Skip to main content

Epithelial Ovarian Cancer

  • Chapter
Cancer Chemoprevention

Abstract

Epithelial ovarian cancer has the highest mortality rate of all gynecologic cancers (1). The majority of patients are diagnosed with advanced-stage disease and consequently have a poor prognosis (1). Despite progress in surgical approaches and chemotherapeutic regimens for ovarian cancer during the last several decades, 5-yr survival rates remain essentially unchanged at 30% (2). Due to the difficulty in treating advanced-stage ovarian carcinoma, increased attention is now focused on preventing this devastating disease. This chapter discusses problems that have hindered chemoprevention efforts as well as some recent advances that may provide solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up. NIH Consensus Development Panel on Ovarian Cancer. JAMA 1995;273:491–497.

    Google Scholar 

  2. Selvakumaran M, Bao R, Crijns AP, et al. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res 2001;61:1291–1295.

    PubMed  CAS  Google Scholar 

  3. Levy-Lahad E, Krieger M, Gottfeld O, et al. BRCA1 and BRCA2 mutation carriers as potential candidates for chemoprevention trials. J Cell Biochem Suppl 2000;34:13–18.

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez-Burford C, Barnes MN, Berry W, et al. Immunohistochemical expression of molecular markers in an avian model: a potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecol Oncol 2001;81:373–379.

    Article  PubMed  CAS  Google Scholar 

  5. Brewer MA, Mitchell MF, Bast RC. Prevention of ovarian cancer. In Vivo 1999;13:99–106.

    PubMed  CAS  Google Scholar 

  6. Rose GS, Tocco LM, Granger GA, et al. Development and characterization of a clinically useful animal model of epithelial ovarian cancer in the Fischer 344 rat. Am J Obstet Gynecol 1996;175:593–599.

    Article  PubMed  CAS  Google Scholar 

  7. Sekiya S, Endoh N, Kikuchi Y, et al. In vivo and in vitro studies of experimental ovarian adenocarcinoma in rats. Cancer Res 1979;39:1108–1112.

    PubMed  CAS  Google Scholar 

  8. Silva EG, Tornos C, Deavers M, et al. Induction of epithelial neoplasms in the ovaries of guinea pigs by estrogenic stimulation. Gynecol Oncol 1998;71:240–246.

    Article  PubMed  CAS  Google Scholar 

  9. Silva EG, Tornos C, Fritsche HA Jr, et al. The induction of benign epithelial neoplasms of the ovaries of guinea pigs by testosterone stimulation: a potential animal model. Mod Pathol 1997;10:879–883.

    PubMed  CAS  Google Scholar 

  10. Walker W, Gallagher G. The development of a novel immunotherapy model of human ovarian cancer in human PBL-severe combined immunodeficient (SCID) mice. Clin Exp Immunol 1995;101:494–501.

    PubMed  CAS  Google Scholar 

  11. Brewer M, Utzinger U, Satterfield W, et al. Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention. Cancer Epidemiol Biomarkers Prev 2001;10:889–893.

    PubMed  CAS  Google Scholar 

  12. Auersperg N, Wong AS, Choi KC, et al. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001;22:255–288.

    Article  PubMed  CAS  Google Scholar 

  13. Fredrickson TN. Ovarian tumors of the hen. Environ Health Perspect 1987;73:35–51.

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez GC, Walmer DK, Cline M, et al. Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? J Soc Gynecol Investig 1998;5:271–276.

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez GC, Nagarsheth NP, Lee KL, et al. Progestin-induced apoptosis in the macaque ovarian epithelium: differential regulation of transforming growth factor-beta. J Natl Cancer Inst 2002;94:50–60.

    PubMed  CAS  Google Scholar 

  16. Bao R, Selvakumaran M, Hamilton TC. Targeted gene therapy of ovarian cancer using an ovarian-specific promoter. Gynecol Oncol 2002;84:228–234.

    Article  PubMed  CAS  Google Scholar 

  17. Boyd J. Molecular genetics of hereditary ovarian cancer. Oncology (Huntingt) 1998;12:399–406; discussion 409–410, 413.

    CAS  Google Scholar 

  18. Eeles RA, Powles TJ. Chemoprevention options for BRCA1 and BRCA2 mutation carriers. J Clin Oncol 2000;18: 93S–99S.

    PubMed  CAS  Google Scholar 

  19. Kuschel B, Lux MP, Goecke TO, Beckmann MW. Prevention and therapy for BRCA1/2 mutation carriers and women at high risk for breast and ovarian cancer. Eur J Cancer Prev 2000;9:139–150.

    Article  PubMed  CAS  Google Scholar 

  20. Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999;81:214–218.

    Article  PubMed  CAS  Google Scholar 

  21. Lynch HT, Casey MJ, Lynch J, et al. Genetics and ovarian carcinoma. Semin Oncol 1998;25:265–280.

    PubMed  CAS  Google Scholar 

  22. Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997;336: 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  23. Srivastava A, McKinnon W, Wood ME. Risk of breast and ovarian cancer in women with strong family histories. Oncology (Huntingt) 2001;15:889–902; discussion 902, 905–907, 911–913.

    CAS  Google Scholar 

  24. Watson P, Butzow R, Lynch HT, et al. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynecol Oncol 2001;82:223–228.

    Article  PubMed  CAS  Google Scholar 

  25. Nayfield SG. Ethical and scientific considerations for chemoprevention research in cohorts at genetic risk for breast cancer. J Cell Biochem Suppl 1996;25:123–130.

    Article  PubMed  CAS  Google Scholar 

  26. Ness RB, Grisso JA, Cottreau C, et al. Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer. Epidemiology 2000;11:111–117.

    Article  PubMed  CAS  Google Scholar 

  27. Ness RB, Grisso J A, Vergona R, et al. Oral contraceptives, other methods of contraception, and risk reduction for ovarian cancer. Epidemiology 2001;12:307–312.

    Article  PubMed  CAS  Google Scholar 

  28. Green A, Purdie D, Bain C, et al. Tubal sterilisation, hysterectomy and decreased risk of ovarian cancer. Survey of Women’s Health Study Group. Int J Cancer 1997;71: 948–951.

    Article  PubMed  CAS  Google Scholar 

  29. Riman T, Persson I, Nilsson S. Hormonal aspects of epithelial ovarian cancer: review of epidemiological evidence. Clin Endocrinol (Oxf) 1998;49:695–707.

    Article  CAS  Google Scholar 

  30. Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology 2001;38:87–95.

    Article  PubMed  CAS  Google Scholar 

  31. Fathalla MF. Incessant ovulation—a factor in ovarian neoplasia? Lancet 1971;2:163.

    Article  PubMed  CAS  Google Scholar 

  32. Gardner GJ, Birrer MJ. Ovarian tumors of low malignant potential: can molecular biology solve this enigma? J Natl Cancer Inst 2001;93:1122–1123.

    Article  PubMed  CAS  Google Scholar 

  33. Teneriello MG, Ebina M, Linnoila RI, et al. p53 and Ki-ras gene mutations in epithelial ovarian neoplasms. Cancer Res 1993;53:3103–3108.

    PubMed  CAS  Google Scholar 

  34. Caduff RF, Svoboda-Newman SM, Ferguson AW, et al. Comparison of mutations of Ki-RAS and p53 immunoreactivity in borderline and malignant epithelial ovarian tumors. Am J Surg Pathol 1999;23:323–328.

    Article  PubMed  CAS  Google Scholar 

  35. Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000;60:7052–7056.

    PubMed  CAS  Google Scholar 

  36. Thomas EJ, Campbell IG. Molecular genetic defects in endometriosis. Gynecol Obstet Invest 2000;50:44–50.

    Article  PubMed  CAS  Google Scholar 

  37. Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998;58: 2095–2097.

    PubMed  CAS  Google Scholar 

  38. Obata K, Hoshiai H. Common genetic changes between endometriosis and ovarian cancer. Gynecol Obstet Invest 2000;50:39–43.

    Article  PubMed  CAS  Google Scholar 

  39. Brewer M, Utzinger U, Silva E, et al. Fluorescence spectroscopy for in vivo characterization of ovarian tissue. Lasers Surg Med 2001;29:128–135.

    Article  PubMed  CAS  Google Scholar 

  40. Bell R, Petticrew M, Sheldon T. The performance of screening tests for ovarian cancer: results of a systematic review. Br J Obstet Gynaecol 1998;105:1136–1147.

    PubMed  CAS  Google Scholar 

  41. Devine PL, McGuckin MA, Quin RJ, Ward BG. Predictive value of the combination of serum markers, CA125, CASA and TPS in ovarian cancer. Int J Gynecol Cancer 1995;5: 170–178.

    Article  PubMed  Google Scholar 

  42. McGuckin MA, Ramm LE, Joy GJ, et al. Preoperative discrimination between ovarian carcinoma, non-ovarian gynecological malignancy and benign adnexal masses using serum levels of CA125 and the polymorphic epithelial mucin antigens CASA, OSA and MSA. Int J Gynecol Cancer 1992;2:119–128.

    Article  PubMed  Google Scholar 

  43. Woolas RP, Xu FJ, Jacobs IJ, et al. Elevation of multiple serum markers in patients with stage I ovarian cancer. J Natl Cancer Inst 1993;85:1748–1751.

    Article  PubMed  CAS  Google Scholar 

  44. van Haaften-Day C, Shen Y, Xu F, et al. OVX1, macrophagecolony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma: a critical appraisal. Cancer 2001;92:2837–2844.

    Article  PubMed  Google Scholar 

  45. Hogdall CK, Mogensen O, Tabor A, et al. The role of serum tetranectin, CA 125, and a combined index as tumor markers in women with pelvic tumors. Gynecol Oncol 1995;56: 22–28.

    Article  PubMed  CAS  Google Scholar 

  46. Hogdall CK, Hogdall EV, Hording U, et al. Plasma tetranectin and ovarian neoplasms. Gynecol Oncol 1991;43:103–107.

    Article  PubMed  CAS  Google Scholar 

  47. Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001;93:1458–1464.

    Article  PubMed  CAS  Google Scholar 

  48. Siskind V, Green A, Bain C, Purdie D. Beyond ovulation: oral contraceptives and epithelial ovarian cancer. Epidemiology 2000;11:106–110.

    Article  PubMed  CAS  Google Scholar 

  49. Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst 1998;90:1774–1786.

    Article  PubMed  CAS  Google Scholar 

  50. Whiteman DC, Murphy MF, Cook LS, et al. Multiple births and risk of epithelial ovarian cancer. J Natl Cancer Inst 2000;92:1172–1177.

    Article  PubMed  CAS  Google Scholar 

  51. Bu SZ, Yin DL, Ren XH, et al. Progesterone induces apoptosis and up-regulation of p53 expression in human ovarian carcinoma cell lines. Cancer 1997;79:1944–1950.

    Article  PubMed  CAS  Google Scholar 

  52. Syed V, Ulinski G, Mok SC, et al. Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells. Cancer Res 2001;61:6768–6776.

    PubMed  CAS  Google Scholar 

  53. Berchuck A, Rodriguez G, Olt G, et al. Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-beta. Am J Obstet Gynecol 1992;166:676–684.

    PubMed  CAS  Google Scholar 

  54. Lau KM, Mok SC, Ho SM. Expression of human estrogen receptor-alpha and-beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci USA 1999;96:5722–5727.

    Article  PubMed  CAS  Google Scholar 

  55. Narod SA, Risch H, Moslehi R, et al. Oral contraceptives and the risk of hereditary ovarian cancer. Hereditary Ovarian Cancer Clinical Study Group. N Engl J Med 1998;339:424–428.

    Article  PubMed  CAS  Google Scholar 

  56. Modan B, Hartge P, Hirsh-Yechezkel G, et al. Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. N Engl J Med 2001;345:235–240.

    Article  PubMed  CAS  Google Scholar 

  57. Narod SA, Sun P, Risch HA. Ovarian cancer, oral contraceptives, and BRCA mutations. N Engl J Med 2001;345: 1706–1707.

    Article  PubMed  CAS  Google Scholar 

  58. Pike MC, Spicer DV. Hormonal contraception and chemoprevention of female cancers. Endocr Relat Cancer 2000;7:73–83.

    Article  PubMed  CAS  Google Scholar 

  59. De Palo G, Veronesi U, Camerini T, et al. Can fenretinide protect women against ovarian cancer? J Natl Cancer Inst 1995;87:146–147.

    Article  PubMed  Google Scholar 

  60. Veronesi U, De Palo G, Marubini E, et al. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 1999;91: 1847–1856.

    Article  PubMed  CAS  Google Scholar 

  61. Sabichi AL, Hendricks DT, Bober MA, Birrer MJ. Retinoic acid receptor beta expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide. J Natl Cancer Inst 1998;90: 597–605.

    Article  PubMed  CAS  Google Scholar 

  62. Supino R, Crosti M, Clerici M, et al. Induction of apoptosis by fenretinide (4HPR) in human ovarian carcinoma cells and its association with retinoic acid receptor expression. Int J Cancer 1996;65:491–497.

    Article  PubMed  CAS  Google Scholar 

  63. Formelli F, Cleris L. Synthetic retinoid fenretinide is effective against a human ovarian carcinoma xenograft and potentiates cisplatin activity. Cancer Res 1993;53:5374–5376.

    PubMed  CAS  Google Scholar 

  64. Benbrook DM, Madler MM, Spruce LW, et al. Biologically active heteroarotinoids exhibiting anticancer activity and decreased toxicity. J Med Chem 1997;40:3567–3583.

    Article  PubMed  CAS  Google Scholar 

  65. Guruswamy S, Lightfoot S, Gold MA, et al. Effects of retinoids on cancerous phenotype and apoptosis in organotypic cultures of ovarian carcinoma. J Natl Cancer Inst 2001;93:516–525.

    Article  PubMed  CAS  Google Scholar 

  66. Lefkowitz ES, Garland CF. Sunlight, vitamin D, and ovarian cancer mortality rates in US women. Int J Epidemiol 1994;23:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  67. Ahonen MH, Zhuang YH, Aine R, et al. Androgen receptor and vitamin D receptor in human ovarian cancer: growth stimulation and inhibition by ligands. Int J Cancer 2000;86:40–46.

    Article  PubMed  CAS  Google Scholar 

  68. Saunders DE, Christensen C, Wappler NL, et al. Inhibition of c-myc in breast and ovarian carcinoma cells by 1,25-dihydroxyvitamin D3, retinoic acid and dexamethasone. Anticancer Drugs 1993;4:201–208.

    Article  PubMed  CAS  Google Scholar 

  69. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 1999;91: 1459–1467.

    Article  PubMed  CAS  Google Scholar 

  70. Tzonou A, Polychronopoulou A, Hsieh CC, et al. Hair dyes, analgesics, tranquilizers and perineal talc application as risk factors for ovarian cancer. Int J Cancer 1993;55:408–410.

    Article  PubMed  CAS  Google Scholar 

  71. Rosenberg L, Palmer JR, Rao RS, et al. A case-control study of analgesic use and ovarian cancer. Cancer Epidemiol Biomarkers Prev 2000;9:933–937.

    PubMed  CAS  Google Scholar 

  72. Cramer DW, Harlow BL, Titus-Ernstoff L, et al. Over-the-counter analgesics and risk of ovarian cancer. Lancet 1998; 351:104–107.

    Article  PubMed  CAS  Google Scholar 

  73. Moysich KB, Mettlin C, Piver MS, et al. Regular use of analgesic drugs and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2001;10:903–906.

    PubMed  CAS  Google Scholar 

  74. Rodriguez C, Henley SJ, Calle EE, Thun MJ. Paracetamol and risk of ovarian cancer mortality in a prospective study of women in the USA. Lancet 1998;352:1354–1355.

    Article  PubMed  CAS  Google Scholar 

  75. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J Biol Chem 1996;271:33,157–33,160.

    Article  PubMed  CAS  Google Scholar 

  76. Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). J Natl Cancer Inst 1998;90:1609–1620.

    Article  PubMed  CAS  Google Scholar 

  77. Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Natl Cancer Inst 1998;90:1529–1536.

    Article  PubMed  CAS  Google Scholar 

  78. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999;18:7908–7916.

    Article  PubMed  CAS  Google Scholar 

  79. Ristimaki A, Honkanen N, Jankala H, et al. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 1997;57:1276–1280.

    PubMed  CAS  Google Scholar 

  80. Uefuji K, Ichikura T, Mochizuki H. Expression of cyclooxygenase-2 in human gastric adenomas and adenocarcinomas. J Surg Oncol 2001;76:26–30.

    Article  PubMed  CAS  Google Scholar 

  81. Chan G, Boyle JO, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999;59:991–994.

    PubMed  CAS  Google Scholar 

  82. Ristimaki A, Nieminen O, Saukkonen K, et al. Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am J Pathol 2001;158:849–853.

    PubMed  CAS  Google Scholar 

  83. Shirahama T, Sakakura C. Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clin Cancer Res 2001;7:558–561.

    PubMed  CAS  Google Scholar 

  84. Wolff H, Saukkonen K, Anttila S, et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998;58:4997–5001.

    PubMed  CAS  Google Scholar 

  85. Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999;59:987–990.

    PubMed  CAS  Google Scholar 

  86. Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 1998;90:455–460.

    Article  PubMed  CAS  Google Scholar 

  87. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997;94:3336–3340.

    Article  PubMed  CAS  Google Scholar 

  88. Tsujii M, Kawano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705–716.

    Article  PubMed  CAS  Google Scholar 

  89. Masferrer JL, Zweifel BS, Manning PT, et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 1994; 91:3228–3232.

    Article  PubMed  CAS  Google Scholar 

  90. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995;83:493–501.

    Article  PubMed  CAS  Google Scholar 

  91. Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 2000;60:2101–2103.

    PubMed  CAS  Google Scholar 

  92. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000;342:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  93. Murphy GJ, Holder JC. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000;21:469–474.

    Article  PubMed  CAS  Google Scholar 

  94. Adams M, Montague CT, Prins JB, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997;100:3149–3153.

    Article  PubMed  CAS  Google Scholar 

  95. Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994;331:1188–1193.

    Article  PubMed  CAS  Google Scholar 

  96. Mueller E, Sarraf P, Tontonoz P, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998;1:465–470.

    Article  PubMed  CAS  Google Scholar 

  97. Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 1998;4:1046–1052.

    Article  PubMed  CAS  Google Scholar 

  98. Bast RC Jr, Knauf S, Epenetos A, et al. Coordinate elevation of serum markers in ovarian cancer but not in benign disease. Cancer 1991;68:1758–1763.

    Article  PubMed  Google Scholar 

  99. Berek JS, Bast RC Jr. Ovarian cancer screening. The use of serial complementary tumor markers to improve sensitivity and specificity for early detection. Cancer 1995;76:2092–2096.

    Article  PubMed  CAS  Google Scholar 

  100. Devine PL, McGuckin MA, Quin RJ, Ward BG. Serum markers CASA and CA 15-3 in ovarian cancer: all MUC1 assays are not the same. Tumour Biol 1994;15:337–344.

    PubMed  CAS  Google Scholar 

  101. Gadducci A, Ferdeghini M, Ceccarini T, et al. A comparative evaluation of the ability of serum CA 125, CA 19-9, CA 15-3, CA 50, CA 72-4 and TATI assays in reflecting the course of disease in patients with ovarian carcinoma. Eur J Gynaecol Oncol 1990;11:127–133.

    PubMed  CAS  Google Scholar 

  102. Jacobs IJ, Rivera H, Oram DH, Bast RC Jr. Differential diagnosis of ovarian cancer with tumour markers CA 125, CA 15-3 and TAG 72.3. Br J Obstet Gynaecol 1993;100:1120–1124.

    PubMed  CAS  Google Scholar 

  103. Scambia G, Benedetti Panici P, Baiocchi G, et al. CA 15-3 serum levels in ovarian cancer. Oncology 1988;45:263–267.

    PubMed  CAS  Google Scholar 

  104. Soper JT, Hunter VJ, Daly L, et al. Preoperative serum tumor-associated antigen levels in women with pelvic masses. Obstet Gynecol 1990;75:249–254.

    PubMed  CAS  Google Scholar 

  105. Zhang Z, Barnhill SD, Zhang H, et al. Combination of multiple serum markers using an artificial neural network to improve specificity in discriminating malignant from benign pelvic masses. Gynecol Oncol 1999;73:56–61.

    Article  PubMed  CAS  Google Scholar 

  106. Woolas RP, Conaway MR, Xu F, et al. Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecol Oncol 1995;59:111–116.

    Article  PubMed  CAS  Google Scholar 

  107. Woolas RP, Oram DH, Jeyarajah AR, et al. Ovarian cancer identified through screening with serum markers but not by pelvic imaging. Int J Gynecol Cancer 1999;9:497–501.

    Article  PubMed  Google Scholar 

  108. Gocze PM, Szabo DG, Than GN, et al. Occurrence of CA 125 and CA 19-9 tumor-associated antigens in sera of patients with gynecologic, trophoblastic, and colorectal tumors. Gynecol Obstet Invest 1988;25:268–272.

    PubMed  CAS  Google Scholar 

  109. Guadagni F, Roselli M, Cosimelli M, et al. CA 72-4 serum marker—a new tool in the management of carcinoma patients. Cancer Invest 1995;13:227–238.

    Article  PubMed  CAS  Google Scholar 

  110. Schwartz PE, Chambers SK, Chambers JT, et al. Circulating tumor markers in the monitoring of gynecologic malignancies. Cancer 1987;60:353–361.

    Article  PubMed  CAS  Google Scholar 

  111. Devine PL, McGuckin MA, Ward BG. Circulating mucins as tumor markers in ovarian cancer (review). Anti Cancer Res 1992;12:709–717.

    CAS  Google Scholar 

  112. Mazurek A, Niklinski J, Laudanski T, Pluygers E. Clinical tumour markers in ovarian cancer. Eur J Cancer Prev 1998; 7:23–35.

    PubMed  CAS  Google Scholar 

  113. Tamakoshi K, Kikkawa F, Shibata K, et al. Clinical value of CA125, CA19-9, CEA, CA72-4, and TPAin borderline ovarian tumor. Gynecol Oncol 1996;62:67–72.

    Article  PubMed  CAS  Google Scholar 

  114. Wakahara F, Kikkawa F, Nawa A, et al. Diagnostic efficacy of tumor markers, sonography, and intraoperative frozen section for ovarian tumors. Gynecol Obstet Invest 2001;52:147–152.

    Article  PubMed  CAS  Google Scholar 

  115. Hasholzner U, Baumgartner L, Stieber P, et al. Clinical significance of the tumour markers CA 125 II and CA 72-4 in ovarian carcinoma. Int J Cancer 1996;69:329–334.

    Article  PubMed  CAS  Google Scholar 

  116. Negishi Y, Iwabuchi H, Sakunaga H, et al. Serum and tissue measurements of CA72-4 in ovarian cancer patients. Gynecol Oncol 1993;48:148–154.

    Article  PubMed  CAS  Google Scholar 

  117. Schutter EM, Sohn C, Kristen P, et al. Estimation of probability of malignancy using a logistic model combining physical examination, ultrasound, serum CA 125, and serum CA 72-4 in postmenopausal women with a pelvic mass: an international multicenter study. Gynecol Oncol 1998;69:56–63.

    Article  PubMed  CAS  Google Scholar 

  118. Scambia G, Benedetti Panici P, Perrone L, et al. Serum levels of tumour associated glycoprotein (TAG 72) in patients with gynaecological malignancies. Br J Cancer 1990;62:147–151.

    PubMed  CAS  Google Scholar 

  119. Devine PL, McGuckin MA, Ramm LE, et al. Serum mucin antigens CASA and MSA in tumors of the breast, ovary, lung, pancreas, bladder, colon, and prostate. A blind trial with 420 patients. Cancer 1993;72:2007–2015.

    Article  PubMed  CAS  Google Scholar 

  120. Hogdall EV, Hogdall CK, Tingulstad S, et al. Predictive values of serum tumour markers tetranectin, OVX1, CASA and CA125 in patients with a pelvic mass. Int J Cancer 2000;89: 519–523.

    Article  PubMed  CAS  Google Scholar 

  121. Kierkegaard O, Mogensen O, Mogensen B, Jakobsen A. Predictive and prognostic values of cancer-associated serum antigen (CASA) and cancer antigen 125 (CA 125) levels prior to second-look laparotomy for ovarian cancer. Gynecol Oncol 1995;59:251–254.

    Article  PubMed  CAS  Google Scholar 

  122. McGuckin MA, Layton GT, Bailey MJ, et al. Evaluation of two new assays for tumor-associated antigens, CASA and OSA, found in the serum of patients with epithelial ovarian carcinoma—comparison with CA125. Gynecol Oncol 1990;37:165–171.

    Article  PubMed  CAS  Google Scholar 

  123. Meisel M, Straube W, Weise J, Burkhardt B. A study of serum CASA and CA 125 levels in patients with ovarian carcinoma. Arch Gynecol Obstet 1995;256:9–15.

    Article  PubMed  CAS  Google Scholar 

  124. Ward BG, McGuckin MA, Ramm LE, et al. The management of ovarian carcinoma is improved by the use of cancer-associated serum antigen and CA 125 assays. Cancer 1993;71:430–438.

    Article  PubMed  CAS  Google Scholar 

  125. Halila H, Lehtovirta P, Stenman UH. Tumour-associated trypsin inhibitor (TATI) in ovarian cancer. Br J Cancer 1988;57:304–307.

    PubMed  CAS  Google Scholar 

  126. Roman LD, Muderspach LI, Burnett AF, Morrow CP. Carcinoembryonic antigen in women with isolated pelvic masses. Clinical utility? J Reprod Med 1998;43:403–407.

    PubMed  CAS  Google Scholar 

  127. Sawada M, Okudaira Y, Matsui Y, Shimizu Y. Immunosuppressive acidic protein in patients with ovarian cancer. Cancer 1983;52:2081–2085.

    Article  PubMed  CAS  Google Scholar 

  128. Tholander B, Taube A, Lindgren A, et al. Pretreatment serum levels of CA-125, carcinoembryonic antigen, tissue polypeptide antigen, and placental alkaline phosphatase in patients with ovarian carcinoma: influence of histological type, grade of differentiation, and clinical stage of disease. Gynecol Oncol 1990;39:26–33.

    Article  PubMed  CAS  Google Scholar 

  129. Tholander B, Taube A, Lindgren A, et al. Pretreatment serum levels of CA-125, carcinoembryonic antigen, tissue polypeptide antigen, and placental alkaline phosphatase, in patients with ovarian carcinoma, borderline tumors, or benign adnexal masses: relevance for differential diagnosis. Gynecol Oncol 1990;39:16–25.

    Article  PubMed  CAS  Google Scholar 

  130. Xu FJ, Yu YH, Li BY, et al. Development of two new monoclonal antibodies reactive to a surface antigen present on human ovarian epithelial cancer cells. Cancer Res 1991;51: 4012–4019.

    PubMed  CAS  Google Scholar 

  131. Gadducci A, Ferdeghini M, Cosio S, et al. The clinical relevance of serum CYFRA 21-1 assay in patients with ovarian cancer. Int J Gynecol Cancer 2001;11:277–282.

    Article  PubMed  CAS  Google Scholar 

  132. Inaba N, Negishi Y, Fukasawa I, et al. Cytokeratin fragment 21-1 in gynecologic malignancy: comparison with cancer antigen 125 and squamous cell carcinoma-related antigen. Tumour Biol 1995;16:345–352.

    PubMed  CAS  Google Scholar 

  133. Udagawa Y, Aoki D, Ito K, et al. Clinical characteristics of a newly developed ovarian tumour marker, galactosyltransferase associated with tumour (GAT). Eur J Cancer 1998;34: 489–495.

    Article  PubMed  CAS  Google Scholar 

  134. Uemura M, Sakaguchi T, Uejima T, et al. Mouse monoclonal antibodies which recognize a human (beta 1-4)galactosyltransferase associated with tumor in body fluids. Cancer Res 1992;52:6153–6157.

    PubMed  CAS  Google Scholar 

  135. Ward BG, McGuckin MA, Hurst TG, Khoo SK. Expression of multiple tumour markers in serum from patients with ovarian carcinoma and healthy women. Aust NZ J Obstet Gynaecol 1989;29:340–345.

    Article  CAS  Google Scholar 

  136. Botti C, Seregni E, Ferrari L, et al. Immunosuppressive factors: role in cancer development and progression. Int J Biol Markers 1998;13:51–69.

    PubMed  CAS  Google Scholar 

  137. Castelli M, Romano P, Atlante G, et al. Immunosuppressive acidic protein (IAP) and CA 125 assays in detection of human ovarian cancer: preliminary results. Int J Biol Markers 1987;2:187–190.

    PubMed  CAS  Google Scholar 

  138. Castelli M, Battaglia F, Scambia G, et al. Immunosuppressive acidic protein and CA 125 levels in patients with ovarian cancer. Oncology 1991;48:13–17.

    Article  PubMed  CAS  Google Scholar 

  139. Foti E, Ferrandina G, Martucci R, et al. IL-6, M-CSF and IAP cytokines in ovarian cancer: simultaneous assessment of serum levels. Oncology 1999;57:211–215.

    Article  PubMed  CAS  Google Scholar 

  140. Scambia G, Foti E, Ferrandina G, et al. Prognostic role of immunosuppressive acidic protein in advanced ovarian cancer. Am J Obstet Gynecol 1996;175:1606–1610.

    Article  PubMed  CAS  Google Scholar 

  141. Maccio A, Lai P, Santona MC, et al. High serum levels of soluble IL-2 receptor, cytokines, and C reactive protein correlate with impairment of T cell response in patients with advanced epithelial ovarian cancer. Gynecol Oncol 1998;69: 248–252.

    Article  PubMed  CAS  Google Scholar 

  142. Scambia G, Testa U, Panici PB, et al. Interleukin-6 serum levels in patients with gynecological tumors. Int J Cancer 1994;57:318–323.

    Article  PubMed  CAS  Google Scholar 

  143. Plante M, Rubin SC, Wong GY, et al. Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer. Cancer 1994;73:1882–1888.

    Article  PubMed  CAS  Google Scholar 

  144. Scambia G, Testa U, Benedetti Panici P, et al. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer 1995;71:354–356.

    PubMed  CAS  Google Scholar 

  145. Tempfer C, Zeisler H, Sliutz G, et al. Serum evaluation of interleukin 6 in ovarian cancer patients. Gynecol Oncol 1997;66:27–30.

    Article  PubMed  CAS  Google Scholar 

  146. Diamandis EP, Yousef GM, Soosaipillai AR, Bunting P. Human kallikrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin Biochem 2000;33:579–583.

    Article  PubMed  CAS  Google Scholar 

  147. Diamandis EP, Okui A, Mitsui S, et al. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res 2002;62:295–300.

    PubMed  CAS  Google Scholar 

  148. Dong Y, Kaushal A, Bui L, et al. Human kallikrein 4 (KLK4) is highly expressed in serous ovarian carcinomas. Clin Cancer Res 2001;7:2363–2371.

    PubMed  CAS  Google Scholar 

  149. Luo LY, Bunting P, Scorilas A, Diamandis EP. Human kallikrein 10: a novel tumor marker for ovarian carcinoma? Clin Chim Acta 2001;306:111–118.

    Article  PubMed  CAS  Google Scholar 

  150. Magklara A, Scorilas A, Katsaros D, et al. The human KLK8 (neuropsin/ovasin) gene: identification of two novel splice variants and its prognostic value in ovarian cancer. Clin Cancer Res 2001;7:806–811.

    PubMed  CAS  Google Scholar 

  151. Obiezu CV, Scorilas A, Katsaros D, et al. Higher human kallikrein gene 4 (KLK4) expression indicates poor prognosis of ovarian cancer patients. Clin Cancer Res 2001;7: 2380–2386.

    PubMed  CAS  Google Scholar 

  152. Yousef GM, Kyriakopoulou LG, Scorilas A, et al. Quantitative expression of the human kallikrein gene 9 (KLK9) in ovarian cancer: a new independent and favorable prognostic marker. Cancer Res 2001;61:7811–7818.

    PubMed  CAS  Google Scholar 

  153. Cane P, Azen C, Lopez E, et al. Tumor marker trends in asymptomatic women at risk for ovarian cancer: relevance for ovarian cancer screening. Gynecol Oncol 1995;57: 240–245.

    Article  PubMed  CAS  Google Scholar 

  154. Cole LA, Schwartz PE, Wang YX. Urinary gonadotropin fragments (UGF) in cancers of the female reproductive system. I. Sensitivity and specificity, comparison with other markers. Gynecol Oncol 1988;31:82–90.

    Article  PubMed  CAS  Google Scholar 

  155. Patsner B, Mann WJ, Vissicchio M, Loesch M. Comparison of serum CA-125 and lipid-associated sialic acid (LASA-P) in monitoring patients with invasive ovarian adenocarcinoma. Gynecol Oncol 1988;30:98–103.

    Article  PubMed  CAS  Google Scholar 

  156. Schutter EM, Visser JJ, van Kamp GJ, et al. The utility of lipid-associated sialic acid (LASA or LSA) as a serum marker for malignancy. A review of the literature. Tumour Biol 1992;13:121–132.

    PubMed  CAS  Google Scholar 

  157. Vardi JR, Tadros GH, Malhotra C, et al. Lipid associated sialic acid in plasma in patients with advanced carcinoma of the ovaries. Surg Gynecol Obstet 1989;168:296–301.

    PubMed  CAS  Google Scholar 

  158. Dwivedi C, Dixit M, Hardy RE. Plasma lipid-bound sialic acid alterations in neoplastic diseases. Experientia 1990;46:91–94.

    Article  PubMed  CAS  Google Scholar 

  159. Petru E, Sevin BU, Averette HE, et al. Comparison of three tumor markers—CA-125, lipid-associated sialic acid (LSA), and NB/70K—in monitoring ovarian cancer. Gynecol Oncol 1990;38:181–186.

    Article  PubMed  CAS  Google Scholar 

  160. Schwartz PE, Chambers JT, Taylor KJ, et al. Early detection of ovarian cancer: preliminary results of the Yale Early Detection Program. Yale J Biol Med 1991;64:573–582.

    PubMed  CAS  Google Scholar 

  161. Vardi JR, Tadros GH, Foemmel R, Shebes M. Plasma lipid-associated sialic acid and serum CA 125 as indicators of disease status with advanced ovarian cancer. Obstet Gynecol 1989;74:379–383.

    PubMed  CAS  Google Scholar 

  162. Shen Z, Wu M, Elson P, et al. Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecol Oncol 2001;83:25–30.

    Article  PubMed  CAS  Google Scholar 

  163. Xu Y, Shen Z, Wiper DW, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998;280:719–723.

    Article  PubMed  CAS  Google Scholar 

  164. Bast RC Jr, Boyer CM, Xu FJ, et al. Molecular approaches to prevention and detection of epithelial ovarian cancer. J Cell Biochem Suppl 1995;23:219–222.

    Article  PubMed  Google Scholar 

  165. Suzuki M, Ohwada M, Sato I, Nagatomo M. Serum level of macrophage colony-stimulating factor as a marker for gynecologic malignancies. Oncology 1995;52:128–133.

    PubMed  CAS  Google Scholar 

  166. Suzuki M, Ohwada M, Aida I, et al. Macrophage colony-stimulating factor as a tumor marker for epithelial ovarian cancer. Obstet Gynecol 1993;82:946–950.

    Article  PubMed  CAS  Google Scholar 

  167. Bizzari JP, Mackillop WJ, Buick RN. Cellular specificity of NB70K, a putative human ovarian tumor antigen. Cancer Res 1983;43:864–867.

    PubMed  CAS  Google Scholar 

  168. Dembo AJ, Chang PL, Urbach GI. Clinical correlations of ovarian cancer antigen NB/70K: a preliminary report. Obstet Gynecol 1985;65:710–714.

    PubMed  CAS  Google Scholar 

  169. Knauf S, Urbach GI. Identification, purification, and radioimmunoassay of NB/70K, a human ovarian tumor-associated antigen. Cancer Res 1981;41:1351–1357.

    PubMed  CAS  Google Scholar 

  170. Knauf S, Taillon-Miller P, Helmkamp BF, et al. Selectivity for ovarian cancer of an improved serum radioimmunoassay for human ovarian tumor-associated antigen NB/70K. Gynecol Oncol 1984;17:349–355.

    Article  PubMed  CAS  Google Scholar 

  171. Knauf S, Kalwas J, Helmkamp BF, et al. Monoclonal antibodies against human ovarian tumor associated antigen NB/70K: preparation and use in a radioimmunoassay for measuring NB/70K in serum. Cancer Immunol Immunother 1986;21:217–225.

    Article  PubMed  CAS  Google Scholar 

  172. Knauf S, Bast RC Jr. Tumor antigen NB/70K and CA 125 levels in the blood of preoperative ovarian cancer patients and controls: a preliminary report of the use of the NB12123 and CA 125 radioimmunoassays alone and in combination. Int J Biol Markers 1988;3:75–81.

    PubMed  CAS  Google Scholar 

  173. Knauf S. Clinical evaluation of ovarian tumor antigen NB/70K: monoclonal antibody assays for distinguishing ovarian cancer from other gynecologic disease. Am J Obstet Gynecol 1988;158:1067–1072.

    PubMed  CAS  Google Scholar 

  174. Knauf S. Monoclonal antibody assays for measuring ovarian tumor antigen in blood. Detection of NB/70K in patients with ovarian cancer and nongynecologic diseases. Cancer 1988;62:922–925.

    Article  PubMed  CAS  Google Scholar 

  175. Xu FJ, Yu YH, Daly L, et al. OVX1 radioimmunoassay complements CA-125 for predicting the presence of residual ovarian carcinoma at second-look surgical surveillance procedures. J Clin Oncol 1993;11:1506–1510.

    PubMed  CAS  Google Scholar 

  176. Ben-Arie A, Hagay Z, Ben-Hur H, et al. Elevated serum alkaline phosphatase may enable early diagnosis of ovarian cancer. Eur J Obstet Gynecol Reprod Biol 1999;86:69–71.

    Article  PubMed  CAS  Google Scholar 

  177. Fishman WH. Clinical and biological significance of an isozyme tumor marker-PLAP. Clin Biochem 1987;20: 387–392.

    Article  PubMed  CAS  Google Scholar 

  178. Fisken J, Leonard RC, Shaw G, et al. Serum placental-like alkaline phosphatase (PLAP): a novel combined enzyme linked immunoassay for monitoring ovarian cancer. J Clin Pathol 1989;42:40–45.

    Article  PubMed  CAS  Google Scholar 

  179. Muensch HA, Maslow WC, Azama F, et al. Placental-like alkaline phosphatase. Re-evaluation of the tumor marker with exclusion of smokers. Cancer 1986;58:1689–1694.

    Article  PubMed  CAS  Google Scholar 

  180. Vergote I, Onsrud M, Nustad K. Placental alkaline phosphatase as a tumor marker in ovarian cancer. Obstet Gynecol 1987;69:228–232.

    PubMed  CAS  Google Scholar 

  181. Burger HG, Robertson DM, Cahir N, et al. Characterization of inhibin immunoreactivity in post-menopausal women with ovarian tumours. Clin Endocrinol (Oxf) 1996;44: 413–418.

    Article  CAS  Google Scholar 

  182. Burger HG, Fuller PJ, Chu S, et al. The inhibins and ovarian cancer. Mol Cell Endocrinol 2001;180:145–148.

    Article  PubMed  CAS  Google Scholar 

  183. Lambert-Messerlian GM, Steinhoff M, Zheng W, et al. Multiple immunoreactive inhibin proteins in serum from postmenopausal women with epithelial ovarian cancer. Gynecol Oncol 1997;65:512–516.

    Article  PubMed  CAS  Google Scholar 

  184. Cooke I, O’Brien M, Charnock FM, et al. Inhibin as a marker for ovarian cancer. Br J Cancer 1995;71:1046–1050.

    PubMed  CAS  Google Scholar 

  185. Lambert-Messerlian GM. Is inhibin a serum marker for ovarian cancer? Eur J Endocrinol 2000;142:331–333.

    Article  PubMed  CAS  Google Scholar 

  186. Robertson DM, Cahir N, Burger HG, et al. Combined inhibin and CA125 assays in the detection of ovarian cancer. Clin Chem 1999;45:651–658.

    PubMed  CAS  Google Scholar 

  187. Mills GB, Bast RC Jr, Srivastava S. Future for ovarian cancer screening: novel markers from emerging technologies of transcriptional profiling and proteomics. J Natl Cancer Inst 2001;93:1437–1439.

    Article  PubMed  CAS  Google Scholar 

  188. Iwanari O, Miyako J, Date Y, et al. Differential diagnosis of ovarian cancer, benign ovarian tumor and endometriosis by a combination assay of serum sialyl SSEA-1 antigen and CA125 levels. Gynecol Obstet Invest 1990;29:71–74.

    PubMed  CAS  Google Scholar 

  189. Iwanari O, Miyako J, Date Y, et al. Clinical evaluations of the tumor marker sialyl SSEA-1 antigen for clinical gynecological disease. Gynecol Obstet Invest 1990;29:214–218.

    Article  PubMed  CAS  Google Scholar 

  190. Kobayashi H, Kawashima Y. Clinical usefulness of serum sialyl SSEA-1 antigen levels in patients with epithelial ovarian cancer. Comparative effectiveness of sialyl SSEA-1 and CA 125. Gynecol Obstet Invest 1990;30:52–58.

    Article  PubMed  CAS  Google Scholar 

  191. Suzuki M, Ohwada M, Tamada T. Clinical value of sialyl SSEA-1 antigen in patients with ovarian cancer. Gynecol Oncol 1990;36:371–375.

    Article  PubMed  CAS  Google Scholar 

  192. Peters-Engl C, Medl M, Ogris E, Leodolter S. Tumor-associated trypsin inhibitor (TATI) and cancer antigen 125 (CA125) in patients with epithelial ovarian cancer. Anti Cancer Res 1995;15:2727–2730.

    CAS  Google Scholar 

  193. Medl M, Ogris E, Peters-Engl C, Leodolter S. TATI (tumour-associated trypsin inhibitor) as a marker of ovarian cancer. Br J Cancer 1995;71:1051–1054.

    PubMed  CAS  Google Scholar 

  194. Vartiainen J, Lehtovirta P, Finne P, et al. Preoperative serum concentration of hCGbeta as a prognostic factor in ovarian cancer. Int J Cancer 2001;95:313–316.

    Article  PubMed  CAS  Google Scholar 

  195. Venesmaa P, Lehtovirta P, Stenman UH, et al. Tumour-associated trypsin inhibitor (TATI): comparison with CA125 as a preoperative prognostic indicator in advanced ovarian cancer. Br J Cancer 1994;70:1188–1190.

    PubMed  CAS  Google Scholar 

  196. Hogdall CK, Christensen L, Clemmensen I. The prognostic value of tetranectin immunoreactivity and plasma tetranectin in patients with ovarian cancer. Cancer 1993;72: 2415–2422.

    Article  PubMed  CAS  Google Scholar 

  197. Van Dalen A, Favier J, Baumgartner L, et al. Serum levels of CA 125 and TPS during treatment of ovarian cancer. Anti Cancer Res 2000;20:5107–5108.

    Google Scholar 

  198. Cole LA, Nam JH, Chambers JT, Schwartz PE. Urinary gonadotropin fragment, a new tumor marker. II. Differentiating a benign from a malignant pelvic mass. Gynecol Oncol 1990;36:391–394.

    Article  PubMed  CAS  Google Scholar 

  199. Cole LA, Nam JH. Urinary gonadotropin fragment (UGF) measurements in the diagnosis and management of ovarian cancer. Yale J Biol Med 1989;62:367–378.

    PubMed  CAS  Google Scholar 

  200. Schutter EM, Mijatovic V, Kok A, et al. Urinary gonadotropin peptide (UGP) and serum CA 125 in gynaecologic practice, a clinical prospective study. Anti Cancer Res 1999;19:5551–5557.

    CAS  Google Scholar 

  201. Schwartz PE, Cracchiolo BM, Cole LA. Clinical applications of urinary gonadotropin peptides (UGP) in gynecologic oncology. Anti Cancer Res 1996;16:2135–2139.

    CAS  Google Scholar 

  202. Walker R, Crebbin V, Stern J, et al. Urinary gonadotropin peptide (UGP) as a marker of gynecologic malignancies. Anti Cancer Res 1994;14:1703–1709.

    CAS  Google Scholar 

  203. Wang YX, Schwartz PE, Chambers JT, Cole LA. Urinary gonadotropin fragments (UGF) in cancers of the female reproductive system. II. Initial serial studies. Gynecol Oncol 1988;31:91–102.

    Article  PubMed  CAS  Google Scholar 

  204. Okamoto T, Niu R, Matsuo K, et al. Human chorionic gonadotropin beta-core fragment is directly produced by cancer cells. Life Sci 2001;68:861–872.

    Article  PubMed  CAS  Google Scholar 

  205. Obermair A, Tempfer C, Hefler L, et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer 1998;77:1870–1874.

    PubMed  CAS  Google Scholar 

  206. Oehler MK, Caffier H. Prognostic relevance of serum vascular endothelial growth factor in ovarian cancer. Anti Cancer Res 2000;20:5109–5112.

    CAS  Google Scholar 

  207. Hazelton DA, Hamilton TC. Vascular endothelial growth factor in ovarian cancer. Curr Oncol Rep 1999;1:59–63.

    Article  PubMed  CAS  Google Scholar 

  208. Tempfer C, Obermair A, Hefler L, et al. Vascular endothelial growth factor serum concentrations in ovarian cancer. Obstet Gynecol 1998;92:360–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Zorn, K.K., Gardner, G.J., Birrer, M.J. (2005). Epithelial Ovarian Cancer. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_35

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics