Skip to main content

Lipoxygenases as Targets for Cancer Prevention

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Although the cyclooxygenase (COX) metabolites of arachidonic acid (AA; 20:4; eicosatetraenoic acid) metabolism have received more attention than the metabolites of the lipoxygenases (LOX), there is growing evidence that inhibition of LOX offers an effective means of cancer (and other disease) prevention. As a family, LOX are dioxygenase enzymes that incorporate molecular oxygen into some polyunsaturated fatty acids, particularly AA and linoleic acid (LA; 18:2; octadecadienoic acid). LOX are widely distributed in plants, fungi, and mammals, but are absent in most bacteria and yeasts (1–3). The recognition that AA can be metabolized to COX and LOX products that are ligands for specific receptors has suggested their potential importance in regulating cell growth and/or differentiation. However, there is uncertainty regarding which metabolites are the most important or how they contribute to transformation, tumor growth, and metastases. It is the goal of this chapter to provide information on the known tissue distribution of the various LOX family members, their products, and the effect of inhibiting LOX in specific organ models of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274:23,679–23,682.

    Article  CAS  Google Scholar 

  2. Kuhn H, Borngraber S. Mammalian. 15-lipoxygenases. Enzymatic properties and biological implications. Adv Exp Med Biol 1999;447:5–28.

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto S. Enzymatic lipid peroxidation: reactions of mammalian lipoxygenase. Free Radic Biol Med 1991;10:149–159.

    Article  PubMed  CAS  Google Scholar 

  4. Kuhn H. Structural basis for the positional specificity of lipoxygenases. Prostaglandins Other Lipid Mediat 2000;62:255–270.

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1992;1128:117–131.

    Article  PubMed  CAS  Google Scholar 

  6. Gaffney BJ. Lipoxygenases: structural principles and spectroscopy. Annu Rev Biophys Biomol Struct 1996;25:431–459.

    Article  PubMed  CAS  Google Scholar 

  7. Peters-Golden M. Cell biology of the 5-lipoxygenase pathway. Am J Respir Crit Care Med 1998;157:S227-S232.

    CAS  Google Scholar 

  8. Radmark OP. The molecular biology and regulation of 5-lipoxygenase. Am JRespir Grit Care Med 2000;161:S11-S15.

    CAS  Google Scholar 

  9. Kuhn H, Theile BJ. The diversity of the lipoxygenase family. Many sequence data but little information of biological significance. FEBS Lett 1999;449:7–11.

    Article  PubMed  CAS  Google Scholar 

  10. Dailey LA, Imming P. 12-Lipoxygenase: classification possible therapeutic benefits for inhibition and inhibitors. Curr Med Chem 1999;6:389–398.

    PubMed  CAS  Google Scholar 

  11. Chen X-S, Funk CD. Structure-function properties of human platelet 12-lipoxygenase: chimeric enzyme and in vitro mutagenesis studies. FASEB J 1993;7:694–701.

    PubMed  CAS  Google Scholar 

  12. Honn KV, Tang DG, Gao X, et al. 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 1994;13:365–396.

    Article  PubMed  CAS  Google Scholar 

  13. Funk CD, Keeney DS, Oliw EH, et al. Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem 1996;271:23,338–23,344.

    CAS  Google Scholar 

  14. Funk CD. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta 1996;1304:65–84.

    Article  PubMed  Google Scholar 

  15. Siebert M, Krieg P, Lehmann WD, et al. Enzymic characterization on epidermis-derived 12-lipogenzase isoenzymes. J Biochem 2001;355:97–104.

    Article  CAS  Google Scholar 

  16. Krieg P, Siebert M, Kinzig A, et al. Murine 12(R)-lipoxygenase: functional expression, genomic structure and chromosomal localization. FEBS Lett 1999;446:142–148.

    Article  PubMed  CAS  Google Scholar 

  17. Sun D, McDonnill M, Chen X, et al. Human 12(R)-lipoxygenase and the mouse ortholog. J Biol Chem 1998;273:33,540–33,547.

    CAS  Google Scholar 

  18. Boeglin WE, Kim RB, Brash AL. A 12(R)-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc Natl Acad Sci USA 1998;95:6744–6749.

    Article  PubMed  CAS  Google Scholar 

  19. Fretland DJ, Djuric SW. 12(R)-and 12(S)Hydroxyeicosatetraenoic acids: chemistry, biology, and pharmacology. Prostagladins Leukot Essent Fatty Acids 1989;38:215–228.

    Article  CAS  Google Scholar 

  20. Kuhn H, Heydeck D, Brinkman R, Trebus F. Regulation of cellular 15-lipoxygenase activity on pretranslational translational and postranslational levels. Lipids 1999;34:S273-S279.

    Article  PubMed  CAS  Google Scholar 

  21. Hsi LC, Wilson LC, Eling TE. Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate: alteration in PPARgamma. J Biol Chem 2002; 277:405–456.

    Article  CAS  Google Scholar 

  22. Hsi LC, Wilson L, Nixon J, Eling TE. 15-lipoxygenase-1 metabolites down-regulate peroxisome proliferator-activated receptor y via the MAPK signaling pathway. J Biol Chem 2001;276:34,545–34,552.

    Article  CAS  Google Scholar 

  23. Hill EM. Eling T. Nettesheim P. Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 1998;18:662–669.

    PubMed  CAS  Google Scholar 

  24. Yokota S, Oda T, Fahimi HD. The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. J Histochem Cytochem 2001;49:613–621.

    Article  PubMed  CAS  Google Scholar 

  25. VanLeyen K, Duvoisin RM, Engelhardt H, Wiedmann M. A function for lipoxygenase in programmed organelle degradation. Nature 1998;395:392–395.

    Article  PubMed  Google Scholar 

  26. Shureiqi I, Chen D, Lotan R, et al. 15-Lipoxygenase-1 mediates nonsteroidal antiinflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res 2000;60:6846–6850.

    PubMed  CAS  Google Scholar 

  27. Shureiqi I, Xu X, Chen D, et al. Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Res 2001;61:4879–4884.

    PubMed  CAS  Google Scholar 

  28. Eling TE, Glasgow WC. Cellular proliferation and lipid metabolism: importance of lipoxygenases in modulating epidermal growth factor-dependent mitogenesis. Cancer Metastases Rev 1994;13:397–410.

    Article  CAS  Google Scholar 

  29. Brezinski ME, Serhan CN. Selective incorporation of 15(S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc Natl Acad Sci USA 1990;87:6248–6252.

    Article  PubMed  CAS  Google Scholar 

  30. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 1997;94:6148–6152.

    Article  PubMed  CAS  Google Scholar 

  31. Brash AR, Jisaka M, Boeglin WE, et al. Investigation of a second 15S-lipoxygenase in humans and its expression in epithelial tissues. Adv Exp Med Biol 1999;469:83–89.

    Article  PubMed  CAS  Google Scholar 

  32. Kilty I, Logan A, Vickers PJ. Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15S-lipoxygenase. Eur J Biochem 1999;266:83–93.

    Article  PubMed  CAS  Google Scholar 

  33. Kang L, Vanderhoek JY. Characterization of specific subcellular 15-hydroxyeicosatetraenoic acid (15-HETE) binding sites on rat basophilic leukemia cells. Biochim Biophys Acta 1995;125:297–304.

    Google Scholar 

  34. Bailey M, Fletcher J, Vanderhoek Y, Makheya AN. Regulation of human T- lymphocyte proliferative responses by the lipoxygenase product 15-HETE. Biochem Soc Trans 1997;25:2475.

    Google Scholar 

  35. Postoak D, Nystuen L, King L, et al. 15-Lipoxygenase products of arachidonate play a role in proliferation of transformed erythroid cells. Am J Physiol 1990;259:C849-C853.

    PubMed  CAS  Google Scholar 

  36. Fürstenberger G, Hagedorn H, Jacobi T, et al. Characterization of an 8-lipoxygenase activity induced by the phorbol-13-acetate in mouse skin in vivo. J Biol Chem 1991;266:15,738–15,745.

    Google Scholar 

  37. Huges MA, Brash AR. Investigation of the mechanism of biosynthesis of 8-hydroxyeicosatetraenoic acid in mouse skin. Biochim Biophys Acta 1991;1081:347–354.

    Article  Google Scholar 

  38. Fischer SM, Baldwin JK, Jasheway DW, et al. Phorbol ester induction of 8-lipoxygenase in inbred SENCAR (SSIN) but not C57BL/6J mice correlated with hyperplasia, edema, and oxidant generation but not ornithine decarboxylase induction. Cancer Res 1988;48:658–664.

    PubMed  CAS  Google Scholar 

  39. Jisaka M, Kim RB, Boeglin WE, et al. Molecular cloning and functional expression of a phorbol ester-inducible 8S-lipoxygenase form mouse skin. J Biol Chem 1997;272:24,410–24,416.

    Article  CAS  Google Scholar 

  40. Muga SJ, Thuillier P, Pavone A, et al. 8S-Lipoxygenase activates peroxisome proliferator-activated receptor alpha and induces differentiation in murine keratinocytes. Cell Growth Differ 2000;11:447–454.

    PubMed  CAS  Google Scholar 

  41. Rioux N, Castonguay A. Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis 1998;19:1393–1400.

    Article  PubMed  CAS  Google Scholar 

  42. Cuendet M, Pezzuto JM. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 2000;17:109–157.

    Article  PubMed  CAS  Google Scholar 

  43. Steele VE, Holmes CA, Hawk ET, et al. Potential use of lipoxygenase inhibitors for cancer chemoprevention. Expert Opin Invest Drugs 2000;9:2121–2138.

    Article  CAS  Google Scholar 

  44. Steele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prey 1999;8:467–483.

    CAS  Google Scholar 

  45. Weisburger JH. Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem Toxicol 1999;37:943–948.

    Article  PubMed  CAS  Google Scholar 

  46. Conney AH, Lou YR, Xie JG, et al. Some perspectives on dietary inhibition of carcinogenesis: studies with curcumin and tea. Proc Soc Exp Biol Med 1997;216:739–743.

    Google Scholar 

  47. Yang CS, Wang Z-Y. Tea and cancer. J Natl Cancer Inst 1993;85:1038–1049.

    Article  PubMed  CAS  Google Scholar 

  48. Katiyar SK, Mukhtar H. Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl 1997;27:59–67.

    Article  PubMed  CAS  Google Scholar 

  49. Katiyar SK, Mukhtar H. Tea in chemoprevention of cancer: epidemiologic and experimental studies review. Int J Oncol 1996;8:221–238.

    PubMed  CAS  Google Scholar 

  50. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA 2001;98:10,350–10,355.

    CAS  Google Scholar 

  51. Hong J, Smith TJ, Ho C, et al. Effects of purified green and black tea polyphenols on cyclooxygenase and lipoxygenasedependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 2001;62:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  52. Lin J, Lin-Shiav S. Mechanisms of cancer chemoprevention by curcumin. Proc Natl Sci Counc Repub China [B] 2001;25:59–66.

    CAS  Google Scholar 

  53. Huang M, Lysz T, Ferraro T, et al. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 1991;51:813–819.

    PubMed  CAS  Google Scholar 

  54. Skrzypczak-Jakun E, McCake NP, Selman SH, Jankun J. Curcumin inhibits lipoxygenase by binding to its central cavity: theoretical and x-ray evidence. Int J Mol Med 2000;6:521–526.

    Google Scholar 

  55. Koshihara Y, Neichi T, Murota SI, et al. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochem Biophys Acta 1984;792:92–97.

    Article  PubMed  CAS  Google Scholar 

  56. Kohyama N, Nagata T, Fujimoto S. Inhibition of aracidonate activities by 2-(3,4-dihydroxy-phenyl) ethanol, a phenolic compound from olives. Biosci Biotechnol Biochem 1997;61:347–350.

    Article  PubMed  CAS  Google Scholar 

  57. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? and gone? Clin Biochem 1997;30:91–113.

    Article  PubMed  CAS  Google Scholar 

  58. Das DK, Sato M, Ray PS, et al. Cardioprotection of red wine: role of polyphenolic antioxidants. Drugs Exp Clin Res 1999;25:115–120.

    PubMed  CAS  Google Scholar 

  59. Jang M, Cai L, Udeani G, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997:275:218–220.

    Article  PubMed  CAS  Google Scholar 

  60. Tessitore L, Davit A, Sarotto I, Caderni G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 2000;21:1619–1622.

    Article  PubMed  CAS  Google Scholar 

  61. Kozuki Y, Miura Y, Yagasaki K. Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action. Cancer Lett 2001;167:151–156.

    Article  PubMed  CAS  Google Scholar 

  62. Carbo N, Costelli P, Baccino FM, et al. Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. Biochem Biophys Res Commun 1999;254:739–743.

    Article  PubMed  CAS  Google Scholar 

  63. MacCarrone M, Lorenzon T, Guerrieri P, Agro AF. Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase. Eur J Biochem 1999;265:27–34.

    Article  PubMed  CAS  Google Scholar 

  64. Savouret JF, Quesne M. Resveratrol and cancer: a review. Biomed Pharmacother 2002;56:84–87.

    Article  PubMed  CAS  Google Scholar 

  65. Hammarström S. Selective inhibition of platelet n-8 lipoxygenase by 5, 8,11-eicosatriynoic acid. Biochim Biophys Acta 1977:487:517–519.

    Article  PubMed  Google Scholar 

  66. Fischer SM, Mills GD, Slaga, TJ. Inhibition of mouse skin tumor promotion by several inhibitors of arachidonic acid metabolism. Carcinogenesis 1982;3:1243–1245.

    Article  PubMed  CAS  Google Scholar 

  67. Kliewer SA, Lenhard JM, Willson TM, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor y and promotes adipocyte differentiation. Cell 1995; 83:813–819.

    Article  PubMed  CAS  Google Scholar 

  68. Sok D-E, Han C-Q, Pai J-K, Sih CJ. Inhibition of leukotriene biosynthesis by acetylenic analogs. Biochem Biophys Res Commun 1982;107:101–108.

    Article  PubMed  CAS  Google Scholar 

  69. Vanderhoek JY, Bryant RW, Bailey JM. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid. J Biol Chem 1980;255:10,064–10,065.

    CAS  Google Scholar 

  70. Masumoto H, Kissner R, Koppenol WH, Sies H. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett 1996;398:179–182.

    Article  PubMed  CAS  Google Scholar 

  71. Theicher BA, Korbut TT, Menon K, et al. Cyclooxygenase and lipoxygenase inhibitors as modulators of cancer therapies. Cancer Chemother Pharmacol 1994;33:151–522.

    Google Scholar 

  72. Kato M, Liu W, Yi H, et al. The herbal medicine shosaiko-to inhibits growth and metastasis of malignant melanoma primarily developed in ret-transgenic mice. J Investig Dermatol 1998;111:640–644.

    Article  PubMed  CAS  Google Scholar 

  73. Ikemoto S, Sugimura K, Yoshida N, et al. Anti tumor effects of Scutellariae radix and its components baicalein, baicalin and wogonin on bladder cancer cell lines. Urology 2000;55:951–955.

    Article  PubMed  CAS  Google Scholar 

  74. Chen S, Raun S, Bedner E, et al. Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif 2001;34:293–304.

    Article  PubMed  CAS  Google Scholar 

  75. Hong, SH, Avis I, Vos MD, et al. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 1999;59:2223–2228.

    PubMed  CAS  Google Scholar 

  76. Pidgeon GP, Kandouz M, Meram A, Honn KV. Mechanisms controlling cell arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 2002;62:2721–2727.

    PubMed  CAS  Google Scholar 

  77. Lee MJ, Wang CJ, Tsai YY, et al. Inhibitory effect of 12-O-tetradecanoylphorbol-13-acetate-caused tumor promotion in benz[a]pyrene-initiated CD-1 mouse skin by baicalein. Nutr Cancer 1999;34:185–191.

    Article  PubMed  CAS  Google Scholar 

  78. Sekiya K, Okuda H. Selective inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Commun 1982;105:1090–1095.

    Article  PubMed  CAS  Google Scholar 

  79. Hamada H, Hiramatsu M, Edmatasu R, Mori A. Free radical scavenging action on baicalein. Arch Biochem Biophys 1993;306:261–266.

    Article  PubMed  CAS  Google Scholar 

  80. Huang F, Shoupe TS, Lin CJ, et al. Differential effects of a series of hydroxamic acid derivatives on 5-lipoxygenase and cyclooxygenase from neutrophils and 12-lipoxygenase from platelets and their in vivo effects on inflammation and anaphylaxis. J Med Chem 1989;32:1836–1842.

    Article  PubMed  CAS  Google Scholar 

  81. Nie D, Honn, KV. Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cell Mol Life Sci 2002;59:799–807.

    Article  PubMed  CAS  Google Scholar 

  82. Chen YQ, Duniec SM, Liu B, et al. Endogenous 12(S)HETE production by tumor cells and its role in metastasis. Cancer Res 1994;54:1574–1579.

    PubMed  CAS  Google Scholar 

  83. Li L, Zhu S, Johsi B, et al. A novel hydroxamic acid compound, BMD 188 demonstrates anti-prostate cancer effects by inducing apoptosis in in vitro studies. Anticancer Res 1999;19:51–60.

    PubMed  CAS  Google Scholar 

  84. Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Nall Acad Sci USA 1998;95:13,182–13,187.

    Article  CAS  Google Scholar 

  85. Kehrer JP, Biswal SS, La E, et al. Inhibition of peroxisomeproliferator-activated receptor (PPAR)a by MK886. Biochem J 2001;356:899–906.

    Article  PubMed  CAS  Google Scholar 

  86. Romano M, Catalano A, Nutini M, et al. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J 2001;15:2326–2336.

    Article  PubMed  CAS  Google Scholar 

  87. Hamasaki Y, Tai HH. Gossypol, a potent inhibitor of arachidonate 5- and 12-lipoxygenases. Biochim Biophys Acta 1985;834:37–41.

    Article  PubMed  CAS  Google Scholar 

  88. Moody TW, Leyton J, Martinez A, et al. Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res 1998;24:617–628.

    Article  PubMed  CAS  Google Scholar 

  89. McCormick DL, Spicer AM. Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by Nmethyl-N-nitrosourea. Cancer Lett 1987;37:139–146.

    Article  PubMed  CAS  Google Scholar 

  90. Olsen EA, Abernethy ML, Kul-Shorten C, et al. A doubleblind vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J Am Acad Dermatol 1991;24:738–743.

    Article  PubMed  CAS  Google Scholar 

  91. Seufferlein T, Seckl MJ, Schwarz E, et al. Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br J Cancer 2002;86:1188–1198.

    Article  PubMed  CAS  Google Scholar 

  92. Shidaifat F, Canatan H, Kulp SK, et al. Inhibition of human prostate cancer cell growth by gossypol is associated with stimulation of transforming growth factor-beta. Cancer Lett 1996;107:37–44.

    Article  PubMed  CAS  Google Scholar 

  93. Liu S, Kulp SK, Sugimoto Y, et al. The (-)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res 2002;22:33–38.

    PubMed  Google Scholar 

  94. Stein RC, Joseph AE, Matlin SA, et al. A preliminary clinical study of gossypol in advanced human cancer. Cancer Chemother Pharmacol 1992;30:480–482.

    Article  PubMed  CAS  Google Scholar 

  95. Van Poznak C, Seidman AD, Reidenberg MM, et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a Phase I/II clinical trial. Breast Cancer Res Treat 2001;66:239–248.

    Article  PubMed  Google Scholar 

  96. Flack MR, Pyle RG, Mullen NM, et al. Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab 1993;76:1019–1024.

    Article  PubMed  CAS  Google Scholar 

  97. Qian SZ, Wang ZG. Gossypol: a potential antifertility agent for males. AnnuRevPharmacolToxicol 1984;24:329–360.

    CAS  Google Scholar 

  98. Garcia-Marcos L, Schuster A. Antileukotrienes in asthma: present situation. Expert Opin Pharmacother 2001;2:441–466.

    Article  PubMed  CAS  Google Scholar 

  99. Hussey HJ, Tisdale MJ. Inhibition of tumour growth by lipoxygenase inhibitors. Br J Cancer 1996;74:683–687.

    Article  PubMed  CAS  Google Scholar 

  100. Gunning WT, Kramer PM, Steele, VE, Pereira MA. Chemoprevention by lipoxygenase and leukotriene inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res 2002;62:4199–4201.

    PubMed  CAS  Google Scholar 

  101. Wenger FA, Kilian M, Achucarr P, et al. Effects of celebrex and zyflo on BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 2002;2:54–60.

    Article  PubMed  CAS  Google Scholar 

  102. Bell RL, Bouska JB, Malo PE, et al. Optimization of the potency and duration of action of N-hydroxyurea 5-lipoxygenase inhibitors. J Pharmacol Exp Ther 1995;272:724–731.

    PubMed  CAS  Google Scholar 

  103. Bortuzzo C, Hanif R, Kashfi K, et al. The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochim Biophys Acta 1996;1300:240–246.

    Article  PubMed  Google Scholar 

  104. Przylipiak A, Hafner J, Przylipiak J, et al. Influence of leukotrines on in vitro growth of human mammary carcinoma cell line MCF-7. Eur J Obstet Gynecol Reprod Biol 1998;77:61–65.

    Article  PubMed  CAS  Google Scholar 

  105. Shureiqi I, Chen D, Lee JJ, et al. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory druginduced apoptosis in colorectal cancer cells. J Nall Cancer Inst 2000;92:1136–1142.

    Article  CAS  Google Scholar 

  106. Shureiqi I, Chen D, Lotan R, et al. 15-Lipoxygenase-1 mediates nonsteroidal antiinflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res 2000;60:6846–6850.

    PubMed  CAS  Google Scholar 

  107. Sendobry SM, Cornicelli JA, Welch K, et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmcol 1998;120:1199–1206.

    Article  Google Scholar 

  108. Nie D, Che M, Grignon D, et al. Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev 2001;20:195–206.

    Article  PubMed  CAS  Google Scholar 

  109. Gupta S, Srivastava M, Ahmad N, et al. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 2001;91:737–743.

    Article  PubMed  CAS  Google Scholar 

  110. Shappell SB, Boeglin WE, Olson SJ, et al. 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol 1999;155:235–245.

    Article  PubMed  CAS  Google Scholar 

  111. Tang S, Bhatia B, Maldonado CJ, et al. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell-cycle regulator in normal prostate epithelial cells. J Biol Chem 2002;277:16,189–161,201.

    CAS  Google Scholar 

  112. Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun 1997;235:418–423.

    Article  PubMed  CAS  Google Scholar 

  113. Anderson KM, Seed T, Vos M, et al. 5-Lipoxygenase inhibitors reduce PC-3 cell proliferation and initiate nonnecrotic cell death. Prostate 1998;37:161–173.

    Article  PubMed  CAS  Google Scholar 

  114. Tang DG, La E, Kern J, Kehrer JP. Fatty acid oxidation and signaling in apoptosis. Biol Chem 2002;383:425–442.

    Article  PubMed  CAS  Google Scholar 

  115. Gao X, Grignon DJ, Chbihi T, et al. Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 1995;46:227–237.

    Article  PubMed  CAS  Google Scholar 

  116. Timar J, Raso E, Dome B, et al. Expression, subcellular localization and putative function of platelet- type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int J Cancer 2000;87:37–43.

    Article  PubMed  CAS  Google Scholar 

  117. Nie D, Hillman GG, Geddes T, et al. Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Res 1998;58:4047–4051.

    PubMed  CAS  Google Scholar 

  118. Kelavkar UP, Cohen C, Kamitani H, et al. Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis 2000;21:1777–1787.

    Article  PubMed  CAS  Google Scholar 

  119. Spindler SA, Sarkar FH, Sakr WA, et al. Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem Biophys Res Commun 1997;239:775–781.

    Article  PubMed  CAS  Google Scholar 

  120. Kelavkar UP, Nixon JB, Cohen C, et al. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis 2001;22: 1765–1773.

    Article  PubMed  CAS  Google Scholar 

  121. Kelavkar U, Glasgow W, Eling TE. The effect of 15-lipoxygenase-1 expression on cancer cells. Curr Urol Rep 2002;3:207–214.

    Article  PubMed  Google Scholar 

  122. Shureiqi I, Wojno KJ, Poore JA, et al. Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis 1999;20:1985–1995.

    Article  PubMed  CAS  Google Scholar 

  123. Shappell SB, Manning S, Boeglin WE, et al. Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 2001;3:287–303.

    Article  PubMed  CAS  Google Scholar 

  124. Jack GS, Brash AR, Olson SJ, et al. Reduced 15-lipoxygenase2 immunostaining in prostate adenocarcinoma: correlation with grade and expression in high-grade prostatic intraepithelial neonlasia. Hum Pathol 2000;31:1146–1154.

    Article  PubMed  CAS  Google Scholar 

  125. Dias VC, Wallace JL, Parsons HG. Modulation of cellular phospholipid fatty acids and leukotriene B4 synthesis in the human intestinal cell (CaCo-2). Gut 1992;33:622–627.

    Article  PubMed  CAS  Google Scholar 

  126. Sjolander A, Schippert A, Hammarstrom S. A human epithelial cell line, intestine 407, can produce 5-hydroxyeicosatetraenoic acid and leukotriene B4. Prostaglandins 1993;45:85–96.

    Article  PubMed  CAS  Google Scholar 

  127. Cortese JF, Spannhake EW, Eisinger W, et al. The 5-lipoxygenase pathway in cultured human intestinal epithelial cells. Prostaglandins 1995;49:155–166.

    Article  PubMed  CAS  Google Scholar 

  128. Bortuzzo C, Hanif R, Kashi K, et al. The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochim Biophys Acta 1996;1300:240–246.

    Article  PubMed  Google Scholar 

  129. Werz O, Schneider N, Brungs M, et al. A test system for leukotriene synthesis inhibitors based on the in vitro differentiation of the human leukemic cell lines HL-60 and Mono Mac 6. Naunyn Schmiedebergs Arch Pharmacol 1997;356:441–445.

    Article  PubMed  CAS  Google Scholar 

  130. Gao X, Porter AT, Honn KV. Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications. Adv Exp Med Biol 1997;407:41–53.

    PubMed  CAS  Google Scholar 

  131. Ikawa H, Kamitani H, Calvo BF, et al. Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Res 1999;59:360–366.

    PubMed  CAS  Google Scholar 

  132. Natarajan R, Esworthy R, Bai W, et al. Increased 12-lipoxygenase expression in breast cancer tissues and cells. Regulation by epidermal growth factor. J Clin Endocrinol Metab 1997;82:1790–1798.

    Article  PubMed  CAS  Google Scholar 

  133. Reddy N, Everhart A, Eling T, Glasgow W. Characterization of a 15-lipoxygenase in human breast carcinoma BT-20 cells: stimulation of 13-HODE formation by TGF alpha/EGF. Biochem Biophys Res Commun 1997;231:111–116.

    Article  PubMed  CAS  Google Scholar 

  134. Liu X H, Connolly JM, Rose DP. Eicosanoids as mediators of linoleic acid-stimulated invasion and type IV collagenase production by a metastatic human breast cancer cell line. Clin Exp Metastasis 1996;14:145–152.

    Article  PubMed  CAS  Google Scholar 

  135. Liu XH, Connolly JM, Rose DP. The 12-lipoxygenase gene-transfected MCF-7 human breast cancer cell line exhibits estrogen-independent, but estrogen and omega-6 fatty acid- stimulated proliferation in vitro, and enhanced growth in athymic nude mice. Cancer Lett 1996;109:232–230.

    Article  Google Scholar 

  136. Avis I, Hong SH, Martinez A, et al. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 2001;15:2007–2009.

    PubMed  CAS  Google Scholar 

  137. Tong W, Ding X, Adrian T. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun 2002;296:942–948.

    Article  PubMed  CAS  Google Scholar 

  138. Noguchi M, Kitagawa H, Miyazaki I, Mizukami Y. Influence of esculetin on incidence, proliferation, and cell kinetics of mammary carcinomas induced by 7,12-dimethylbenz[a] anthracene in rats on high- and low-fat diets. Jpn J Cancer Res 1993;84:1010–1014.

    Article  PubMed  CAS  Google Scholar 

  139. Kitagawa H, Noguchi M. Comparative effects of piroxicam and esculetin on incidence, proliferation, and cell kinetics of mammary carcinomas induced by 7,12-dimethylbenz [a] anthracene in rats on high- and low-fat diets. Oncology 1994;51:401–410.

    Article  PubMed  CAS  Google Scholar 

  140. Matsunaga K, Yoshimi N, Yamada Y, et al. Inhibitory effects of nabumetone, a cyclooxygenase-2 inhibitor, and esculetin, a lipoxygenase inhibitor, on N-methyl-N-nitrosoureainduced mammary carcinogenesis in rats. Jpn J Cancer Res 1998;89:496–501.

    Article  PubMed  CAS  Google Scholar 

  141. Avis IM, Jett M, Boyle T, et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Investig 1996;97:806–813.

    Article  PubMed  CAS  Google Scholar 

  142. Nadel JA, Conrad DJ, Ueki IF, et al. Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Investig 1991;87:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  143. Soriano AF, Helfrich B, Chan DC, et al. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 1999;59:6178–6184.

    PubMed  CAS  Google Scholar 

  144. Kowal-Bielecka O, Distler O, Neidhart M, et al. Evidence of 5-lipoxygenase overexpression in the skin of patients with systemic sclerosis: a newly identified pathway to skin inflammation in systemic sclerosis. Arthritis Rheum 2001;44:1865–1875.

    Article  PubMed  CAS  Google Scholar 

  145. Takahashi Y, Reddy GR, Ueda N, et al. Arachidonate 12-lipoxygenase of platelet-type in human epidermal cells. J Biol Chem 1993;268:16,443–16,448.

    CAS  Google Scholar 

  146. Krieg P, Kinzig A, Heidt M, et al. cDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin. Biochim Biophys Acta 1998;1391:7–12.

    Article  PubMed  CAS  Google Scholar 

  147. Nakadate T. The mechanism of skin tumor promotion caused by phorbol esters: possible involvement of arachidonic acid cascade/lipoxygenase, protein kinase C and calcium/calmodulin systems. Jpn J Pharmacol 1989;49:1–9.

    Article  PubMed  CAS  Google Scholar 

  148. Krieg P, Kinzig A, Ress-Loschke M, et al. 12-Lipoxygenase isoenzymes in mouse skin tumor development. Mol Carcinog 1995;14:118–129.

    Article  PubMed  CAS  Google Scholar 

  149. Virmani J, Johnson EN, Klein-Szanto AJ, Funk CD. Role of `platelet-type’ 12-lipoxygenase in skin carcinogenesis. Cancer Lett 2001;162:161–165.

    Article  PubMed  CAS  Google Scholar 

  150. Bürger F, Kreig P, Kinzig, A, et al. Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites on keratinocytes. Mol Carcinog 1999;24:108–117.

    Article  PubMed  Google Scholar 

  151. Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in antiinflammatory therapy? Biochem Pharmacol 2001;62:1433–1438.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer, S.M., Klein, R.D. (2004). Lipoxygenases as Targets for Cancer Prevention. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics