Skip to main content

Barrett’s Esophagus

Strategies for Cancer Prevention

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 842 Accesses

Abstract

Barrett’s esophagus (BE) is a condition in which the normal stratified squamous epithelium of the esophagus is replaced by a metaplastic columnar mucosa as a complication of chronic gastroesophageal reflux disease (GERD) (1,2). BE is the only known precursor to esophageal adenocarcinoma, which has greater than 90% mortality unless detected early (24).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phillips RW, Wong RK. Barrett’s esophagus. Natural history, incidence, etiology, and complications. Gastroenterol Clin North Am 1991;20:791–816.

    PubMed  CAS  Google Scholar 

  2. Morales TG, Sampliner RE. Barrett’s esophagus: update on screening, surveillance, and treatment. Arch Intern Med 1999;159:1411–1416.

    PubMed  CAS  Google Scholar 

  3. Farrow DC, Vaughan TL. Determinants of survival following the diagnosis of esophageal adenocarcinoma (United States). Cancer Causes Control 1996;7:322–327.

    PubMed  CAS  Google Scholar 

  4. Reid BJ. Barrett’s esophagus and esophageal adenocarcinoma. In Gastroenterology Clinics of North America: Mucosal Diseases of the Esophagus. Roy KHW, ed. WB Saunders Co., Philadelphia, 1991; pp. 817–834.

    Google Scholar 

  5. Barrett MT, Sanchez CA, Prevo LJ, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 1999;22:106–109.

    PubMed  CAS  Google Scholar 

  6. Gleeson CM, Sloan JM, McGuigan JA, et al. Base transitions at CpG dinucleotides in the p53 gene are common in esophageal adenocarcinoma. Cancer Res 1995;55: 3406–3411.

    PubMed  CAS  Google Scholar 

  7. Klump B, Hsieh CJ, Holzmann K, et al. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 1998;115:1381–1386.

    PubMed  CAS  Google Scholar 

  8. Muzeau F, Flejou JF, Potet F, et al. Profile of p53 mutations and abnormal expression of P53 protein in 2 forms of esophageal cancer. Gastroenterol Clin Biol 1996;20:430–437.

    PubMed  CAS  Google Scholar 

  9. Muzeau F, Flejou JF, Thomas G, Hamelin R. Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2) gene mutations in esophageal cancers. Int J Cancer 1997;72:27–30.

    PubMed  CAS  Google Scholar 

  10. Tarmin L, Yin J, Zhou X, et al. Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma and squamous cell carcinoma of the esophagus. Cancer Res 1994;54: 6094–6096.

    PubMed  CAS  Google Scholar 

  11. Galipeau PC, Cowan DS, Sanchez CA, et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 1996;93:7081–7084.

    PubMed  CAS  Google Scholar 

  12. Galipeau PC, Prevo LJ, Sanchez CA, et al. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 1999;91:2087–2095.

    PubMed  CAS  Google Scholar 

  13. Hamelin R, Flejou JF, Muzeau F, et al. TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology 1994;107: 1012–1018.

    PubMed  CAS  Google Scholar 

  14. Neshat K, Sanchez CA, Galipeau PC, et al. p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology 1994;106:1589–1595.

    PubMed  CAS  Google Scholar 

  15. Prevo LJ, Sanchez CA, Galipeau PC, Reid BJ. p53 Mutant clones and field effects in Barrett’s esophagus. Cancer Res 1999;59:4784–4787.

    PubMed  CAS  Google Scholar 

  16. Menke-Pluymers MB, Mulder AH, Hop WC, et al. Dysplasia and aneuploidy as markers of malignant degeneration in Barrett’s oesophagus. The Rotterdam Oesophageal Tumour Study Group. Gut 1994;35:1348–1351.

    PubMed  CAS  Google Scholar 

  17. Fennerty MB, Sampliner RE, Way D, et al. Discordance between flow cytometric abnormalities and dysplasia in Barrett’s esophagus. Gastroenterology 1989;97:815–820.

    PubMed  CAS  Google Scholar 

  18. Gimenez A, Minguela A, Parrilla P, et al. Flow cytometric DNA analysis and p53 protein expression show a good correlation with histologic findings in patients with Barrett’s esophagus. Cancer 1998;83:641–651.

    PubMed  CAS  Google Scholar 

  19. McKinley MJ, Budman DR, Grueneberg D, et al. DNA content in Barrett’s esophagus and esophageal malignancy. Am J Gastroenterol 1987;82:1012–1015.

    PubMed  CAS  Google Scholar 

  20. Rabinovitch PS, Reid BJ, Haggitt RC, et al. Progression to cancer in Barrett’s esophagus is associated with genomic instability. Lab Invest 1989;60:65–71.

    PubMed  CAS  Google Scholar 

  21. Robaszkiewicz M, Hardy E, Volant A. Analyse du contenu cellulaire en ADN par cytometrie en flux dans les endobrachyoesophages. Gastroenterol Clin Biol 1991;15:703–710.

    PubMed  CAS  Google Scholar 

  22. Winkelstein A. Peptic esophagitis: a new clinic entity. JAMA 1935;104:906–909.

    Google Scholar 

  23. Barrett NR. Chronic peptic ulcer of the oesophagus and ‘oesophagitis’. Br J Surg 1950–1951;38:175–182.

    PubMed  CAS  Google Scholar 

  24. Naef AP, Savary M, Ozzello L. Columnar-lined lower esophagus: an acquired lesion with malignant predisposition. Report on 140 cases of Barrett’s esophagus with 12 adenocarcinomas. J Thorac Cardiovasc Surg 1975;70:826–835.

    PubMed  CAS  Google Scholar 

  25. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 1991;265:1287–1289.

    PubMed  CAS  Google Scholar 

  26. Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 2001;92: 549–555.

    PubMed  CAS  Google Scholar 

  27. Gallup. A Gallup Organization national survey: heartburn across America. The Gallup Organization, Princeton, 1988.

    Google Scholar 

  28. Locke GR 3rd, Talley NJ, Fett SL, et al. Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology 1997;112:1448–1456.

    PubMed  Google Scholar 

  29. Barrett NR. The lower esophagus lined by columnar epithelium. Surgery 1957;41:881–894.

    PubMed  CAS  Google Scholar 

  30. Schmidt HG, Riddell RH, Walther B, et al. Dysplasia in Barrett’s esophagus. J Cancer Res Clin Oncol 1985;110: 145–152.

    PubMed  CAS  Google Scholar 

  31. McClave SA, Boyce HW Jr, Gottfried MR. Early diagnosis of columnar-lined esophagus: a new endoscopic diagnostic criterion. Gastrointest Endosc 1987;33:413–416.

    PubMed  CAS  Google Scholar 

  32. Gottfried MR, McClave SA, Boyce HW. Incomplete intestinal metaplasia in the diagnosis of columnar lined esophagus (Barrett’s esophagus). Am J Clin Pathol 1989;92:741–746.

    PubMed  CAS  Google Scholar 

  33. Sharma P, Morales TG, Sampliner RE. Short segment Barrett’s esophagus—the need for standardization of the definition and of endoscopic criteria. Am J Gastroenterol, 1998;93:1033–1036.

    PubMed  CAS  Google Scholar 

  34. Burbige EJ, Radigan JJ. Characteristics of the columnar-cell lined (Barrett’s) esophagus. Gastrointest Endosc 1979;25: 133–136.

    PubMed  CAS  Google Scholar 

  35. Rothery GA, Patterson JE, Stoddard CJ, Day DW. Histological and histochemical changes in the columnar lined (Barrett’s) oesophagus. Gut 1986;27:1062–1068.

    PubMed  CAS  Google Scholar 

  36. Cooper BT, Barbezat GO. Barrett’s oesophagus: a clinical study of 52 patients. Q J Med 1987;62:97–108.

    PubMed  CAS  Google Scholar 

  37. Ovaska J, Miettinen M, Kivilaakso E. Adenocarcinoma arising in Barrett’s esophagus. Dig Dis Sci 1989;34:1336–1339.

    PubMed  CAS  Google Scholar 

  38. Herlihy KJ, Orlando RC, Bryson JC, et al. Barrett’s esophagus: clinical, endoscopic, histologic, manometric, and electrical potential difference characteristics. Gastroenterology 1984;86:436–443.

    PubMed  CAS  Google Scholar 

  39. Snyder JD, Goldman H. Barrett’s esophagus in children and young adults. Frequent association with mental retardation. Dig Dis Sci 1990;35:1185–1189.

    PubMed  CAS  Google Scholar 

  40. Starnes VA, Adkins RB, Ballinger JF, Sawyers JL. Barrett’s esophagus. A surgical entity. Arch Surg 1984;119:563–567.

    PubMed  CAS  Google Scholar 

  41. Sarr MG, Hamilton SR, Marrone GC, Cameron JL. Barrett’s esophagus: its prevalence and association with adenocarcinoma in patients with symptoms of gastroesophageal reflux. Am J Surg 1985;149:187–193.

    PubMed  CAS  Google Scholar 

  42. Gilchrist AM, Levine MS, Carr RF, et al. Barrett’s esophagus: diagnosis by double-contrast esophagography. Am J Roentgenol 1988;150:97–102.

    CAS  Google Scholar 

  43. Winters C Jr, Spurling TJ, Chobanian SJ, et al. Barrett’s esophagus. A prevalent, occult complication of gastroesophageal reflux disease. Gastroenterology 1987;92:118–124.

    PubMed  Google Scholar 

  44. Mann NS, Tsai MF, Nair PK. Barrett’s esophagus in patients with symptomatic reflux esophagitis. Am J Gastroenterol 1989;84:1494–1496.

    PubMed  CAS  Google Scholar 

  45. Dahms BB, Greco MA, Strandjord SE, Rothstein FC. Barrett’s esophagus in three children after antileukemia chemotherapy. Cancer 1987;60:2896–2900.

    PubMed  CAS  Google Scholar 

  46. Hirota WK, Loughney TM, Lazas DJ, et al. Specialized intestinal metaplasia, dysplasia, and cancer of the esophagus and esophagogastric junction: prevalence and clinical data. Gastroenterology 1999;116:277–285.

    PubMed  CAS  Google Scholar 

  47. Robinson M, Earnest D, Rodriguez-Stanley S, et al. Heartburn requiring frequent antacid use may indicate significant illness. Arch Intern Med 1998;158:2373–2376.

    PubMed  CAS  Google Scholar 

  48. Gerson LB, Shelter K, Triadafilopoulos G. Screening for Barrett’s esophagus in asymptomatic adults undergoing routine flexible sigmoidoscopy for colorectal cancer screening. Gastrointest Endosc 2001;53:AB61.

    Google Scholar 

  49. Ghorai S, Rex D, Cummings O, Rahmani E. Screening for Barrett’s (B) in colonoscopy (CS) patients with and without heartburn (HB). Gastrointest Endosc 2001;53:AB61.

    Google Scholar 

  50. Cameron AJ, Lomboy CT. Barrett’s esophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology 1992;103:1241–1245.

    PubMed  CAS  Google Scholar 

  51. Cameron AJ, Zinsmeister AR, Ballard DJ, Carney JA. Prevalence of columnar-lined (Barrett’s) esophagus. Comparison of population-based clinical and autopsy findings. Gastroenterology 1990;99:918–922.

    PubMed  CAS  Google Scholar 

  52. Endo M. A case of Barrett epithelization followed up for five years. Endoscopy 1974;6:48–51.

    Google Scholar 

  53. Goldman M. Barrett syndrome. Case Reports 1960;39: 104–110.

    CAS  Google Scholar 

  54. Mossberg SM. The columnar-lined esophagus (Barrett syndrome)—an acquired condition? Gastroenterology 1966;50: 671–676.

    PubMed  CAS  Google Scholar 

  55. Halvorsen JF, Semb BK. The Barrett syndrome (the columnar-lined lower oesophagus): an acquired condition secondary to reflux oesophagitis. A case report with discussion of pathogenesis. Acta Chir Scand 1975;141:683–687.

    PubMed  CAS  Google Scholar 

  56. Conio M, Cameron AJ, Romero Y, et al. Secular trends in the epidemiology and outcome of Barrett’s oesophagus in Olmsted County, Minnesota. Gut 2001;48:304–309.

    PubMed  CAS  Google Scholar 

  57. Caygill CP, Reed PI, Johnston BJ, et al. A single centre’s 20 years’ experience of columnar-lined (Barrett’s) oesophagus diagnosis. Eur J Gastroenterol Hepatol 1999;11: 1355–1358.

    PubMed  CAS  Google Scholar 

  58. Prach AT, MacDonald TA, Hopwood DA, Johnston DA. Increasing incidence of Barrett’s oesophagus: education, enthusiasm, or epidemiology? Lancet 1997;350:933.

    PubMed  CAS  Google Scholar 

  59. Bosch A, Frias Z, Caldwell WL. Adenocarcinoma of the esophagus. Cancer 1979;43:1557–1561.

    PubMed  CAS  Google Scholar 

  60. Faintuch J, Shepard KV, Levin B. Adenocarcinoma and other unusual variants of esophageal cancer. Semin Oncol 1984;11:196–202.

    PubMed  CAS  Google Scholar 

  61. Devesa SS, Blot WJ, Fraumeni JF Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998;83:2049–2053.

    PubMed  CAS  Google Scholar 

  62. Yang PC, Davis S. Incidence of cancer of the esophagus in the US by histologic type. Cancer 1988;61:612–617.

    PubMed  CAS  Google Scholar 

  63. Blot WJ, Devesa SS, Fraumeni JF Jr. Continuing climb in rates of esophageal adenocarcinoma: an update. JAMA 1993;270:1320.

    PubMed  CAS  Google Scholar 

  64. McKinney A, Sharp L, Macfarlane GJ, Muir CS. Oesophageal and gastric cancer in Scotland 1960–1990. Br J Cancer 1995;71:411–415.

    PubMed  CAS  Google Scholar 

  65. Moller H. Incidence of cancer of oesophagus, cardia and stomach in Denmark. Eur J Cancer Prev 1992;1:159–164.

    PubMed  CAS  Google Scholar 

  66. Hansen S, Wiig JN, Giercksky KE, Tretli S. Esophageal and gastric carcinoma in Norway 1958–1992: incidence time trend variability according to morphological subtypes and organ subsites. Int J Cancer 1997;71:340–344.

    PubMed  CAS  Google Scholar 

  67. Levi F, Randimbison L, La Vecchia C. Esophageal and gastric carcinoma in Vaud, Switzerland, 1976–1994. Int J Cancer 1998;75:160–161.

    PubMed  CAS  Google Scholar 

  68. Thomas RJ, Lade S, Giles GG, Thursfield V. Incidence trends in oesophageal and proximal gastric carcinoma in Victoria. Aust NZ J Surg 1996;66:271–275.

    CAS  Google Scholar 

  69. Armstrong RW, Borman B. Trends in incidence rates of adenocarcinoma of the oesophagus and gastric cardia in New Zealand, 1978–1992. Int J Epidemiol 1996;25:941–947.

    PubMed  CAS  Google Scholar 

  70. Bytzer P, Christensen PB, Damkier P, et al. Adenocarcinoma of the esophagus and Barrett’s esophagus: a population-based study. Am J Gastroenterol 1999;94:86–91.

    PubMed  CAS  Google Scholar 

  71. Powell J, McConkey CC. The rising trend in oesophageal adenocarcinoma and gastric cardia. Eur J Cancer Prev 1992;1:265–269.

    PubMed  CAS  Google Scholar 

  72. Rios-Castellanos E, Sitas F, Shepherd NA, Jewell DP. Changing pattern of gastric cancer in Oxfordshire. Gut 1992;33:1312–1317.

    PubMed  CAS  Google Scholar 

  73. van der Burgh A, Dees J, Hop WC, van Blankenstein M. Oesophageal cancer is an uncommon cause of death in patients with Barrett’s oesophagus. Gut 1996;39:5–8.

    PubMed  Google Scholar 

  74. Spechler SJ. Barrett’s esophagus: an overrated cancer risk factor. Gastroenterology 2000;119:587–589.

    PubMed  CAS  Google Scholar 

  75. Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 2000;119:333–338.

    PubMed  CAS  Google Scholar 

  76. Drewitz DJ, Sampliner RE, Garewal HS. The incidence of adenocarcinoma in Barrett’s esophagus: a prospective study of 170 patients followed 4.8 years. Am J Gastroenterol 1997;92:212–215.

    PubMed  CAS  Google Scholar 

  77. O’Connor JB, Falk GW, Richter JE. The incidence of adenocarcinoma and dysplasia in Barrett’s esophagus: report on the Cleveland Clinic Barrett’s Esophagus Registry. Am J Gastroenterol 1999;94:2037–2042.

    PubMed  CAS  Google Scholar 

  78. Spechler SJ, Lee E, Ahnen D, et al. Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA 2001;285:2331–2338.

    PubMed  CAS  Google Scholar 

  79. Jankowski JA, Provenzale D, Moayyedi P. Esophageal adenocarcinoma arising from Barrett’s metaplasia has regional variations in the west. Gastroenterology 2002;10:588–590.

    Google Scholar 

  80. Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Eng J Med 1999;340: 825–831.

    CAS  Google Scholar 

  81. Farrow DC, Vaughan TL, Sweeney C, et al. Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 2000;11:231–238.

    PubMed  CAS  Google Scholar 

  82. Vaezi, MF, Richter JE. Bile reflux in columnar-lined esophagus. Gastroenterol Clin North Am 1997;26:565–582.

    PubMed  CAS  Google Scholar 

  83. Marshall RE, Anggiansah A, Owen WJ. Bile in the oesophagus: clinical relevance and ambulatory detection. Br J Surg 1997;84:21–28.

    PubMed  CAS  Google Scholar 

  84. DeMeester SR. Management of Barrett’s esophagus free of dysplasia. Semin Thorac Cardiovasc Surg 1997;9: 279–284.

    PubMed  CAS  Google Scholar 

  85. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 1996;111:1192–1199.

    PubMed  CAS  Google Scholar 

  86. Vaezi MF, Singh S, Richter JE. Role of acid and duodenogastric reflux in esophageal mucosal injury: a review of animal and human studies. Gastroenterology 1995;108: 1897–1907.

    PubMed  CAS  Google Scholar 

  87. Champion G, Richter JE, Vaezi MF, et al. Duodenogastroesophageal reflux: relationship to pH and importance in Barrett’s esophagus. Gastroenterology 1994;107:747–754.

    PubMed  CAS  Google Scholar 

  88. Caldwell MT, Lawlor P, Byrne PJ, et al. Ambulatory oesophageal bile reflux monitoring in Barrett’s oesophagus. Br J Surg 1995;82:657–660.

    PubMed  CAS  Google Scholar 

  89. Kauer WK, Peters JH, DeMeester TR, et al. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995;222:525–531.

    PubMed  CAS  Google Scholar 

  90. Kauer WK, Burdiles P, Ireland AP, et al. Does duodenal juice reflux into the esophagus of patients with complicated GERD? Evaluation of a fiberoptic sensor for bilirubin. Am J Surg 1995;169:98–104.

    PubMed  CAS  Google Scholar 

  91. Muller-Lissner SA. Bile reflux is increased in cigarette smokers. Gastroenterology 1986;90:1205–1209.

    PubMed  CAS  Google Scholar 

  92. Nehra D, Howell P, Williams CP, et al. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 1999;44:598–602.

    PubMed  CAS  Google Scholar 

  93. Stein HJ, Kauer WKH, Feussner H, Siewert JR. Bile reflux in benign and malignant Barrett’s esophagus: effect of medical acid suppression and nissen fundoplication. J Gastrointest Surg 1998;2:333–341.

    PubMed  CAS  Google Scholar 

  94. Marshall RE, Anggiansah A, Manifold DK, et al. Effect of omeprazole 20 mg twice daily on duodenogastric and gastro-oesophageal bile reflux in Barrett’s oesophagus. Gut 1998;43:603–606.

    PubMed  CAS  Google Scholar 

  95. Menges M, Muller M, Zeitz M. Increased acid and bile reflux in Barrett’s esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy. Am J Gastroenterol 2001;96:331–337.

    PubMed  CAS  Google Scholar 

  96. Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 1999;130:883–890.

    PubMed  CAS  Google Scholar 

  97. Chow WH, Blot WJ, Vaughan TL, et al. Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1998;90:150–155.

    PubMed  CAS  Google Scholar 

  98. Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 1995;4:85–92.

    PubMed  CAS  Google Scholar 

  99. Brown LM, Swanson CA, Gridley G, et al. Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst 1995;87:104–109.

    PubMed  CAS  Google Scholar 

  100. Brown LM, Silverman DT, Pottern LM, et al. Adenocarcinoma of the esophagus and esophagogastric junction in white men in the United States: alcohol, tobacco, and socioeconomic factors. Cancer Causes Control 1994;5:333–340.

    PubMed  CAS  Google Scholar 

  101. Gammon MD, Schoenberg JB, Ahsan H, et al. Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1997;89:1277–1284.

    PubMed  CAS  Google Scholar 

  102. Lagergren J, Bergstrom R, Lindgren A, Nyren O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. Int J Cancer 2000;85: 340–346.

    PubMed  CAS  Google Scholar 

  103. Farrow DC, Vaughan TL, Hansten PD, et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 1998;7:97–102.

    PubMed  CAS  Google Scholar 

  104. Funkhouser EM, Sharp GB. Aspirin and reduced risk of esophageal carcinoma. Cancer 1995;76:1116–1119.

    PubMed  CAS  Google Scholar 

  105. Langman MJ, Cheng KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugs on overall risk of common cancer: case-control study in general practice research database. Br Med J 2000;320:1642–1646.

    CAS  Google Scholar 

  106. Thun MJ, Namboodiri MM, Calle EE, et al. Aspirin use and risk of fatal cancer. Cancer Res 1993;53:1322–1327.

    PubMed  CAS  Google Scholar 

  107. Brown JM, Lemmon MJ. Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res 1990;50:7745–7749.

    PubMed  CAS  Google Scholar 

  108. Mayne ST, Risch H, Dubrow R, et al. Nutrient intake and risk of adenocarcinomas of the esophagus and gastric cardia. FASEB J 1999;13:A1021.

    Google Scholar 

  109. Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control 1993;4:123–132.

    PubMed  CAS  Google Scholar 

  110. Zhang ZF, Kurtz RC, Yu GP, et al. Adenocarcinomas of the esophagus and gastric cardia: the role of diet. Nutr Cancer 1997;27:298–309.

    PubMed  CAS  Google Scholar 

  111. Tzonou A, Lipworth L, Garidou A, et al. Diet and risk of esophageal cancer by histologic type in a low-risk population. Int J Cancer 1996;68:300–304.

    PubMed  CAS  Google Scholar 

  112. Mayne ST, Risch HA, Dubrow R, et al. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 2001;10:1055–1062.

    PubMed  CAS  Google Scholar 

  113. Sampliner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol 1998;93: 1028–1032.

    PubMed  CAS  Google Scholar 

  114. Corley DA, Levin TR, Habel LA, et al. Surveillance and survival in Barrett’s adenocarcinomas: a population-based study. Gastroenerology 2002;122:633–640.

    Google Scholar 

  115. Peters JH, Clark GW, Ireland AP, et al. Outcome of adenocarcinoma arising in Barrett’s esophagus in endoscopically surveyed and nonsurveyed patients. J Thorac Cardiovasc Surg 1994;108:813–822.

    PubMed  CAS  Google Scholar 

  116. van Sandick JW, van Lanschot JJ, Kuiken BW, et al. Impact of endoscopic biopsy surveillance of Barrett’s oesophagus on pathological stage and clinical outcome of Barrett’s carcinoma. Gut 1998;43:216–222.

    PubMed  Google Scholar 

  117. Macdonald CE, Wicks AC, Playford RJ. Final results from 10 year cohort of patients undergoing surveillance for Barrett’s oesophagus: observational study. Br Med J 2000;321:1252–1255.

    CAS  Google Scholar 

  118. Falk GW, Ours TM, Richter JE. Practice patterns for surveillance of Barrett’s esophagus in the United States. Gastrointest Endosc 2000;52:197–203.

    PubMed  CAS  Google Scholar 

  119. Provenzale D, Schmitt C, Wong JB. Barrett’s esophagus: a new look at surveillance based on emerging estimates of cancer risk. Am J Gastroenterol 1999;94:2043–2053.

    PubMed  CAS  Google Scholar 

  120. Reid BJ, Haggitt RC, Rubin CE, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol 1988;19:166–178.

    PubMed  CAS  Google Scholar 

  121. Sagan C, Flejou JF, Diebold MD, et al. Observer variation in the diagnosis of dysplasia in Barrett’s mucosa. Gastroenterol Clin Biol 1994;18:D31–D34.

    PubMed  CAS  Google Scholar 

  122. Polkowski W., van Lanschot JJ, Ten Kate FJ, et al. The value of p53 and Ki67 as markers for tumour progression in the Barrett’s dysplasia-carcinoma sequence. Surg Oncol 1995;4:163–171.

    PubMed  CAS  Google Scholar 

  123. Polkowski W, Baak JP, van Lanschot JJ, et al. Clinical decision making in Barrett’s oesophagus can be supported by computerized immunoquantitation and morphometry of features associated with proliferation and differentiation. J Pathol 1998;184:161–168.

    PubMed  CAS  Google Scholar 

  124. Alikhan M, Rex D, Khan A, et al. Variable pathologic interpretation of columnar lined esophagus by general pathologists in community practice. Gastrointest Endosc 1999;50:23–26.

    PubMed  CAS  Google Scholar 

  125. van Sandick JW, Baak JP, van Lanschot JJ, et al Computerized quantitative pathology for the grading of dysplasia in surveillance biopsies of Barrett’s oesophagus. J Pathol 2000;190: 177–183.

    PubMed  Google Scholar 

  126. Montgomery E, Bronner MP, Goldblum JR, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol 2001;32: 368–378.

    PubMed  CAS  Google Scholar 

  127. Reid BJ, Levine DS, Longton G, et al. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low-and high-risk patient subsets. Am J Gastroenterol 2000;95:1669–1676.

    PubMed  CAS  Google Scholar 

  128. Schnell TG, Sontag SJ, Chejfec G, et al. Long-term nonsurgical management of Barrett’s esophagus with high-grade dysplasia. Gastroenterology 2001;120:1607–1619.

    PubMed  CAS  Google Scholar 

  129. Buttar NS, Wang KK, Sebo TJ, et al. Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology 2001;120:1630–1639.

    PubMed  CAS  Google Scholar 

  130. Weston AP, Sharma P, Topalovski M, et al. Long-term follow-up of Barrett’s high-grade dysplasia. Am J Gastroenterol 2000;95:1888–1893.

    PubMed  CAS  Google Scholar 

  131. Reid BJ, Blount PL, Feng Z, Levine DS. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol 2000;95:3089–3096.

    PubMed  CAS  Google Scholar 

  132. Weston AP, Banerjee SK, Sharma P, et al. p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol 2001;96:1355–1362.

    PubMed  CAS  Google Scholar 

  133. Ofman JJ, Lewin K, Ramers C, et al. The economic impact of the diagnosis of dysplasia in Barrett’s esophagus. Am J Gastroenterol 2000;95:2946–2952.

    PubMed  CAS  Google Scholar 

  134. Eloubeidi MA, Homan RK, Martz MD, et al. A cost analysis of outpatient care for patients with Barrett’s esophagus in a managed care setting. Am J Gastroenterol 1999;94:2033–2036.

    PubMed  CAS  Google Scholar 

  135. Ouatu-Lascar R, Fitzgerald RC, Triadafilopoulos G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology 1999;117: 327–335.

    PubMed  CAS  Google Scholar 

  136. Sampliner RE, Faigel D, Fennerty B, et al. Effective and safe endoscopic reversal of nondysplastic Barrett’s esophagus with thermal electrocoagulation combined with high dose acid inhibition: a multicenter study. Gastrointest Endosc 2001;53:554–558.

    PubMed  CAS  Google Scholar 

  137. Overholt BF, Panjehpour M, Haydek JM. Photodynamic therapy for Barrett’s esophagus: follow-up in 100 patients. Gastrointest Endosc 1999;49:1–7.

    PubMed  CAS  Google Scholar 

  138. Gossner L, May A, Stolte M, et al. KTP laser destruction of dysplasia and early cancer in columnar-lined Barrett’s esophagus. Gastrointest Endosc 1999;49:8–12.

    PubMed  CAS  Google Scholar 

  139. Gossner L, Stolte M, Sroka R, et al. Photodynamic ablation of high-grade dysplasia and early cancer in Barrett’s esophagus by means of 5-aminolevulinic acid. Gastroenterology 1998;114: 448–455.

    PubMed  CAS  Google Scholar 

  140. Nijhawan PK, Wang KK. Endoscopic mucosal resection for lesions with endoscopic features suggestive of malignancy and high-grade dysplasia within Barrett’s esophagus. Gastrointest Endosc 2000;52:328–332.

    PubMed  CAS  Google Scholar 

  141. Ell C, May A, Gossner L, et al. Endoscopic mucosal resection of early cancer and high-grade dysplasia in Barrett’s esophagus. Gastroenterology 2000;118:670–677.

    PubMed  CAS  Google Scholar 

  142. Buttar NS, Wang KK, Lutzke LS, et al. Combined endoscopic mucosal resection and photodynamic therapy for esophageal neoplasia within Barrett’s esophagus. Gastrointest Endosc 2001;54:682–688.

    PubMed  CAS  Google Scholar 

  143. Van Laethem JL, Peny MO, Salmon I, et al. Intramucosal adenocarcinoma arising under squamous re-epithelialisation of Barrett’s oesophagus. Gut 2000;46:574–577.

    PubMed  Google Scholar 

  144. Ertan A, Zimmerman M, Younes M. Esophageal adenocarcinoma associated with Barrett’s esophagus: long-term management with laser ablation. Am J Gastroenterol 1995;90:2201–2203.

    PubMed  CAS  Google Scholar 

  145. Krishnadath KK, Wang KK, Taniguchi K, et al. Persistent genetic abnormalities in Barrett’s esophagus after photodynamic therapy. Gastroenterology 2000;119:624–630.

    PubMed  CAS  Google Scholar 

  146. Byrne JP, Armstrong GR, Attwood SE. Restoration of the normal squamous lining in Barrett’s esophagus by argon beam plasma coagulation. Am J Gastroenterol 1998;93: 1810–1815.

    PubMed  CAS  Google Scholar 

  147. Dimick JB, Cattaneo SM, Lipsett PA, et al. Hospital volume is related to clinical and economic outcomes of esophageal resection in Maryland. Ann Thorac Surg 2001;72: 334–341.

    PubMed  CAS  Google Scholar 

  148. Begg CB, Cramer LD, Hoskins WJ, Brennan MF. Impact of hospital volume on operative mortality for major cancer surgery. JAMA 1998;280:1747–1751.

    PubMed  CAS  Google Scholar 

  149. Patti MG, Corvera CU, Glasgow RE, Way LW. A hospital’s annual rate of esophagectomy influences the operative mortality rate. J Gastrointest Surg 1998;2:186–192.

    PubMed  CAS  Google Scholar 

  150. Rusch VW, Levine DS, Haggitt R, Reid BJ. The management of high grade dysplasia and early cancer in Barrett’s esophagus. A multidisciplinary problem. Cancer 1994;74: 1225–1229.

    PubMed  CAS  Google Scholar 

  151. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23–28.

    PubMed  CAS  Google Scholar 

  152. van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–535.

    Google Scholar 

  153. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8:68–74.

    PubMed  CAS  Google Scholar 

  154. van Lieshout EM, Jansen JB, Peters WH. Biomarkers in Barrett’s esophagus (review). Int J Oncol 1998;13: 855–864.

    PubMed  Google Scholar 

  155. Krishnadath K, Reid B, Wang K. Biomarkers in Barrett esophagus. Mayo Clin Proc 2001;76:438–446.

    PubMed  CAS  Google Scholar 

  156. Deville P, Cleton-Jansen A-M, Cornelisse CJ. Ever since Knudson. Trends Genet 2001;17:569–573.

    Google Scholar 

  157. Barrett MT, Galipeau PC, Sanchez CA, et al. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 1996;12: 1873–1878.

    PubMed  CAS  Google Scholar 

  158. Dolan K, Garde J, Gosney J, et al. Allelotype analysis of oesophageal adenocarcinoma: loss of heterozygosity occurs at multiple sites. Br J Cancer 1998;78:950–957.

    PubMed  CAS  Google Scholar 

  159. Hammoud ZT, Kaleem Z, Cooper JD, et al. Allelotype analysis of esophageal adenocarcinomas: evidence for the involvement of sequences on the long arm of chromosome 4. Cancer Res 1996;56:4499–4502.

    PubMed  CAS  Google Scholar 

  160. Herbst JJ, Berenson MM, McCloskey DW, Wiser WC. Cell proliferation in esophageal columnar epithelium (Barrett’s esophagus). Gastroenterology 1978;75:683–687.

    PubMed  CAS  Google Scholar 

  161. Gray MR, Hall PA, Nash J, et al. Epithelial proliferation in Barrett’s esophagus by proliferating cell nuclear antigen immunolocalization. Gastroenterology 1992;103: 1769–1776.

    PubMed  CAS  Google Scholar 

  162. Reid BJ, Sanchez CA, Blount PL, Levine DS. Barrett’s esophagus: cell cycle abnormalities in advancing stages of neoplastic progression. Gastroenterology 1993;105: 119–129.

    PubMed  CAS  Google Scholar 

  163. Reid BJ, Haggitt RC, Rubin CE, Rabinovitch PS. Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 1987;93:1–11.

    PubMed  CAS  Google Scholar 

  164. Hong MK, Laskin WB, Herman BE, et al. Expansion of the Ki-67 proliferative compartment correlates with degree of dysplasia in Barrett’s esophagus. Cancer 1995;75:423–429.

    PubMed  CAS  Google Scholar 

  165. Rabinovitch PS, Longton G, Blount PL, et al. Cytometric predictors of Barrett’s progression. Am J Gatroenterol 2001;96:3071–3083.

    CAS  Google Scholar 

  166. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366:704–707.

    PubMed  CAS  Google Scholar 

  167. Alcorta DA, Xiong Y, Phelps D, et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996;93:13742–13747.

    PubMed  CAS  Google Scholar 

  168. Foster SA, Wong DJ, Barrett MT, Galloway DA. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 1998;18:1793–1801.

    PubMed  CAS  Google Scholar 

  169. Reznikoff CA, Yeager TR, Belair CD, et al. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 1996;56:2886–2890.

    PubMed  CAS  Google Scholar 

  170. Wong DJ, Foster SA, Galloway DA, Reid BJ. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol 1999;19: 5642–5651.

    PubMed  CAS  Google Scholar 

  171. Barrett MT, Sanchez CA, Galipeau PC, et al. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 1996;13:1867–1873.

    PubMed  CAS  Google Scholar 

  172. Wong DJ, Barrett MT, Stoger R, et al. p16INK4a Promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res 1997;57:2619–2622.

    PubMed  CAS  Google Scholar 

  173. Zhou X, Tarmin L, Yin J, et al. The MTS1 gene is frequently mutated in primary human esophageal tumors. Oncogene 1994;9:3737–3741.

    PubMed  CAS  Google Scholar 

  174. Wong DJ, Paulson TG, Prevo LJ, et al. p16 INK4a lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 2001;61:8284–8289.

    PubMed  CAS  Google Scholar 

  175. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    PubMed  CAS  Google Scholar 

  176. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13: 1501–1512.

    PubMed  CAS  Google Scholar 

  177. Morgan RJ, Newcomb PV, Hardwick RH, Alderson D. Amplification of cyclin D1 and MDM-2 in oesophageal carcinoma. Eur J Surg Oncol 1999;25:364–367.

    PubMed  CAS  Google Scholar 

  178. Arber N, Lightdale C, Rotterdam H, et al. Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 1996;5:457–459.

    PubMed  CAS  Google Scholar 

  179. Bani-Hani K, Martin IG, Hardie LJ, et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 2000;92:1316–1321.

    PubMed  CAS  Google Scholar 

  180. Kitahara K, Yasui W, Yokozaki H, et al. Expression of cyclin D1, CDK4 and p27KIP1 is associated with the p16MTS1 gene status in human esophageal carcinoma cell lines. J Exp Ther Oncol 1996;1:7–12.

    PubMed  CAS  Google Scholar 

  181. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10:1054–1072.

    PubMed  CAS  Google Scholar 

  182. Waridel F, Estreicher A, Bron L, et al. Field cancerisation and polyclonal p53 mutation in the upper aero-digestive tract. Oncogene 1997;14:163–169.

    PubMed  CAS  Google Scholar 

  183. Furumoto K, Inoue E, Nagao N, et al. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci 1998;63:935–948.

    PubMed  CAS  Google Scholar 

  184. von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 1995;220:186–193.

    Google Scholar 

  185. Ducray C, Pommier JP, Martins L, et al. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 1999;18:4211–4223.

    PubMed  CAS  Google Scholar 

  186. de Lange T, Jacks T. For better or worse? Telomerase inhibition and cancer. Cell 1999;98:273–275.

    PubMed  Google Scholar 

  187. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999;97:527–538.

    PubMed  CAS  Google Scholar 

  188. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997;91:25–34.

    PubMed  CAS  Google Scholar 

  189. Martens UM, Zijlmans JM, Poon SS, et al. Short telomeres on human chromosome 17p. Nat Genet 1998;18:76–80.

    PubMed  CAS  Google Scholar 

  190. Blount PL, Galipeau PC, Sanchez CA, et al. 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuploidy. Cancer Res 1994;54:2292–2295.

    PubMed  CAS  Google Scholar 

  191. Prevo LJ, Sanchez CA, Galipeau PC, Reid BJ. p53-Mutant clones and field effects in Barrett’s esophagus. Cancer Res 1999;59:4784–4787.

    PubMed  CAS  Google Scholar 

  192. Reid BJ, Prevo LJ, Galipeau PC, et al. Predictors of progression in Barrett’s esophagus II: Baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 2001;96:2839–2848.

    PubMed  CAS  Google Scholar 

  193. Blount PL, Meltzer SJ, Yin J, et al. Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci USA 1993;90:3221–3225.

    PubMed  CAS  Google Scholar 

  194. Younes M, Ertan A, Lechago LV, et al. p53 protein accumulation is a specific marker of malignant potential in Barrett’s metaplasia. Dig Dis Sci 1997;42:697–701.

    PubMed  CAS  Google Scholar 

  195. Coggi G, Bosari S, Roncalli M, et al. p53 protein accumulation and p53 gene mutation in esophageal carcinoma. A molecular and immunohistochemical study with clinicopathologic correlations. Cancer 1997;79:425–432.

    PubMed  CAS  Google Scholar 

  196. Moore JH, Lesser EJ, Erdody DH, et al. Intestinal differentiation and p53 gene alterations in Barrett’s esophagus and esophageal adenocarcinoma. Int J Cancer 1994;56:487–493.

    PubMed  CAS  Google Scholar 

  197. Reid BJ. p53 and neoplastic progression in Barrett’s esophagus. Am J Gastroenterol 2001;96:1321–1323.

    PubMed  CAS  Google Scholar 

  198. Robaszkiewicz M, Hardy E, Volant A, et al. Flow cytometric analysis of cellular DNA content in Barret’s esophagus. A study of 66 cases. Gastroenterol Clin Biol 1991;15:703–710.

    PubMed  CAS  Google Scholar 

  199. Reid BJ, Blount PL, Rubin CE, et al. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 1992;102:1212–1219.

    PubMed  CAS  Google Scholar 

  200. Teodori L, Gohde W, Persiani M, et al. DNA/protein flow cytometry as a predictive marker of malignancy in dysplasia-free Barrett’s esophagus: thirteen-year follow-up study on a cohort of patients. Cytometry 1998;34:257–263.

    PubMed  CAS  Google Scholar 

  201. Boynton RF, Blount PL, Yin J, et al. Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc Natl Acad Sci USA 1992;89:3385–3388.

    PubMed  CAS  Google Scholar 

  202. Zhuang Z, Vortmeyer AO, Mark EJ, et al. Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res 1996;56:1961–1964.

    PubMed  CAS  Google Scholar 

  203. Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 2000;92: 1805–1811.

    PubMed  CAS  Google Scholar 

  204. Eads CA, Lord RV, Kurumboor SK, et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 2000;60: 5021–5026.

    PubMed  CAS  Google Scholar 

  205. The Alpha Tocopherol BC Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994;330:1029–1035.

    Google Scholar 

  206. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Eng J Med 1996;330: 1029–1035.

    Google Scholar 

  207. Albanes D, Heinonen OP, Taylor PR, et al. Alpha-tocopherol and beta-carotene supplements and lung cancer incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst 1996;88:1513–1515.

    Google Scholar 

  208. Omenn GS, Goodman GE, Thornquist MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 1996;88:1550–1559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Reid, B.J. (2005). Barrett’s Esophagus. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-768-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-768-0_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-077-9

  • Online ISBN: 978-1-59259-768-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics