Skip to main content

Inducible Nitric Oxide Synthase as a Target for Chemoprevention

  • Chapter
Cancer Chemoprevention

Abstract

Nitric oxide (NO.) was first described as endothelium-derived relaxation factor (EDRF) in the 1980s (1–5). Since then, it has been shown to be a key signaling molecule that mediates both physiological and pathological processes, including vasodilation (6), neurotransmission (7), host defense, (8), platelet aggregation (9,10), and iron metabolism (11,12). Increasing evidence suggests that NO. is a pivotal mediator of inflammatory-associated carcinogenesis because of its impact on DNA damage, cell cycle, and modifications of cancer-related proteins (13–18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  PubMed  CAS  Google Scholar 

  2. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 1982;79:2106–2110.

    Article  PubMed  CAS  Google Scholar 

  3. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 1989;65:1–21.

    Article  PubMed  CAS  Google Scholar 

  4. Murad F, Arnold WP, Mittal CK, Braughler JM. Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res 1979;11:175–204.

    PubMed  CAS  Google Scholar 

  5. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  PubMed  CAS  Google Scholar 

  6. Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52–61.

    PubMed  CAS  Google Scholar 

  7. Sanders KM, Ward SM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 1992;262:G379-G392.

    PubMed  CAS  Google Scholar 

  8. Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Nall Acad Sci USA 2000;97:8841–8848.

    Article  CAS  Google Scholar 

  9. Cheung PY, Salas E, Etches PC, et al. Inhaled nitric oxide and inhibition of platelet aggregation in critically ill neonates. Lancet 1998;351:1181–1182.

    Article  PubMed  CAS  Google Scholar 

  10. Salvemini D, de Nucci G, Gryglewski RJ, Vane JR. Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Nail Acad Sci USA 1989;86:6328–6332.

    Article  CAS  Google Scholar 

  11. Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol 1996;16:3781–3788.

    PubMed  CAS  Google Scholar 

  12. Domachowske JB. The role of nitric oxide in the regulation of cellular iron metabolism. Biochem Mol Med 1997;60:1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  14. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915–918.

    Article  PubMed  CAS  Google Scholar 

  15. Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 1994;63:175–195.

    Article  PubMed  CAS  Google Scholar 

  16. Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Nall Acad Sci USA 1996;93:8175–8182.

    Article  CAS  Google Scholar 

  17. Tamir S, Tannenbaum SR. The role of nitric oxide (NO-) in the carcinogenic process. Biochim Biophys Acta 1996;1288:F31-F36.

    PubMed  Google Scholar 

  18. Ambs S, Hussain SP, Harris CC. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 1997;11:443–448.

    PubMed  CAS  Google Scholar 

  19. Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994;78:927–930.

    Article  PubMed  CAS  Google Scholar 

  20. Forstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol 1995;352:351–364.

    Article  PubMed  CAS  Google Scholar 

  21. Guo FH, De Raeve HR, Rice TW, et al. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Nall Acad Sci USA 1995;92:7809–7813.

    Article  CAS  Google Scholar 

  22. Hoffman RA, Zhang G, Nussler NC, et al. Constitutive expression of inducible nitric oxide synthase in the mouse ileal mucosa. Am J Physiol 1997;272:G383-G392.

    PubMed  CAS  Google Scholar 

  23. Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Nall Acad Sci USA 1990;87:1620–1624.

    Article  CAS  Google Scholar 

  24. Malinski T, Taha Z, Grunfeld S, et al. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993;193:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  25. Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 1998;17:7–23.

    Article  PubMed  CAS  Google Scholar 

  26. Thomsen LL, Lawton FG, Knowles RG, et al. Nitric oxide synthase activity in human gynecological cancer. Cancer Res 1994;54:1352–1354.

    PubMed  CAS  Google Scholar 

  27. Thomsen LL, Miles DW, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer. Br J Cancer 1995;72:41–44.

    Article  PubMed  CAS  Google Scholar 

  28. Cobbs CS, Brenman JE, Aldape KD, et al. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 1995;55:727–730.

    PubMed  CAS  Google Scholar 

  29. Koh E, Noh SH, Lee YD, et al. Differential expression of nitric oxide synthase in human stomach cancer. Cancer Lett 1999;146:173–180.

    Article  PubMed  CAS  Google Scholar 

  30. Mendes RV, Martins AR, de Nucci G, et al. Expression of nitric oxide synthase isoforms and nitrotyrosine immunoreactivity by B-cell non-Hodgkin’s lymphomas and multiple myeloma. Histopathology 2001;39:172–178.

    Article  PubMed  CAS  Google Scholar 

  31. Wolf H, Haeckel C, Roessner A. Inducible nitric oxide synthase expression in human urinary bladder cancer. Virchows Arch 2000;437:662–666.

    Article  PubMed  CAS  Google Scholar 

  32. Baltaci S, Orhan D, Gogus C, et al. Inducible nitric oxide synthase expression in benign prostatic hyperplasia, lowand high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int 2001;88:100–103.

    Article  PubMed  CAS  Google Scholar 

  33. Vakkala M, Kahlos K, Lakari E, et al. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res 2000;6:2408–2416.

    PubMed  CAS  Google Scholar 

  34. Tschugguel W, Schneeberger C, Unfried G, et al. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat 1999;56:145–151.

    Article  PubMed  CAS  Google Scholar 

  35. Singer II, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 1996;111:871–885.

    Article  PubMed  CAS  Google Scholar 

  36. Kimura H, Hokari R, Miura S, et al. Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 1998;42:180–187.

    Article  PubMed  CAS  Google Scholar 

  37. Dijkstra G, Moshage H, van Dullemen HM, et al. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J Pathol 1998;186:416–421.

    Article  PubMed  CAS  Google Scholar 

  38. Mannick EE, Bravo LE, Zarama G, et al. Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res 1996;56:3238–3243.

    PubMed  CAS  Google Scholar 

  39. Goto T, Haruma K, Kitadai Y, et al. Enhanced expression of inducible nitric oxide synthase and nitrotyrosine in gastric mucosa of gastric cancer patients. Clin Cancer Res 1999;5:1411–1415.

    PubMed  CAS  Google Scholar 

  40. Fu S, Ramanujam KS, Wong A, et al. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 1999;116:1319–1329.

    Article  PubMed  CAS  Google Scholar 

  41. Kane JM III, Shears LL II, Hierholzer C, et al. Chronic hepatitis C virus infection in humans: induction of hepatic nitric oxide synthase and proposed mechanisms for carcinogenesis. J Surg Res 1997;69:321–324.

    Article  PubMed  CAS  Google Scholar 

  42. Majano PL, Garcia-Monzon C, Lopez-Cabrera M, et al. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Investig 1998;101:1343–1352.

    Article  PubMed  CAS  Google Scholar 

  43. Garcia-Monzon C, Majano PL, Zubia I, et al. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol 2000;32:331–338.

    Article  PubMed  CAS  Google Scholar 

  44. Cuzzocrea S, Zingarelli B, Villari D, et al. Evidence for in vivo peroxynitrite production in human chronic hepatitis. Life Sci 1998;63:L25-L30.

    Google Scholar 

  45. Hussain SP, Raja K, Amstad PA, et al. Increased p53 mutation load in nontumorous human liver of Wilson Disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci USA 2000;97:12,770–12,775.

    Article  CAS  Google Scholar 

  46. Marrogi AJ, Khan MA, van Gijssel HE, et al. Oxidate stress and p53 mutations in the carcinogenesis of iron overloadassociated hepatocellular carcinoma. J Nall Cancer Inst 2001;93:1652–1655.

    Article  CAS  Google Scholar 

  47. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 1998;58:2929–2934.

    PubMed  CAS  Google Scholar 

  48. Ohshima H, BartschH. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 1994;305:253–264.

    Article  PubMed  CAS  Google Scholar 

  49. Jenkins DC, Charles IG, Thomsen LL, et al. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 1995;92:4392–4396.

    Article  PubMed  CAS  Google Scholar 

  50. Maeda H, Noguchi Y, Sato K, Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 1994;85:331–334.

    Article  PubMed  CAS  Google Scholar 

  51. Tozer GM, Prise VE, Chaplin DJ. Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res 1997;57:948–955.

    PubMed  CAS  Google Scholar 

  52. Nicotera P, Bonfoco E, Brune B. Mechanisms for nitric oxide-induced cell death: involvement of apoptosis. Adv Neuroimmunol 1997;5:411–420.

    Article  Google Scholar 

  53. Dimmeler S, Haendeler J, Nehls M, Zeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 1997;185:601–607.

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Bombeck CA, Yang S, et al. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 1999;274:17,325–17,333.

    CAS  Google Scholar 

  55. Chung HT, Pae HO, Choi BM, et al. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 2001;282:1075–1079.

    Article  PubMed  CAS  Google Scholar 

  56. Kim PK, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 2001;1:1421–1441.

    Article  PubMed  CAS  Google Scholar 

  57. Melillo G, Musso T, Sica A, et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 1995;182:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  58. Zhuang JC, Wright TL, deRojas-Walker T, et al. Nitric oxide-induced mutations in the HPRT gene of human lymphoblastoid TK6 cells and in Salmonella typhimurium. Environ Mol Mutagen 2000;35:39–47.

    Article  PubMed  CAS  Google Scholar 

  59. Tretyakova NY, Burney S, Pamir B, et al. Peroxynitriteinduced DNA damage in the supF gene: correlation with the mutational spectrum: Mutat Res 2000;447:287–303.

    Article  PubMed  CAS  Google Scholar 

  60. Zhuang JC, Lin C, Lin D, Wogan GN. Mutagenesis associated with nitric oxide production in macrophages. Proc Natl Acad Sci USA 1998;95:8286–8291.

    Article  PubMed  CAS  Google Scholar 

  61. Wink DA, Hanbauer I, Grisham MB, et al. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 1996;34:159–87.

    Article  PubMed  CAS  Google Scholar 

  62. Sibghat-Ullah, Gallinari P, Xu YZ, et al. Base analog and neighboring base effects on substrate specificity of recombinant human G:T mismatch-specific thymine DNA-glycosylase. Biochemistry 1996;35:12,926–12,932.

    Article  CAS  Google Scholar 

  63. Messmer UK, Brune B. Nitric oxide-induced apoptosis: p53dependent and p53-independent signalling pathways. Biochem J 1996;319:299–305.

    CAS  Google Scholar 

  64. Forrester K, Ambs S, Lupold SE, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase (NOS2) expression by wild-type p53. Proc Natl Acad Sci USA 1996;93:2442–2447.

    Article  PubMed  CAS  Google Scholar 

  65. Nakaya N, Lowe SW, Taya Y, Chenchik A, Enikolopov G. Specific pattern of p53 phosphorylation during nitric oxide-induced cell cycle arrest. Onco gene 2000;19:6369–6375.

    Article  CAS  Google Scholar 

  66. Thomsen LL, Scott JM, Topley P, et al. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res 1997;57:3300–3304.

    PubMed  CAS  Google Scholar 

  67. DuBois RN. New paradigms for cancer prevention. Carcinogenesis 2001;22:691–692.

    Article  PubMed  CAS  Google Scholar 

  68. Gupta RA, DuBois RN. Combinations for cancer prevention. Nat Med 2000;6:974–975.

    Article  PubMed  CAS  Google Scholar 

  69. Ambs S, Merriam WG, Ogunfusika MO, et al. p53 and vascular endothelial growth factor regulate tumour growth of NOS2-expressing human carcinoma cells. Nat Med 1998;4:1371–1376.

    Article  PubMed  CAS  Google Scholar 

  70. Chin K, Kurashima Y, Ogura T, et al. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 1997;15:437–442.

    Article  PubMed  CAS  Google Scholar 

  71. Frank S, Stallmeyer B, Kampfer H, et al. Differential regulation of vascular endothelial growth factor and its receptor FMS-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells. Biochem J 1999;338:367–374.

    Article  PubMed  CAS  Google Scholar 

  72. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Investig 1997;100:3131–3139.

    Article  PubMed  CAS  Google Scholar 

  73. Ambs S, Ogunfusika MO, Merriam WG, et al. Upregulation of NOS2 expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA 1998;95:8823–8828.

    Article  PubMed  CAS  Google Scholar 

  74. Ambs S, Bennett WP, Merriam WG, et al. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 1999;91:86–88.

    Article  PubMed  CAS  Google Scholar 

  75. Hussain SP, Amstad P, Raja K et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 2000;60:3333–3337.

    PubMed  CAS  Google Scholar 

  76. Umetani N, Sasaki S, Watanabe T, et al. Genetic alterations in ulcerative colitis-associated neoplasia focusing on APC, K-ras gene and microsatellite instability. Jpn J Cancer Res 1999;90:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  77. Ambs S, Merriam WG, Bennett WP, et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res 1998;58:334–341.

    PubMed  CAS  Google Scholar 

  78. Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-α production. Role of tumor-derived IL-10, TGF-β3, and prostaglandin E2. J Immunol 1994;153:1674–1686.

    PubMed  CAS  Google Scholar 

  79. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.

    Article  PubMed  CAS  Google Scholar 

  80. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.

    PubMed  CAS  Google Scholar 

  81. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991;351:453–456.

    Article  PubMed  CAS  Google Scholar 

  82. Ellie E, Loiseau H, Lafond F, et al. Differential expression of inducible nitric oxide synthase mRNA in human brain tumours. Neuroreport 1995;7:294–296.

    PubMed  CAS  Google Scholar 

  83. Gallo O, Masini E, Morbidelli L, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 1998;90:587–596.

    Article  PubMed  CAS  Google Scholar 

  84. Geller DA, Lowenstein CJ, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 1993;90:3491–3495.

    Article  PubMed  CAS  Google Scholar 

  85. Sherman PA, Laubach VE, Reep BR, Wood ER. Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line. Biochemistry 1993;32:11,600–11,605.

    Article  CAS  Google Scholar 

  86. Charles IG, Palmer RM, Hickery MS, et al. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci USA 1993;90:11,419–11,423.

    CAS  Google Scholar 

  87. Chartrain NA, Geller DA, Koty PP, et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994;269:6765–6772.

    PubMed  CAS  Google Scholar 

  88. Marsden PA, Schappert KT, Chen HS et al. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 1992;307:287–293.

    Article  PubMed  CAS  Google Scholar 

  89. Stuehr DJ, Cho HJ, Kwon NS, et al. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci USA 1991;88:7773–7777.

    Article  PubMed  CAS  Google Scholar 

  90. Markewitz BA, Michael JR, Kohan DE. Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells. J Clin Investig 1993;91:2138–2143.

    Article  PubMed  CAS  Google Scholar 

  91. Koide M, Kawahara Y, Tsuda T, Yokoyama M. Cytokineinduced expression of an inducible type of nitric oxide synthase gene in cultured vascular smooth muscle cells. FEBS Lett 1993;318:213–217.

    Article  PubMed  CAS  Google Scholar 

  92. Lowenstein CJ, Alley EW, Raval P, et al. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon y and lipopolysaccharide. Proc Natl Acad Sci USA 1993;90:9730–9734.

    Article  PubMed  CAS  Google Scholar 

  93. Amaro MJ, Bartolome J, Carreno V. Hepatitis B virus X protein transactivates the inducible nitric oxide synthase promoter. Hepatology 1999;29:915–923.

    Article  PubMed  CAS  Google Scholar 

  94. Elmore LW, Hancock AR, Chang SF, et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci USA 1997;94:14,707–14,712.

    Article  CAS  Google Scholar 

  95. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399:601–605.

    Article  PubMed  CAS  Google Scholar 

  96. Pan J, Burgher KL, Szczepanik AM, Ringheim GE. Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post-translational regulation. Biochem J 1996;314:889–894.

    PubMed  CAS  Google Scholar 

  97. Michel T, Li GK, Busconi L. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1993;90:6252–6256.

    Article  PubMed  CAS  Google Scholar 

  98. Cho HJ, Martin E, Xie QW, et al. Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci USA 1995;92:11,514–11,518.

    CAS  Google Scholar 

  99. Kone BC. Protein-protein interactions controlling nitric oxide synthases. Acta Physiol Scand 2000;168:27–31.

    Article  PubMed  CAS  Google Scholar 

  100. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001;280:F193-F206.

    PubMed  CAS  Google Scholar 

  101. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593–615.

    Article  PubMed  CAS  Google Scholar 

  102. Salerno JC, Harris DE, Irizarry K, et al. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 1997;272:29,769–29,777.

    Article  CAS  Google Scholar 

  103. Babu BR, Griffith OW. Design of isoform-selective inhibitors of nitric oxide synthase. Curr Opin Chem Biol 1998;2:491–500.

    Article  PubMed  CAS  Google Scholar 

  104. McMillan K, Adler M, Auld DS, et al. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc Natl Acad Sci USA 2000;97:1506–1511.

    Article  PubMed  CAS  Google Scholar 

  105. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539–545.

    Article  PubMed  CAS  Google Scholar 

  106. O’Byrne KJ, Dalgleish AG. Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 2001;85:473–483.

    Article  PubMed  Google Scholar 

  107. Christen S, Hagen TM, Shigenaga MK, Ames BN. Chronic inflammation, mutation, and cancer, in Microbes and Malignancy: Infection as a Cause of Cancer. Parsonnet J, Hornig S, eds. Oxford University Press, New York,1999, pp.35–88.

    Google Scholar 

  108. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999;18:6104–6111.

    Article  PubMed  CAS  Google Scholar 

  109. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 2000;28:1387–1404.

    Article  PubMed  CAS  Google Scholar 

  110. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807–869.

    PubMed  CAS  Google Scholar 

  111. Cerutti PA, Trump BF. Inflammation and oxidative stress in carcinogenesis. Cancer Cells 1991;3:1–7.

    PubMed  CAS  Google Scholar 

  112. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996;6:639–645.

    Article  PubMed  CAS  Google Scholar 

  113. Cerutti PA. Prooxidant states and tumor promotion. Science 1985;227:375–381.

    Article  PubMed  CAS  Google Scholar 

  114. MacMicking JD, Nathan C, Hom G, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995;81:641–650.

    Article  PubMed  CAS  Google Scholar 

  115. McCafferty DM, Miampamba M, Sihota E, et al. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut 1999;45:864–873.

    Article  PubMed  CAS  Google Scholar 

  116. Zingarelli B, Szabo C, Salzman AL. Reduced oxidative and nitrosative damage in murine experimental colitis in the absence of inducible nitric oxide synthase. Gut 1999;45:199–209.

    Article  PubMed  CAS  Google Scholar 

  117. Hokari R, Kato S, Matsuzaki K, et al. Reduced sensitivity of inducible nitric oxide synthase-deficient mice to chronic colitis. Free Radic Biol Med 2001;31:153–163.

    Article  PubMed  CAS  Google Scholar 

  118. Krieglstein CF, Cerwinka WH, Laroux FS, et al. Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med 2001;194:1207–1218.

    Article  PubMed  CAS  Google Scholar 

  119. Konopka TE, Barker JE, Bamford TL, et al. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res 2001;61:3182–3187.

    PubMed  CAS  Google Scholar 

  120. Cooper HS, Everley L, Chang WC, et al. The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology 2001;121:1407–1416.

    Article  PubMed  CAS  Google Scholar 

  121. Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc Min/+ mice by inhibiting nitric oxide production. Cancer Res 2001;61:8357–8360.

    PubMed  CAS  Google Scholar 

  122. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NFKB pathway in the treatment of inflammation and cancer. J Clin Investig 2001;107:135–142.

    Article  PubMed  CAS  Google Scholar 

  123. Tamir S, deRojas-Walker T, Gal A, et al. Nitric oxide production in relation to spontaneous B-cell lymphoma and myositis in SJL mice. Cancer Res 1995;55:4391–4397.

    PubMed  CAS  Google Scholar 

  124. Gal A, Tamir S, Tannenbaum SR, Wogan GN. Nitric oxide production in SJL mice bearing the RcsX lymphoma: a model for in vivo toxicological evaluation of NO-. Proc Natl Acad Sci USA 1996;93:11,499–11,503.

    CAS  Google Scholar 

  125. Gal A, Wogan GN. Mutagenesis associated with nitric oxide production in transgenic SJL mice. Proc Nail Acad Sci USA 1996;93:15,102–15,107.

    CAS  Google Scholar 

  126. Ahn B, Han BS, Kim DJ, Ohshima H. Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis 1999;20:1337–1344.

    Article  PubMed  CAS  Google Scholar 

  127. Nair J, Gal A, Tamir S, et al. Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Carcinogenesis 1998;19:2081–2084.

    Article  PubMed  CAS  Google Scholar 

  128. Goldstein SR, Yang GY, Chen X, et al. Studies of iron deposits, inducible nitric oxide synthase and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis 1998;19:1445–1449.

    Article  PubMed  CAS  Google Scholar 

  129. Okamoto T, Masuda Y, Kawasaki T, et al. Aminoguanidine prevents concanavalin A-induced hepatitis in mice. Eur J Pharmacol 2000;396:125–130.

    Article  PubMed  CAS  Google Scholar 

  130. Yasuhiro T, Korolkiewicz RP, Kato S, Takeuchi K. Role of nitric oxide in pathogenesis of serotonine-induced gastric lesions in rats. Pharmacol Res 1997;36:333–338.

    Article  PubMed  CAS  Google Scholar 

  131. Rao CV, Indranie C, Simi B, et al. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002;62:165–170.

    PubMed  CAS  Google Scholar 

  132. Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis 1999;20:641–644.

    Article  PubMed  CAS  Google Scholar 

  133. Kawamori T, Takahashi M, Watanabe K, et al. Suppression of azoxymethane-induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor. Cancer Lett 2000;148:33–37.

    Article  PubMed  CAS  Google Scholar 

  134. Doi K, Akaike T, Fujii S, et al. Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 1999;80:1945–1954.

    Article  PubMed  CAS  Google Scholar 

  135. Tozer GM, Prise VE, Wilson J, et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 1999;59:1626–1634.

    PubMed  CAS  Google Scholar 

  136. Tozer GM, Prise VE, Motterlini R, et al. The comparative effects of the NOS inhibitor, Nω-nitro-L-arginine, and the haemoxygenase inhibitor, zinc protoporphyrin IX, on tumour blood flow. Int J Radiat Oncol Biol Phys 1998;42:849–853.

    Article  PubMed  CAS  Google Scholar 

  137. Ziche M, Morbidelli L, Masini E, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Investig 1994;94:2036–2044.

    Article  PubMed  CAS  Google Scholar 

  138. Orucevic A, Lala PK. NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice. Br J Cancer 1996;73:189–196.

    Article  PubMed  CAS  Google Scholar 

  139. Ribbons KA, Currie MG, Connor JR, et al. The effect of inhibitors of inducible nitric oxide synthase on chronic colitis in the rhesus monkey. J Pharmacol Exp Ther 1997;280:1008–1015.

    PubMed  CAS  Google Scholar 

  140. Yoshida Y, Iwai A, Itoh K, et al. Role of inducible nitric oxide synthase in dextran sulphate sodium-induced colitis. Aliment Pharmacol Ther 2000;14 Suppl 1:26–32.

    Article  PubMed  CAS  Google Scholar 

  141. Wink DA, Hanbauer I, Krishna MC, et al. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 1993;90:9813–9817.

    Article  PubMed  CAS  Google Scholar 

  142. Peng HB, Rajavashisth TB, Libby P, Liao JK. Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 1995;270:17,050–17,055.

    CAS  Google Scholar 

  143. Berendji-Grun D, Kolb-Bachofen V, Kroncke KD. Nitric oxide inhibits endothelial IL-1[β]-induced ICAM-1 gene expression at the transcriptional level decreasing Spl and AP-1 activity. Mol Med 2001;7:748–754.

    PubMed  CAS  Google Scholar 

  144. De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Investig 1995;96:60–68.

    Article  PubMed  Google Scholar 

  145. Clancy R, Varenika B, Huang W et al. Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Immunol 2000;165:1582–1587.

    PubMed  CAS  Google Scholar 

  146. Stadler J, Harbrecht BG, Di Silvio M, et al. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol 1993;53:165–172.

    PubMed  CAS  Google Scholar 

  147. Gurjar MV, DeLeon J, Sharma RV, Bhalla RC. Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J Appl Physiol 2001;91:1380–1386.

    PubMed  CAS  Google Scholar 

  148. Schleiffer R, Duranton B, Gosse F, et al. Nitric oxide synthase inhibition promotes carcinogen-induced preneoplastic changes in the colon of rats. Nitric Oxide 2000;4:583–589.

    Article  PubMed  CAS  Google Scholar 

  149. Bruns CJ, Shinohara H, Harbison MT, et al. Therapy of human pancreatic carcinoma implants by irinotecan and the oral immunomodulator JBT 3002 is associated with enhanced expression of inducible nitric oxide synthase in tumor-infiltrating macrophages. Cancer Res 2000;60:2–7.

    PubMed  CAS  Google Scholar 

  150. Shinohara H, Bucana CD, Killion JJ, Fidler IJ. Intensified regression of colon cancer liver metastases in mice treated with irinotecan and the immunomodulator JBT 3002. J Immunother 2000;23:321–331.

    Article  PubMed  CAS  Google Scholar 

  151. Xie K, Fidler IJ. Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev 1998;17:55–75.

    Article  PubMed  CAS  Google Scholar 

  152. Yamamoto T, Terada N, Seiyama A, et al. Increase in experimental pulmonary metastasis in mice by L-arginine under inhibition of nitric oxide production by NG-nitro-Larginine methyl ester. Int J Cancer 1998;75:140–144.

    Article  PubMed  CAS  Google Scholar 

  153. Iwasaki T, Higashiyama M, Kuriyama K, et al. NG-nitro-Larginine methyl ester inhibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model. Jpn J Cancer Res 1997;88:861–866.

    Article  PubMed  CAS  Google Scholar 

  154. Edwards P, Cendan JC, Topping DB, et al. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J Surg Res 1996;63:49–52.

    Article  PubMed  CAS  Google Scholar 

  155. Wang B, Xiong Q, Shi Q, et al. Genetic disruption of host nitric oxide synthase II gene impairs melanoma-induced angiogenesis and suppresses pleural effusion. Int J Cancer 2001;91:607–611.

    Article  PubMed  CAS  Google Scholar 

  156. Wang B, Xiong Q, Shi Q, et al. Intact nitric oxide synthase II gene is required for interferon-β3-mediated suppression of growth and metastasis of pancreatic adenocarcinoma. Cancer Res 2001;61:71–75.

    PubMed  CAS  Google Scholar 

  157. Shi Q, Xiong Q, Wang B, et al. Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res 2000;60:2579–2583.

    PubMed  CAS  Google Scholar 

  158. Shi Q, Huang S, Jiang W, et al. Direct correlation between nitric oxide synthase II inducibility and metastatic ability of UV-2237 murine fibrosarcoma cells carrying mutant p53. Cancer Res 1999;59:2072–2075.

    PubMed  CAS  Google Scholar 

  159. Juang SH, Xie K, Xu L, et al. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther 1998;9:845–854.

    Article  PubMed  CAS  Google Scholar 

  160. Xie K, Huang S, Dong Z, et al. Direct correlation between expression of endogenous inducible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP 31362. Cancer Res 1995;55:3123–3131.

    PubMed  CAS  Google Scholar 

  161. Xie K, Dong Z, Fidler IJ. Activation of nitric oxide synthase gene for inhibition of cancer metastasis. J Leukoc Biol 1996;59:797–803.

    PubMed  CAS  Google Scholar 

  162. Dong Z, Staroselsky AH, Qi X, et al. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res 1994;54:789–793.

    PubMed  CAS  Google Scholar 

  163. Xie K, Huang S, Dong Z, et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 1995;181:1333–1343.

    Article  PubMed  CAS  Google Scholar 

  164. Xie K, Huang S, Dong Z, et al. Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO-) synthase gene. J Natl Cancer Inst 1997;89:421–427.

    Article  PubMed  CAS  Google Scholar 

  165. Matthews NE, Adams MA, Maxwell LR, et al. Nitric oxidemediated regulation of chemosensitivity in cancer cells. J Natl Cancer Inst 2001;93:1879–1885.

    Article  PubMed  CAS  Google Scholar 

  166. Janssens MY, Van den Berge DL, Verovski VN, et al. Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res 1998;58:5646–5648.

    PubMed  CAS  Google Scholar 

  167. Maccarrone M, Fantini C, Ranalli M, et al. Activation of nitric oxide synthase is involved in tamoxifen-induced apoptosis of human erythroleukemia K562 cells. FEBS Lett 1998;434:421–424.

    Article  PubMed  CAS  Google Scholar 

  168. Ho YS, Wang YJ, Lin JK. Induction of p53 and p21 /WAF 1 /CIP 1 expression by nitric oxide and their association with apoptosis in human cancer cells. Mol Carcinog 1996;16:20–31.

    Article  PubMed  CAS  Google Scholar 

  169. Bartsch H. Studies on biomarkers in cancer etiology and prevention: a summary and challenge of 20 years of interdisciplinary research. Mutat Res 2000;462:255–279.

    Article  PubMed  CAS  Google Scholar 

  170. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000;21:361–370.

    Article  PubMed  CAS  Google Scholar 

  171. Burney S, Caulfield JL, Niles JC, et al. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 1999;424:37–49.

    Article  PubMed  CAS  Google Scholar 

  172. Marnett LJ, Plastaras JP. Endogenous DNA damage and mutation. Trends Genet 2001:17:214–221.

    Article  PubMed  CAS  Google Scholar 

  173. Aguilar F, Harris CC, Sun T, et al. Geographic variation of p53 mutational profile in nonmalignant human liver. Science 1994;264:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  174. Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 1993;90:8586–8590.

    Article  PubMed  CAS  Google Scholar 

  175. Hussain SP, Aguilar F, Amstad P, Cerutti P. Oxy-radical induced mutagenesis of hotspot codons 248 and 249 of the human p53 gene. Oncogene 1994;9:2277–2281.

    PubMed  CAS  Google Scholar 

  176. Hussain SP, Aguilar F, Cerutti P. Mutagenesis of codon 248 of the human p53 tumor suppressor gene by N-ethyl-N-nitrosourea. Oncogene 1994;9:13–18.

    PubMed  CAS  Google Scholar 

  177. Hussain SP, Kennedy CH, Amstad P, et al. Radon and lung carcinogenesis: mutability of p53 codons 249 and 250 to 238Pu alpha-particles in human bronchial epithelial cells. Carcinogenesis 1997;18:121–125.

    Article  PubMed  CAS  Google Scholar 

  178. Niederau C, Fischer R, Sonnenberg A, et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985;313:1256–1262.

    Article  PubMed  CAS  Google Scholar 

  179. Gillen CD, Walmsley RS, Prior P, Andrews HA, Allan RN. Ulcerative colitis and Crohn’s disease: a comparison of the colorectal cancer risk in extensive colitis. Gut 1994;35:1590–1592.

    Article  PubMed  CAS  Google Scholar 

  180. Guihot G, Guimbaud R, Bertrand V, et al. Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with Crohn’s disease. Amino Acids 2000;18:229–237.

    Article  PubMed  CAS  Google Scholar 

  181. Boughton-Smith NK. Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease. J R Soc Med 1994;87:312–314.

    PubMed  CAS  Google Scholar 

  182. Leonard N, Bishop AE, Polak JM, Talbot IC. Expression of nitric oxide synthase in inflammatory bowel disease is not affected by corticosteroid treatment. J Clin Pathol 1998;51:750–753.

    Article  PubMed  CAS  Google Scholar 

  183. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990;323:1228–1233.

    Article  PubMed  CAS  Google Scholar 

  184. Iwashita E, Iwai A, Sawazaki Y, et al. Activation of microvascular endothelial cells in active ulcerative colitis and detection of inducible nitric oxide synthase. J Clin Gastroenterol 1998;27 Suppl 1:S74–S79.

    Article  PubMed  Google Scholar 

  185. Shin HR, Lee CU, Park HJ, et al. Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case-control study in Pusan, Korea. Int J Epidemiol 1996;25:933–940.

    Article  PubMed  CAS  Google Scholar 

  186. Kane JM III, Shears LL, Hierholzer C, et al. Chronic hepatitis C virus infection in humans: induction of hepatic nitric oxide synthase and proposed mechanisms for carcinogenesis. J Surg Res 1997;69:321–324.

    Article  PubMed  CAS  Google Scholar 

  187. Rahman MA, Dhar DK, Yamaguchi E, et al. Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res 2001;7:1325–1332.

    PubMed  CAS  Google Scholar 

  188. Mitchell H, Drake M, Medley G. Prospective evaluation of risk of cervical cancer after cytological evidence of human papilloma virus infection. Lancet 1986;1:573–575.

    Article  PubMed  CAS  Google Scholar 

  189. Zhang ZF, Kurtz RC, Klimstra DS, et al. Helicobacter pylori infection on the risk of stomach cancer and chronic atrophic gastritis. Cancer Detect Prey 1999;23:357–367.

    Article  CAS  Google Scholar 

  190. Tatemichi M, Ogura T, Nagata H, Esumi H. Enhanced expression of inducible nitric oxide synthase in chronic gastritis with intestinal metaplasia. J Clin Gastroenterol 1998;27:240–245.

    Article  PubMed  CAS  Google Scholar 

  191. Esrig D, McEvoy K, Bennett CJ. Bladder cancer in the spinal cord-injured patient with long-term catheterization: a causal relationship? Semin Urol 1992;10:102–108.

    PubMed  CAS  Google Scholar 

  192. Kanoh K, Shimura T, Tsutsumi S, et al. Significance of contracted cholecystitis lesions as high risk for gallbladder carcinogenesis. Cancer Lett 2001;169:7–14.

    Article  PubMed  CAS  Google Scholar 

  193. Csendes A, Becerra M, Burdiles P, et al. Bacteriological studies of bile from the gallbladder in patients with carcinoma of the gallbladder, cholelithiasis, common bile duct stones and no gallstones disease. Eur J Surg 1994;160:363–367.

    PubMed  CAS  Google Scholar 

  194. Rosin MP, Hofseth LJ. Schistosomiasis, bladder and colon cancer, in Microbes and Malignancy: Infection as a Cause of Cancer. Parsonnet J, Hornig S, eds Oxford University Press, New York, 1999, pp. 313–345.

    Google Scholar 

  195. Shochina M, Fellig Y, Sughayer M, et al. Nitric oxide synthase immunoreactivity in human bladder carcinoma. Mol Pathol 2001;54:248–252.

    Article  PubMed  CAS  Google Scholar 

  196. Jaiswal M, LaRusso NF, Shapiro RA, et al. Nitric oxidemediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology 2001;120:190–199.

    Article  PubMed  CAS  Google Scholar 

  197. Haswell-Elkins MR, Mairiang E, Mairiang P, et al. Crosssectional study of Opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. Int J Cancer 1994;59:505–509.

    Article  PubMed  CAS  Google Scholar 

  198. Streitz JM Jr. Barrett’s esophagus and esophageal cancer. Chest Surg Clin N Am 1994;4:227–240.

    PubMed  Google Scholar 

  199. Marrogi A, Pass HI, Khan M, et al. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res 2000;60:3696–3700.

    PubMed  CAS  Google Scholar 

  200. Bourdes V, Boffetta P, Pisani P. Environmental exposure to asbestos and risk of pleural mesothelioma: review and metaanalysis. Eur J Epidemiol 2000;16:411–417.

    Article  PubMed  CAS  Google Scholar 

  201. Stevens RG, Moolgavkar SH. Estimation of relative risk from vital data: smoking and cancers of the lung and bladder. J Natl Cancer Inst 1979;63:1351–1357.

    PubMed  CAS  Google Scholar 

  202. Liu CY, Wang CH, Chen TC, et al. Increased level of exhaled nitric oxide and upregulation of inducible nitric oxide synthase in patients with primary lung cancer. Br J Cancer 1998;78:534–541.

    Article  PubMed  CAS  Google Scholar 

  203. Young RJ, Beams RM, Carter K, et al. Inhibition of inducible nitric oxide synthase by acetamidine derivatives of heterosubstituted lysine and homolysine. Bioorg Med Chem Lett 2000;10:597–600.

    Article  PubMed  CAS  Google Scholar 

  204. Wolff DJ, Gauld DS, Neulander MJ, Southan G. Inactivation of nitric oxide synthase by substituted aminoguanidines and aminoisothioureas. J Pharmacol Exp Ther 1997;283:265–273.

    PubMed  CAS  Google Scholar 

  205. Hagen TJ, Bergmanis AA, Kramer SW, et al. 2-Iminopyrrolidines as potent and selective inhibitors of human inducible nitric oxide synthase. J Med Chem 1998;41:3675–3683.

    Article  PubMed  CAS  Google Scholar 

  206. Beaton H, Hamley P, Nicholls DJ, et al. 3,4-Dihydro-1-isoquinolinamines: a novel class of nitric oxide synthase inhibitors with a range of isoform selectivity and potency. Bioorg Med Chem Lett 2001;11:1023–1026.

    Article  PubMed  CAS  Google Scholar 

  207. Nakamura H, Tsukada H, Oya M, et al. Aminoguanidine has both an antiinflammatory effect on experimental colitis and a proliferative effect on colonic mucosal cells. Scand J Gastroenterol 1999;34:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  208. Yamaguchi T, Yoshida N, Ichiishi E, et al. Differing effects of two nitric oxide synthase inhibitors on experimental colitis. Hepatogastroenterology 2001;48:118–122.

    PubMed  CAS  Google Scholar 

  209. de Wilt JH, Manusama ER, van Etten B, et al. Nitric oxide synthase inhibition results in synergistic anti-tumour activity with melphalan and tumour necrosis factor alphabased isolated limb perfusions. Br J Cancer 2000;83:1176–1182.

    Article  PubMed  Google Scholar 

  210. Fukumura D, Yuan F, Endo M, Jain RK. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol 1997;150:713–725.

    PubMed  CAS  Google Scholar 

  211. Jadeski LC, Lala PK. Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 1999;155:1381–1390.

    Article  PubMed  CAS  Google Scholar 

  212. Menchen LA, Colon AL, Moro et al. N-(3(aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulphonic acid in rats. Life Sci 2001;69:479–491.

    Article  PubMed  CAS  Google Scholar 

  213. Armstrong AM, Campbell GR, Gannon C, et al. Oral administration of inducible nitric oxide synthase inhibitors reduces nitric oxide synthesis but has no effect on the severity of experimental colitis. Scand J Gastroenterol 2000;35:832–838.

    PubMed  CAS  Google Scholar 

  214. Hosoi T, Goto H, Arisawa T, et al. Role of nitric oxide synthase inhibitor in experimental colitis induced by 2,4,6trinitrobenzene sulphonic acid in rats. Clin Exp Pharmacol Physiol 2001;28:9–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofseth, L.J., Sawa, T., Hussain, S.P., Harris, C.C. (2004). Inducible Nitric Oxide Synthase as a Target for Chemoprevention. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics