Skip to main content

Development of an Inhibitor of raf Kinase

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 241 Accesses

Abstract

Our efforts to develop raf kinase inhibitors derive from the clear, causal role of Ras proteins in human cancer, and the understanding that raf kinase is a direct downstream effector of Ras action. K-ras is activated by mutation in more than 20% of all solid tumors, N-ras in 30% of leukemias and lymphomas, and H-ras in small numbers of solid and liquid tumors. In addition, normal Ras alleles are frequently amplified in human tumors, and pathways upstream of Ras are amplified (HER2/neu, for example) or activated by gene rearrangement (bcr-abl) or mutation such as epidermal growth factor (EGF)-receptor in glioblastoma, for example. For these reasons, Ras has long been considered a promising target for therapeutic intervention (reviewed in 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCormick F. Small-molecule inhibitors of cell signaling. Curr Opin Biotechnol 2000;11:593–597.

    Article  PubMed  CAS  Google Scholar 

  2. Feramisco JR, Clark R, Wong G, et al. Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of ras protein. Nature 1985;314:639–642.

    Article  PubMed  CAS  Google Scholar 

  3. Wittinghofer A, Franken SM, Scheidig AJ, et al. Threedimensional structure and properties of wild-type and mutant H-ras-encoded p21. Ciba Found Symp 1993;176:6–21.

    PubMed  CAS  Google Scholar 

  4. Ahmadian MR, Zor T, Vogt D, et al. Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc Natl Acad Sci USA 1999;96:7065–7070.

    Article  PubMed  CAS  Google Scholar 

  5. Prendergast GC, Rane N. Farnesyltransferase inhibitors: mechanism and applications. Expert Opin Investig Drugs 2001;10:2105–2116.

    Article  PubMed  CAS  Google Scholar 

  6. Van Aelst L, Barr M, Marcus S, et al. Complex formation between RAS and RAF and other protein kinases. Proc Nall Acad Sci USA 1993;90:6213–6217.

    Article  Google Scholar 

  7. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000;351:289–305.

    Article  PubMed  CAS  Google Scholar 

  8. Freed E, Symons M., Macdonald SG, et al. Binding of 14–3–3 proteins to the protein kinase Raf and effects on its activation. Science 1994;265:1713–1716.

    Article  PubMed  CAS  Google Scholar 

  9. Stokoe D, McCormick F. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J 1997;16:2384–2396.

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu K, Ohtsuka T, Takai Y. Cell-free assay system for Ras- and Rap 1-dependent activation of MAP-kinase cascade. Methods Mol Biol 1998;84:173–183.

    PubMed  CAS  Google Scholar 

  11. Hamad NM, Elconin JH, Karnoub AE, et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002;16:2045–2057.

    Article  PubMed  CAS  Google Scholar 

  12. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001;411:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  13. Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998;12:3499–3511.

    Article  PubMed  CAS  Google Scholar 

  14. Ries SJ, Biederer C, Woods D, et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p 14ARF. Cell 2000;103:321–330.

    Article  PubMed  CAS  Google Scholar 

  15. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001;98:11,

    Article  Google Scholar 

  16. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001;98: 598–11,

    Article  Google Scholar 

  17. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001;98:603.

    Article  Google Scholar 

  18. Davies H, Bignell Gr, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949–954.

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda T, Yochinaga K, Suzuki A, et al. Anticorresponding mutations of the KRAS and PTEN genes in human endometrial cancer. Oncol Rep 2000;7:567–570.

    PubMed  CAS  Google Scholar 

  20. Tsao H, Zhang X, Fowlkes K, et al. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 2000;60:1800–1804.

    PubMed  CAS  Google Scholar 

  21. Macdonald SG, Crews CM, Wu L, et al. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol Cell Biol 1993;13:6615–6620.

    PubMed  CAS  Google Scholar 

  22. Lyons JF, Wilhelm S, Hibner B, et al. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001;8:219–225.

    Article  PubMed  CAS  Google Scholar 

  23. Lowinger TB, Riedl B, Dumas J, et al. Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 2002;8:2269–2278.

    Article  PubMed  CAS  Google Scholar 

  24. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999;5:810–816.

    Article  PubMed  CAS  Google Scholar 

  25. Wilhelm S, Chien DS. BAY 43–9006: preclinical data. Curr Pharm Des 2002;8:2255–2257.

    Article  PubMed  CAS  Google Scholar 

  26. Hotte SJ, Hirte HW. BAY 43–9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 2002;8:2249–2253.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCormick, F. (2004). Development of an Inhibitor of raf Kinase. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_26

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics