells and the host in vivo (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Klausner RD. Studying cancer in the mouse. Oncogene 1999;18:5249–5252.

    Article  PubMed  CAS  Google Scholar 

  3. Kreidberg JA, Natoli TA. Animal models for tumor suppressor genes. In Tumor Suppressor Genes in Human Cancer. Fisher DE, ed. Humana Press, Totowa, NJ, 2001; pp. 1–28.

    Google Scholar 

  4. Ghebranious N, Donehower LA. Mouse models in tumor suppression. Oncogene 1998;17:3385–3400.

    Article  PubMed  Google Scholar 

  5. Macleod KF, Jacks T. Insights into cancer from transgenic mouse models. J Pathol 1999;187:43–60.

    Article  PubMed  CAS  Google Scholar 

  6. Iredale JP. Gene knockouts demystified. J Clin Pathol Mol Pathol 1999;52:111–116.

    CAS  Google Scholar 

  7. Wu X, Pandolfi PP. Mouse models for multistep tumorigenesis. Trends Cell Biol 2001;11:S2–S9.

    PubMed  CAS  Google Scholar 

  8. Hakem R, Mak TW. Animal models of tumor-suppressor genes. Annu Rev Genet 2001;35:209–241.

    Article  PubMed  CAS  Google Scholar 

  9. Hann B, Balmain A. Building ‘validated’ mouse models of human cancer. Curr Opin Cell Biol 2001;13:778–784.

    Article  PubMed  CAS  Google Scholar 

  10. Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumorigenesis. Biochim Biophys Acta 2002;1602:97–113.

    PubMed  CAS  Google Scholar 

  11. Fodde R, Smits R. Disease model: familial adenomatous polyposis. Trends Mol Med 2001;7:369–373.

    Article  PubMed  CAS  Google Scholar 

  12. Heyer J, Yang K, Lipkin M, et al. Mouse models for colorectal cancer. Oncogene 1999;18:5325–5233.

    Article  PubMed  CAS  Google Scholar 

  13. Kucherlapati R, Lin DP, Edelmann W. Mouse models for human familial adenomatous polyposis. Seminar Cancer Biol 2001;11:219–225.

    Article  CAS  Google Scholar 

  14. Bertagnolli MM. APC and intestinal carcinogenesis: insights from animal models. Ann NY Acad Sci 1999;889:32–44.

    Article  PubMed  CAS  Google Scholar 

  15. Lipkin M, Yang K, Edelmann W, et al. Preclinical mouse models for cancer chemoprevention studies. Ann NY Acad Sci 2001;889:14–19.

    Article  Google Scholar 

  16. Meuwissen R, Jonkers J, Berns A. Mouse models for sporadic cancer. Exp Cell Res 2001;264:100–110.

    Article  PubMed  CAS  Google Scholar 

  17. Jonkers J, Berns A. Conditional mouse models of sporadic cancer. Nature Rev Cancer 2002;2:251–265.

    Article  CAS  Google Scholar 

  18. Fearon ER, Gruber SB. Molecular abnormalities in colon and rectal cancer. In The Molecular Basis of Cancer. Medelson J, Howeley PM, Israel MA, Liotta LA, eds. Saunders, Philadelphia, 2001; pp. 289–312.

    Google Scholar 

  19. Kinzler KW, Vogelstein B. Colorectal tumors. In The Genetic Basis of Human Cancer. Vogelstein B, Kinzler KW, eds. McGraw-Hill, NewYork, 2002; pp. 583–612.

    Google Scholar 

  20. Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 2000;18:1967–1979.

    PubMed  CAS  Google Scholar 

  21. Van Es JH, Giles RH, Clevers HC. The many faces of the tumor suppressor gene APC. Exp Cell Res 2001;264: 126–134.

    Article  PubMed  CAS  Google Scholar 

  22. Sieber OM, Tomlinson IP, Lamlun H. The adenomatous polyposis coli (APC) tumor suppressor-genetics, function and disease. Mol Med Today 2000;6:462–469.

    Article  PubMed  CAS  Google Scholar 

  23. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet 2001;10:721–733.

    Article  PubMed  CAS  Google Scholar 

  24. Kaplan KB, Burds AA, Swedlow JR, et al. A role of the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 2001;3:429–432.

    Article  PubMed  CAS  Google Scholar 

  25. Fodde R, Kuipers J, Rosenberg C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001;3:433–438.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang T, Otevrel T, Gao Z, et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 2001;61:8664–8667.

    PubMed  CAS  Google Scholar 

  27. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990;247:322–324.

    Article  PubMed  CAS  Google Scholar 

  28. Shoemaker AR, Gould KA, Luongo C, et al. Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1997;1332:F25–F48.

    PubMed  CAS  Google Scholar 

  29. Bilger A, Shoemaker AR, Gould KA, Dove WF. Manipulation of the mouse germline in the study of Min-induced neoplasia. Seminar Cancer Biol 1996;7:249–260.

    Article  CAS  Google Scholar 

  30. Fodde R, Edelmann W, Yang K, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 1994;91:8969–8973.

    Article  PubMed  CAS  Google Scholar 

  31. Yang K, Edelmann W, Fan K, et al. Amouse model of human familial adenomatous polyposis. J Exp Zool 1997;277:245–254.

    Article  PubMed  CAS  Google Scholar 

  32. Oshima M, Oshima H, Kitagawa K, et al. Loss of Apc heterozygosity and abnormal tissue binding in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 1995;92:4482–4486.

    Article  PubMed  CAS  Google Scholar 

  33. Sasai H, Masaki M, Wakitani K. Suppression of polypogenesis in a new mouse strain with a truncated ApcΔ474 by a novel COX-2 inhibitor, JTE-522. Carcinogenesis 2000;21: 953–958.

    Article  PubMed  CAS  Google Scholar 

  34. Sherr, CJ. D-type cyclins. Trends Biochem Sci 1995;20:187–190.

    Article  PubMed  CAS  Google Scholar 

  35. Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398: 422–426.

    Article  PubMed  CAS  Google Scholar 

  36. Sutter T, Doi S, Carnevale KA, et al. Expression of cyclins D1 and E in human colon adenocarcinomas. J Med 1997;28:285–309.

    PubMed  CAS  Google Scholar 

  37. Arber N, Hibshoosh H, Moss SF, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 1996;110:669–674.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang T, Nanney LB, Luongo C, et al. Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res 1997;57:169–175.

    PubMed  CAS  Google Scholar 

  39. Ciaparrone M, Yamamoto H, Yao Y, et al. Localization and expression of p27KIP1 in multistage colorectal carcinogenesis. Cancer Res 1998;58:114–122.

    PubMed  CAS  Google Scholar 

  40. Bartkova J, Lukas J, Strauss M, Bartek J. The PRAD1/cyclin D1 oncogene product accumulates aberrantly in a subset of colorectal carcinomas. Int J Cancer 1994; 58:568–573.

    Article  PubMed  CAS  Google Scholar 

  41. Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 1995;10:775–778.

    PubMed  CAS  Google Scholar 

  42. Shinozaki H, Yang K, Fan K, et al. Cyclin D1 expression in the intestinal mucosa and tumors of Apc1638N mice. Anticancer Res 2003;23:2217–2226.

    PubMed  CAS  Google Scholar 

  43. Wilding J, Straub J, Bee J, et al. Cyclin D1 is not an essential target of β-catenin signaling during intestinal tumorigenesis, but it may act as a modifier of disease severity in multiple intestinal neoplasia (Min) mice. Cancer Res 2002;62:4562–4565.

    PubMed  CAS  Google Scholar 

  44. Kong S, Amos CI, Luthra R, et al. Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 2000;60:249–252.

    PubMed  CAS  Google Scholar 

  45. Roose J, Huls G, van Beest M et al. Synergy between tumor suppressor and the β-catenin-Tcf4 target Tcf1. Science 1999;285:1923–1926.

    Article  PubMed  CAS  Google Scholar 

  46. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805–816.

    Article  PubMed  CAS  Google Scholar 

  47. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995;55:5187–5190.

    PubMed  CAS  Google Scholar 

  48. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996;381:713–716.

    Article  PubMed  CAS  Google Scholar 

  49. Yang WC, Mathew J, Velcich A, et al. Targeted inactivation of the p21 WAF!/cip1 gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosa. Cancer Res 2001;61:565–569.

    PubMed  CAS  Google Scholar 

  50. Boland RC. Hereditary nonpolyposis colorectal cancer (HNPCC). In The Genetic Basis of Human Cancer, 2nd ed. Vogelstein B, Kinzler KW, eds. McGraw-Hill, New York, 2002; pp. 307–321.

    Google Scholar 

  51. Fearon ER. Cancers of the gastrointestinal tract. In Cancer: Principles & Practice of Oncology, 6th ed. DeVita VT, Hellman S, Rosenberg SA, eds. Lippincott Williams & Wilkins, Philadelphia, 2001; pp. 1037–1051.

    Google Scholar 

  52. Andrew SE, Glazer PM, Jirik FR. Mutagenesis and tumor development in DNA mismatch repair-deficient mice. In DNA Alterations in Cancer. Ehrlich M, ed. Eaton Publishing, Natick, MA, 2000; pp. 177–189.

    Google Scholar 

  53. Andrew SE, McKinnon M, Cheng BS, et al. Tissues of MSH2-deficient mice demonstrate hypermutability on exposure to a DNA methylating agent. Proc Natl Acad Sci USA 1998;95:1126–1130.

    Article  PubMed  CAS  Google Scholar 

  54. Narayanan L, Fritzell JA, Baker SM, et al. Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2. Proc Natl Acad Sci USA 1997;94:3122–3127.

    Article  PubMed  CAS  Google Scholar 

  55. Reitmair AH, Schmits R, Ewel A, et al. MSH2 deficient mice are viable and susceptible to lymphoid tumous. Nat Genet 1995;11:64–70.

    Article  PubMed  CAS  Google Scholar 

  56. Reitmar AH, Redston M, Cai JC, et al. Spontaneous intestinal carcinomas and skin neoplasms in Msh-2 deficient mice. Cancer Res 1996;56:3842–3849.

    Google Scholar 

  57. de Wind N, Dekker M, van Rossum A, et al. Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res 1998;58:248–255.

    PubMed  Google Scholar 

  58. Kohonen-Corish MR, Daniel JJ, te Riele H, et al. Susceptibility of Msh2-deficient mice to inflammation-associated colorectal tumors. Cancer Res 2002;62:2092–2097.

    PubMed  CAS  Google Scholar 

  59. Reitmar AH, Cai JC, Bjerknes M, et al. MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res 1996;56:2922–2926.

    Google Scholar 

  60. Baker SM, Harris AC, Tsao JL, et al. Enhanced intestinal adenomatous polyp formation in Pms2 −/− Min mice. Cancer Res 1998;58:1087–1089.

    PubMed  CAS  Google Scholar 

  61. Edelmann W, Yang K, Kuraguchi M, et al. Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 1999;59:1301–1307.

    PubMed  CAS  Google Scholar 

  62. Edelmann W, Umar A, Yang K, et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 2000;60:803–807.

    PubMed  CAS  Google Scholar 

  63. Edelmann W, Yang K, Umar A, et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 1997;91:467–477.

    Article  PubMed  CAS  Google Scholar 

  64. Kuraguchi M, Edelmann W, Yang K, et al. Tumor-associated Apc mutations in Mlh1 −/− Apc 1638N mice reveal a mutational signature of Mlh1 deficiency. Oncogene 2000;19:5755–5763.

    Article  PubMed  CAS  Google Scholar 

  65. Kuraguchi M, Yang K, Wong E, et al. The distinct spectra of tumor-associated Apc mutations in mismatch repair deficient Apc 1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis. Cancer Res 2001;61:7934–7942.

    PubMed  CAS  Google Scholar 

  66. Lieber M. The Fen-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997;19: 223–240.

    Article  Google Scholar 

  67. Kucherlapati M, Yang K, Kuraguchi M, et al. Haplo-insufficiency of flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci USA 2002;99:9924–9929.

    Article  PubMed  CAS  Google Scholar 

  68. Balmain A. Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 2002;108:145–152.

    Article  PubMed  CAS  Google Scholar 

  69. Dietrich WF, Lander ES, Smith JS, et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993;75:631–639.

    Article  PubMed  CAS  Google Scholar 

  70. MacPhee M, Chepenik KP, Liddell RA, et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of Apc Min-induced intestinal neoplasia. Cell 1995;81:957–966.

    Article  PubMed  CAS  Google Scholar 

  71. Cormier RT, Hong KH, Halberg RB, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Gene 1997;17:88–91.

    Article  CAS  Google Scholar 

  72. Koratkart R, Pequignot E, Hauck WW, Siracusa LD. The CAST/Ei strain confers significant protection against Apc Min intestinal polyps, independent of the resistant modifier of Min 1 (Mom1′) locus. Cancer Res 2002;62:5413–5417.

    Google Scholar 

  73. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    Article  PubMed  CAS  Google Scholar 

  74. Moustakas A. Smad signaling network. J Cell Sci 2002;115:3355–3356.

    PubMed  CAS  Google Scholar 

  75. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev 2000;11: 159–168.

    Article  PubMed  CAS  Google Scholar 

  76. Oshima M, Oshima H, Taketo MM. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 1996;179:297–302.

    Article  PubMed  CAS  Google Scholar 

  77. Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998;12:107–119.

    Article  PubMed  CAS  Google Scholar 

  78. Waldrip WR, Bikoff EK, Hoodless PA, et al. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 1998;92: 797–808.

    Article  PubMed  CAS  Google Scholar 

  79. Takaku K, Oshima M, Miyoshi H, et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92:645–656.

    Article  PubMed  CAS  Google Scholar 

  80. Hamamoto T, Beppu H, Okada H, et al. Compound disruption of Smad2 accelerates malignant progression of intestinal tumors in Apc knockout mice. Cancer Res 2002;62:5955–5961.

    PubMed  CAS  Google Scholar 

  81. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998;94:703–714.

    Article  PubMed  CAS  Google Scholar 

  82. Wick W, Peterson I, Schmutzler R, et al. Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 1996;12:973–978.

    PubMed  CAS  Google Scholar 

  83. Zhang Y, Feng X, Derynck R. Receptor-associated Mad homologues synergize as effector of TGF-β response. Nature 1996;383:168–172.

    Article  PubMed  CAS  Google Scholar 

  84. Freund JN, Domon-Dell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1998;76:957–969.

    Article  PubMed  CAS  Google Scholar 

  85. Beck F, Chawengsaksophak K, Waring P, et al. Reprogramming of intestinal cell differentiation and intercalary regeneration in Cdx2 mutant mice. Proc Natl Acad Sci USA 1999;96:7318–7323.

    Article  PubMed  CAS  Google Scholar 

  86. Tamai Y, Nakajima R, Ishikawa T, et al. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res 1999;59:2965–2970.

    PubMed  CAS  Google Scholar 

  87. Silberg DG, Sullivan J, Kahn E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122:689–696.

    Article  PubMed  CAS  Google Scholar 

  88. Sasaki T, Irie-Sasaki J, Horie Y, et al. Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ. Nature 2000;406:897–902.

    Article  PubMed  CAS  Google Scholar 

  89. Toker A, Cantley LC. Signaling through the lipid products of phosphoinositide-3-OH kinase. Nature 1997;387:673–676.

    Article  PubMed  CAS  Google Scholar 

  90. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phophoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999;11:219–225.

    Article  PubMed  CAS  Google Scholar 

  91. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol 1995;57:607–634.

    Article  PubMed  CAS  Google Scholar 

  92. Kim YS, Gum JR, Brockhausen I. Mucin glycoproteins in neoplasia. Glycoconj J 1996;13:693–707.

    Article  PubMed  CAS  Google Scholar 

  93. Velcich A, Yang WC, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002;295:1726–1729.

    Article  PubMed  CAS  Google Scholar 

  94. Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997;278;120–123.

    Article  PubMed  CAS  Google Scholar 

  95. Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention. Ann NY Acad Sci 1999;889:1–13.

    Article  PubMed  CAS  Google Scholar 

  96. Kelloff GJ. Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 2000;78:199–334.

    Article  PubMed  CAS  Google Scholar 

  97. Wasan HS, Novelli M, Bee J, Bodmer WF. Dietary fat influences on polyp phenotype in multiple intestinal neoplasia mice. Proc Natl Acad Sci USA 1997;94:3308–3313.

    Article  PubMed  CAS  Google Scholar 

  98. Hioki K, Shivapurkar N, Oshima H, et al. Suppression of intestinal polyp development by low-fat and high-fiber diet in Apc Δ716 knockout mice. Carcinogenesis 1997;18:1863–1865.

    Article  PubMed  CAS  Google Scholar 

  99. Yang K, Edelmann W, Fan K, et al. Dietary modulation of carcinoma development in a mouse model for human familial adenomatous polyposis. Cancer Res 1998;58:5713–5717.

    PubMed  CAS  Google Scholar 

  100. Yang K, Fan K, Shinozaki H, et al. Increasing dietary calcium and vitamin D in mouse models of intestinal carcinogenesis. Frontiers in Cancer Prevention Res, 2002, p. 92.

    Google Scholar 

  101. Newmark HL, Lipkin M, Maheswari N. Colonic hyperplasia and hyperproliferation induced by a nutritional stress diet with four components of Western-style diet. J Natl Cancer Inst 1990;82:491–496.

    Article  PubMed  CAS  Google Scholar 

  102. Newmark HL, Lipkin M, Maheswari N. Colonic hyperproliferation induced in rats and mice by nutritional stress diets containing four components of a human Western-style diet (series 2). Am J Clin Nutr 1991;54:209s–214s.

    PubMed  CAS  Google Scholar 

  103. Risio M, Lipkin M, Newmark H, et al. Apoptosis, cell replication, and Western-style diet-induced tumorigenesis in mouse colon. Cancer Res 1996;56:4910–4916.

    PubMed  CAS  Google Scholar 

  104. Khan N, Yang K, Newmark H, et al. Mammary ductal epithelial cell hyperproliferation and hyperplasia induced by a nutritional stress diet containing four components of a Western-style diet. Carcinogenesis 1994;15:2645–2648.

    Article  PubMed  CAS  Google Scholar 

  105. Xue L, Newmark H, Yang K, Lipkin M. Model of mouse mammary gland hyperproliferation and hyperplasia induced by a Western-style diet. Nutr Cancer 1996;26:281–287.

    Article  PubMed  CAS  Google Scholar 

  106. Xue L, Yang K, Newmark H, Lipkin M. Induced hyperproliferation in epithelial cells of mouse prostate by a Western-style diet. Carcinogenesis 1997;18:995–999.

    Article  PubMed  CAS  Google Scholar 

  107. Xue L, Lipkin M, Newmark H, Wang J. Influence of dietary calcium and vitamin D on diet-induced epithelial cell hyperproliferation in mice. J Natl Cancer Inst 1999;91: 176–181.

    Article  PubMed  CAS  Google Scholar 

  108. Song J, Sohn KJ, Medline A, et al. Chemopreventive effects of dietary folate on intestinal polyps in Apc +/− Msh2 −/− mice. Cancer Res 2000;60:3191–3199.

    PubMed  CAS  Google Scholar 

  109. Song J, Medline M, Mason JB, et al. Effects of dietary folate on intestinal tumorigenesis in the Apc min mouse. Cancer Res 2000;60:5434–5440.

    PubMed  CAS  Google Scholar 

  110. Newmark HL, Yang K, Lipkin M, et al. A Western-style diet induces benign and malignant neoplasms in the colon of normal C57B1/6 mice. Carcinogenesis 2001;22:1871–1875.

    Article  PubMed  CAS  Google Scholar 

  111. Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr 2000;130:129–132.

    PubMed  CAS  Google Scholar 

  112. Choi SW, Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 2002;132:2413S–2418S.

    PubMed  CAS  Google Scholar 

  113. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann NY Acad Sci 2001;952:73–87.

    Article  PubMed  CAS  Google Scholar 

  114. Lamprecht SA, Lipkin M. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 2003;3:601–614.

    Article  PubMed  CAS  Google Scholar 

  115. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc Δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87:803–809.

    Article  PubMed  CAS  Google Scholar 

  116. Chulada PC, Thompson MB, Mahler J, et al. Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 2000;60:4705–4708.

    PubMed  CAS  Google Scholar 

  117. Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  118. Bolbol SK, Dannenberg AJ, Chadburn A, et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res 1996;56:2556–2560.

    Google Scholar 

  119. Beazer-Barclay Y, Levy DB, Moser R, et al. Sulindac suppresses tumorigenesis in the Min mouse. Carcinogenesis 1996;17:1757–1760.

    Article  PubMed  CAS  Google Scholar 

  120. Mahmoud NN, Boolbol SK, Dannenberg AJ, et al. The sulfide metabolite of sulindac prevents tumors and restores enterocyte apoptosis in a murine model of familial adenomatous polyposis. Carcinogenesis 1998;19:87–91.

    Article  PubMed  CAS  Google Scholar 

  121. Mahmoud NN, Bilinski RT, Churchill MR, et al. Genotype-phenotype correlation in murine Apc mutation: differences in enterocyte migration and response to sulindac. Cancer Res 1999;59:353–359.

    PubMed  CAS  Google Scholar 

  122. Yang WC, Velcich A, Mariadason J, et al. p21 WAF1/cip1 is an important determinant of intestinal cell response to sulindac in vitro and in vivo. Cancer Res 2001;61:6297–6302.

    PubMed  CAS  Google Scholar 

  123. Jacoby RF, Siebert K, Cole CE, et al. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the Min mouse model of adenomatous polyposis. Cancer Res 2000;60:5040–5044.

    PubMed  CAS  Google Scholar 

  124. Oshima M, Murai N, Kargman S, et al. Chemoprevention of intestinal polyposis in the Apc Δ716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001;61:1733–1740.

    PubMed  CAS  Google Scholar 

  125. Sunayama K, Konno H, Nakamura T, et al. The role of cyclooxygenase-2 (COX-2) in two different morphological stages of intestinal polyps in Apc Δ474 knockout mice. Carcinogenesis 2002;23:1351–1359.

    Article  PubMed  CAS  Google Scholar 

  126. Lal G, Ash C, Hay K, et al. Suppression of intestinal polyps in Msh2-deficient and non-Msh2-deficient multiple intestinal neoplasia mice by a specific cyclooxygenase-2 inhibitor and by a dual cyclooxygenase-1/2 inhibitor. Cancer Res 2001;61:6131–6136.

    PubMed  CAS  Google Scholar 

  127. Yang K, Fan K, Kurihara N, et al. Regional response leading to tumorigenesis after sulindac in small and large intestine of mice with Apc mutations. Carcinogenesis 2003;24:605–611.

    Article  PubMed  CAS  Google Scholar 

  128. Lefebvre A-M, Chen I, Desreumaux P, et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APC Min /+ mice. Nat Med 1998;4:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  129. Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPAR-γ enhance colon polyp formation. Nat Med 1998;4:1058–1061.

    Article  PubMed  CAS  Google Scholar 

  130. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409–435.

    Article  PubMed  CAS  Google Scholar 

  131. Fajas L, Debril M-B, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001;27:1–9.

    Article  PubMed  CAS  Google Scholar 

  132. Yang K, Lamprecht SA, Fan K, et al. Troglitazone increases tumorigenesis in the colon of mice with Mlh1/Apc mutations. Anticancer Res 2001;21:1577, abst. no. 47.

    Google Scholar 

  133. Yang K, Fan K, Lamprecht SA, et al. Troglitazone induces colonic tumors in normal C57BL/6 mice and increases colonic tumors in M1/APC mutant mice. Proc Am Assoc Cancer Res 2003;44:285 (abstr).

    Google Scholar 

  134. Torrance CJ, Jackson PE, Montgomery E, et al. Combinatorial chemoprevention of intestinal neoplasms. Nat Med 2000;6:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  135. Balmain A, Harris CC. Carcinogenesis in mouse and human cells: parallels and paradoxes. Carcinogenesis 2000;21:371–377.

    Article  PubMed  CAS  Google Scholar 

  136. Rudolph KI, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Gen 2001;28:155–159.

    Article  CAS  Google Scholar 

  137. Smits R, Kartheuser A, Jagmohan-Changur S, et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis 1997;18:321–327.

    Article  PubMed  CAS  Google Scholar 

  138. Lamprecht SA, Lipkin M. Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis 2002;23:1777–1780.

    Article  PubMed  CAS  Google Scholar 

  139. Halberg RB, Katzung DS, Hoff PD, et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci USA 2000;97:3461–3466.

    Article  PubMed  CAS  Google Scholar 

  140. Yamada Y, Hata K, Hirose Y, et al. Microadenomatous lesions involving loss of Apc heterozygosity in the colon of adult Apc Min/+ mice. Cancer Res 2002;62:6367–6370.

    PubMed  CAS  Google Scholar 

  141. Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science 1998;280:1036–1037.

    Article  PubMed  CAS  Google Scholar 

  142. Olumi AF, Grossfeld GD, Hayward SW, et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999;59: 5002–5011.

    PubMed  CAS  Google Scholar 

  143. Skobe M, Fusenig NE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 1998;95:1050–1055.

    Article  PubMed  CAS  Google Scholar 

  144. Jackson-Grusby L. Modeling cancer in mice. Oncogene 2002;21:5504–5514.

    Article  PubMed  CAS  Google Scholar 

  145. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002;108:135–144.

    Article  PubMed  Google Scholar 

  146. Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 2002;12:105–110.

    Article  PubMed  CAS  Google Scholar 

  147. Bullard DC, Weaver CT. Cutting-edge technology IV. Genomic engineering for studies of the gastrointestinal tract in mice. Am J Physiol Gastrointest Liver Physiol 2002;283:G1232–G1237.

    PubMed  CAS  Google Scholar 

  148. Janssen K-P, El Marjo F, Pinto D, et al. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 2002;123:492–504.

    Article  PubMed  CAS  Google Scholar 

  149. Wigle DA, Rossant J, Jurisica I. Minireview: mining mouse microarray data. Genome Bio 2001;2:1019.1–1019.4.

    Google Scholar 

  150. Bates MD, Erwin CR, Sanford LP, et al. Novel genes and functional relationships in the adult mouse gastrointestinal tract identified by microarray analysis. Gastroenterology 2002;122:1467–1492.

    Article  PubMed  CAS  Google Scholar 

  151. Minowa T, Ohtsuka S, Hasai H, Kamada M. Proteomic analysis of the small intestine and colon epithelia of adenomatous polyposis coli gene-mutant mice by two-dimensional gel electrophoresis. Electrophoresis 2000;21:1782–1786.

    Article  PubMed  CAS  Google Scholar 

  152. Edinger M, Cao Y-A, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002;38:2128–2136.

    Article  PubMed  CAS  Google Scholar 

  153. Lewis JS, Achilefu S, Garbow JR, et al. Small animal imaging current technology and perspectives for oncological imaging. Eur J Cancer 2002;38:2173–2188.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lipkin, M., Lamprecht, S.A. (2005). Modeling Human Colorectal Cancer in Mice for Chemoprevention Studies. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics