Skip to main content

Therapeutic Strategies Targeting Polyamines

  • Chapter
Cancer Chemoprevention

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Although polyamines have been recognized as major biological entities for more than 50 yr, interest flourished when they were positively associated with cell growth. Both pharmacological (1–3) and genetic (3–5) studies demonstrated that they were essential for cell proliferation, and this attracted broad interest in their potential as a therapeutic target. Polyamines are ubiquitous, abundant, and loosely bound to multiple intracellular sites; therefore, identification of their role in cell proliferation has been an ongoing challenge. The recent definition of regulatory linkages between polyamine biosynthesis and specific oncogenic signaling networks including c-myc (6), adenomatous polyposis coli (APC) (7), and activated ras (8) provides important leads for meeting this challenge. Especially promising is the finding that ornithine decarboxylase (ODC), the key biosynthetic enzyme for polyamines, is transactivated by the proto-oncogene c-myc (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janne J, Alhonen L, Leinonen P. Polyamines: from molecular biology to clinical applications. Ann Med 1991;23:241–259.

    Article  PubMed  CAS  Google Scholar 

  2. Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 1986;234:249–262.

    PubMed  CAS  Google Scholar 

  3. Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984;53:749–790.

    Article  PubMed  CAS  Google Scholar 

  4. MacRae M, Kramer DL, Coffino P. Developmental effect of polyamine depletion in Caenorhabditis elegans. Biochem J 1998;333:309–315.

    PubMed  CAS  Google Scholar 

  5. Pendeville H, Carpino N, Marine JC, et al. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 2001;21:6549–6558.

    Article  PubMed  CAS  Google Scholar 

  6. Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 1993;90:7804–7808.

    Article  PubMed  CAS  Google Scholar 

  7. Erdman SH, Ignatenko NA, Powell MB, et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 1999;20:1709–1713.

    Article  PubMed  CAS  Google Scholar 

  8. Holtta E, Sistonen L, Alitalo K. The mechanisms of ornithine decarboxylase deregulation in c-Ha-ras oncogenetransformed NIH 3T3 cells. J Biol Chem 1988;263:4500–4507.

    PubMed  CAS  Google Scholar 

  9. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509–1512.

    Article  PubMed  CAS  Google Scholar 

  10. Giardiello FM, Hamilton SR, Hylind LM, et al. Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 1997;57:199–201.

    PubMed  CAS  Google Scholar 

  11. Bettuzzi S, Davalli P, Astancolle S, et al. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res 2000;60:28–34.

    PubMed  CAS  Google Scholar 

  12. Canizares F, Salinas J, de las Heras M, et al. Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clin Cancer Res 1999;5:2035–2041.

    PubMed  CAS  Google Scholar 

  13. Luk GD, Baylin SB. Ornithine decarboxylase as a biologic marker in familial colonic polyposis. N Engl J Med 1984;311:80–83.

    Article  PubMed  CAS  Google Scholar 

  14. Herrera-Ornelas L, Porter C, Pera P, et al. A comparison of ornithine decarboxylase and S-adenosylmethionine decarboxylase activity in human large bowel mucosa, polyps, and colorectal adenocarcinoma. J Surg Res 1987;42:56–60.

    Article  PubMed  CAS  Google Scholar 

  15. Janne J, Poso H, Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta 1978;473:241–293.

    PubMed  CAS  Google Scholar 

  16. Bey P, Gerhart F, Van Dorsselaer V, Danzin C. α-(Fluoromethyl)dehydroornithine and α-(fluoromethyl)dehydroputrescine analogues as irreversible inhibitors of ornithine decarboxylase. J Med Chem 1983;26:1551–1556.

    Article  PubMed  CAS  Google Scholar 

  17. Danzin C, Bey P, Schirlin D, Claverie N. α-monofluoromethyl and α-difluoromethyl putrescine as ornithine decarboxylase inhibitors: in vitro and in vivo biochemical properties. Biochem Pharmacol 1982;31:3871–3878.

    Article  PubMed  CAS  Google Scholar 

  18. Mamont PS, Duchesne MC, Grove J, Bey P. Anti-proliferative properties of DL-α-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem Biophys Res Commun 1978;81:58–66.

    Article  PubMed  CAS  Google Scholar 

  19. McCann PP, Pegg AE. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther 1992;54:195–215.

    Article  PubMed  CAS  Google Scholar 

  20. Pegg AE, McCann PP. S-adenosylmethionine decarboxylase as an enzyme target for therapy. Pharmacol Ther 1992;56:359–377.

    Article  PubMed  CAS  Google Scholar 

  21. Pegg AE. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 1988;48:759–774.

    PubMed  CAS  Google Scholar 

  22. Luk GD, Marton LJ, Baylin SB. Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science 1980;210:195–198.

    Article  CAS  Google Scholar 

  23. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation 1981;19:1–20.

    Article  PubMed  CAS  Google Scholar 

  24. Fozard JR, Part ML, Prakash NJ, et al. L-ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science 1980;208:505–508.

    Article  PubMed  CAS  Google Scholar 

  25. Williams-Ashman HG, Canellakis ZN. Polyamines in mammalian biology and medicine. Perspect Biol Med 1979;22:421–453.

    PubMed  CAS  Google Scholar 

  26. Shapiro JT, Stannard BS, Felsenfeld G. The binding of small cations to deoxyribonucleic acid. Nucleotide specifiicity. Biochemistry 1969:8:3233–3241.

    Article  PubMed  CAS  Google Scholar 

  27. Marton LJ. Effects of treatment with DNA-directed cancer chemotherapeutic agents after polyamine depletion. Pharmacol Ther 1987;32:183–190.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001;58:244–258.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen S. A Guide to Polyamines. Oxford University Press, Oxford, UK, 1998, pp.1–543.

    Google Scholar 

  30. Igarashi K, Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 2000;271:559–564.

    Article  PubMed  CAS  Google Scholar 

  31. Porter CW, Pegg AE, Ganis B, et al. Combined regulation of ornithine and S-adenosylmethionine decarboxylases by spermine and the spermine analogue N1 N12 — bis(ethyl)spermine. Biochem J 1990;268:207–212.

    PubMed  CAS  Google Scholar 

  32. Kramer DL, Miller JT, Bergeron RJ, et al. Regulation of polyamine transport by polyamines and polyamine analogs. J Cell Physiol 1993;155:399–407.

    Article  PubMed  CAS  Google Scholar 

  33. McCormick F. Polyamine metabolism in enucleated mouse L-cells. J Cell Physiol 1977;93:285–292.

    Article  PubMed  CAS  Google Scholar 

  34. Folk JE, Park MH, Chung SI, et al. Polyamines as physiological substrates for transglutaminases. J Biol Chem 1980;255:3695–700.

    PubMed  CAS  Google Scholar 

  35. Park MH, Folk JE. Biosynthetic labeling of hypusine in mammalian cells. Carbon-hydrogen bond fissions revealed by dual labeling. J Biol Chem 1986;261:14,108–14,111.

    CAS  Google Scholar 

  36. Pegg AE, Jones DB, Secrist JA III. Effect of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells. Biochemistry 1988;27:1408–1415.

    Article  PubMed  CAS  Google Scholar 

  37. Kramer DL, Khomutov RM, Bukin YV, et al. Cellular characterization of a new irreversible inhibitor of S-adenosylmethionine decarboxylase and its use in determining the relative abilities of individual polyamines to sustain growth and viability of L1210 cells. Biochem J 1989;259:325–331.

    PubMed  CAS  Google Scholar 

  38. Kramer DL. Polyamine inhibitors and analogs, in Nishioka K, ed. Polyamines in Cancer: Basic Mechanisms and Clinical Approaches. RG Landes, Austin, TX, 1996:151–189.

    Google Scholar 

  39. Feuerstein BG, Pattabiraman N, Marton LJ. Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res 1990;18:1271–1282.

    Article  PubMed  CAS  Google Scholar 

  40. Steglich C, Scheffler IE. An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells. J Biol Chem 1982;257:4603–4609.

    PubMed  CAS  Google Scholar 

  41. Mamont PS, Danzin C, Kolb M, et al. Marked and prolonged inhibition of mammalian ornithine decarboxylase in vivo by esters of (E)-2-(fluoromethyl)dehydroornithine. Biochem Pharmacol 1986;35:159–165.

    Article  PubMed  CAS  Google Scholar 

  42. Porter CW, Bergeron RJ. Spermidine requirement for cell proliferation in eukaryotic cells: structural specificity and quantitation. Science 1983;219:1083–1085.

    Article  PubMed  CAS  Google Scholar 

  43. Porter CW, Cavanaugh PF Jr, Stolowich N, et al. Biological properties of N4- and N1,N8-spermidine derivatives in cultured L1210 leukemia cells. Cancer Res 1985;45:2050–2057.

    PubMed  CAS  Google Scholar 

  44. Bergeron RJ, McManis JS, Weimar WR, et al. The role of charge in polyamine analogue recognition. J Med Chem 1995;38:2278–2285.

    Article  PubMed  Google Scholar 

  45. Shappell NW, Miller JT, Bergeron RJ, Porter CW. Differential effects of the spermine analog, N 1 ,N 12 -bis(ethyl)-spemine, on polyamine metabolism and cell growth in human melanoma cell lines and melanocytes. Anticacer Res 1992;12:1083–1089.

    CAS  Google Scholar 

  46. Kramer DL, Fogel-Petrovic M, Diegelman P, et al. Effects of novel spermine analogues on cell cycle progression and apoptosis in MALME-3M human melanoma cells. Cancer Res 1997;57:5521–5527.

    PubMed  CAS  Google Scholar 

  47. Bachrach U, Heimer YM. The Physiology of Polyamines. CRC Press, Inc., Boca Raton, FL:1989:pp.1–106.

    Google Scholar 

  48. Williams-Ashman HG, Pegg AE, Lockwood DH. Mechanisms and regulation of polyamine and putrescine biosynthesis in male genital glands and other tissues of mammals. Adv Enzyme Regul 1969;7:291–323.

    Article  PubMed  CAS  Google Scholar 

  49. Kadmon D. Chemoprevention in prostate cancer: the role of difluoromethylornithine (DFMO). J Cell Biochem Suppl 1992;16H:122–127.

    Article  PubMed  CAS  Google Scholar 

  50. Heston WD. Prostatic polyamines and polyamine targeting as a new approach to therapy of prostatic cancer. Cancer Sury 1991;11:217–238.

    CAS  Google Scholar 

  51. Nelson PS, Gleason TP, Brawer MK. Chemoprevention for prostatic intraepithelial neoplasia. Eur Urol 1996;30:269–278.

    PubMed  CAS  Google Scholar 

  52. Smith RC, Litwin MS, Lu Y, Zetter BR. Identification of an endogenous inhibitor of prostatic carcinoma cell growth. Nat Med 1995;1:1040–1045.

    Article  PubMed  CAS  Google Scholar 

  53. Walczak J, Wood H, Wilding G, et al. Prostate cancer prevention strategies using antiproliferative or differentiating agents. Urology 2001;57:81–85.

    Article  PubMed  CAS  Google Scholar 

  54. Dunzendorfer U, Knoner M. Therapy with inhibitors of polyamine biosynthesis in refractory prostatic carcinoma. An experimental and clinical study. Onkologie 1985;8:196–200.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi S, Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J 1995;306:1–10.

    PubMed  CAS  Google Scholar 

  56. Heby O, Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci 1990;15:153–158.

    Article  PubMed  CAS  Google Scholar 

  57. Hayashi S. Antizyme-dependent degradation of ornithine decarboxylase. Essays Biochem 1995;30:37–47.

    PubMed  CAS  Google Scholar 

  58. Canellakis ES, Kyriakidis DA, Rinehart CA Jr, et al. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review. Biosci Rep 1985;5:189–204.

    Article  PubMed  CAS  Google Scholar 

  59. Madhubala R, Secrist JA III, Pegg AE. Effect of inhibitors of S-adenosylmethionine decarboxylase on the contents of ornithine decarboxylase and S-adenosylmethionine decarboxylase in L1210 cells. Biochem J 1988;254:45–50.

    PubMed  CAS  Google Scholar 

  60. Kramer DL, Chang BD, Chen Y, et al. Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21 WAF 1 /CIP 1 /SDI 1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Cancer Res 2001;61:7754–1762.

    PubMed  CAS  Google Scholar 

  61. Seiler N. Functions of polyamine acetylation. Can J Physiol Pharmacol 1987;65:2024–2035.

    Article  PubMed  CAS  Google Scholar 

  62. Seiler N, Bolkenius FN, Rennert OM. Interconversion, catabolism and elimination of the polyamines. Med Biol 1981;59:334–346.

    PubMed  CAS  Google Scholar 

  63. Bolkenius FN, Bey P, Seiler N. Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim Biophys Acta 1985;838:69–76.

    Article  PubMed  CAS  Google Scholar 

  64. Bey P, Bolkenius FN, Seiler N, Casara P. N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem 1985;28:1–2.

    Article  PubMed  CAS  Google Scholar 

  65. Claverie N, Wagner J, Knodgen B, Seiler N. Inhibition of polyamine oxidase improves the antitumoral effect of ornithine decarboxylase inhibitors. Anticancer Res 1987;7:765–772.

    PubMed  CAS  Google Scholar 

  66. Moulinoux JP, Darcel F, Quemener V, et al. Inhibition of the growth of U-251 human glioblastoma in nude mice by polyamine deprivation. Anticancer Res 1991;11:175–179.

    PubMed  CAS  Google Scholar 

  67. Moulinoux JP, Quemener V, Cipolla B, et al. The growth of MAT LyLu rat prostatic adenocarcinoma can be prevented in vivo by polyamine deprivation. J Urol 1991;146:1408–1412.

    PubMed  CAS  Google Scholar 

  68. Wang Y, Devereux W, Woster PM, et al. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 2001;61:5370–5373.

    PubMed  CAS  Google Scholar 

  69. Vujcic S, Halmekyto M, Diegelman P, et al. Effects of conditional overexpression of spermidine/spermine N1 -acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J Biol Chem 2000;275:38,319–38,328.

    Article  CAS  Google Scholar 

  70. Seiler N. Potential roles of polyamine interconversion in the mammalian organism in Progress in Polyamine Research. Pegg AE, Zappia V, eds. Plenum Press, New York NY, 1988, pp. 127–145.

    Chapter  Google Scholar 

  71. Seiler N, Dezeure F. Polyamine transport in mammalian cells. Int J Biochem 1990;22:211–218.

    Article  PubMed  CAS  Google Scholar 

  72. Igarashi K, Kashiwagi K. Polyamine transport in bacteria and yeast. Biochem J 1999;344 Pt 3:633–642.

    Article  PubMed  CAS  Google Scholar 

  73. Casero RA Jr, Woster PM. Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem 2001;44:1–26.

    Article  PubMed  CAS  Google Scholar 

  74. Byers TL, Pegg AE. Regulation of polyamine transport in Chinese hamster ovary cells. J Cell Physiol 1990;143:460–467.

    Article  PubMed  CAS  Google Scholar 

  75. Heston WD, Kadmon D, Covey DF, Fair WR. Differential effect of α-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis (guanylhydrazone) by a rat prostate-derived tumor. Cancer Res 1984;44:1034–1040.

    PubMed  CAS  Google Scholar 

  76. Heston WD, Kadmon D, Lazan DW, Fair WR. Copenhagen rat prostatic tumor ornithine decarboxylase activity (ODC) and the effect of the ODC inhibitor α-difluoromethylornithine. Prostate 1982;3:383–389.

    Article  PubMed  CAS  Google Scholar 

  77. Kadmon D, Heston WD, Lazan DW, Fair WR. Difluoromethylornithine enhancement of putrescine uptake into the prostate: concise communication. J Nucl Med 1982;23:998–1002.

    PubMed  CAS  Google Scholar 

  78. Chaney JE, Kobayashi K, Goto R, Digenis GA. Tumor selective enhancement of radioactivity uptake in mice treated with α-difluoromethylornithine prior to administration of 14C-putrescine. Life Sci 1983;32:1237–1241.

    Article  PubMed  CAS  Google Scholar 

  79. Alhonen-Hongisto L, Seppanen P, Janne J. Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone). Biochem J 1980;192:941–945.

    PubMed  CAS  Google Scholar 

  80. Sarhan S, Knodgen B, Seiler N. The gastrointestinal tract as polyamine source for tumor growth. Anticancer Res 1989;9:215–223.

    PubMed  CAS  Google Scholar 

  81. Quemener V, Moulinoux JP, Havouis R, Seiler N. Polyamine deprivation enhances antitumoral efficacy of chemotherapy. Anticancer Res 1992;12:1447–1453.

    PubMed  CAS  Google Scholar 

  82. Persson L, Holm I, Ask A, Heby O. Curative effect of DL-2-difluoromethylornithine on mice bearing mutant L1210 leukemia cells deficient in polyamine uptake. Cancer Res 1988;48:4807–4811.

    PubMed  CAS  Google Scholar 

  83. Hessels J, Kingma AW, Muskiet FA, et al. Growth inhibition of two solid tumors in mice, caused by polyamine depletion, is not attended by alterations in cell-cycle phase distribution. Int J Cancer 1991;48:697–703.

    Article  PubMed  CAS  Google Scholar 

  84. Leveque J, Burtin F, Catros-Quemener V, et al. The gastrointestinal polyamine source depletion enhances DFMO induced polyamine depletion in MCF-7 human breast cancer cells in vivo. Anticancer Res 1998;18:2663–2668.

    PubMed  CAS  Google Scholar 

  85. Kingsnorth AN, Wallace HM, Bundred NJ, Dixon JM. Polyamines in breast cancer. Br J Surg 1984;71:352–356.

    Article  PubMed  CAS  Google Scholar 

  86. Leveque J, Foucher F, Bansard JY, et al. Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat 2000;60:99–105.

    Article  PubMed  CAS  Google Scholar 

  87. Hixson LJ, Emerson SS, Shassetz LR, Gerner EW. Sources of variability in estimating ornithine decarboxylase activity and polyamine contents in human colorectal mucosa. Cancer Epidemiol Biomark Prey 1994;3:317–323.

    CAS  Google Scholar 

  88. Meyskens FL Jr, Emerson SS, Pelot D, et al. Dose de-escalation chemoprevention trial of α-difluoromethylornithine in patients with colon polyps. J Natl Cancer Inst 1994;86:1122–1130.

    Article  PubMed  Google Scholar 

  89. Meyskens FL Jr, Gerner EW, Emerson S, et al. Effect of α-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst 1998;90:1212–1218.

    Article  PubMed  CAS  Google Scholar 

  90. Garewal HS, Sampliner R, Gerner E, et al. Ornithine decarboxylase activity in Barrett’s esophagus: a potential marker for dysplasia. Gastroenterology 1988;94:819–821.

    PubMed  CAS  Google Scholar 

  91. Mohan RR, Challa A, Gupta S, et al. Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin Cancer Res 1999;5:143–147.

    PubMed  CAS  Google Scholar 

  92. Alberts DS, Dorr RT, Einspahr JG, et al. Chemoprevention of human actinic keratoses by topical 2-(difluoromethyl)-dlornithine. Cancer Epidemiol Biomark Prey 2000;9:1281–1286.

    CAS  Google Scholar 

  93. Mitchell MF, Tortolero-Luna G, Lee JJ, et al. Phase I dose de-escalation trial of α-difluoromethylornithine in patients with grade 3 cervical intraepithelial neoplasia. Clin Cancer Res 1998;4:303–310.

    PubMed  CAS  Google Scholar 

  94. Weeks CE, Herrmann AL, Nelson FR, Slaga TJ. α-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits tumor promoter-induced polyamine accumulation and carcinogenesis in mouse skin. Proc Natl Acad Sci USA 1982;79:6028–6032.

    Article  PubMed  CAS  Google Scholar 

  95. O’Brien TG, Megosh LC, Gilliard G, Soler AP. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 1997;57:2630–2637.

    PubMed  Google Scholar 

  96. Kingsnorth AN, King WW, Diekema KA, et al. Inhibition of ornithine decarboxylase with 2-difluoromethylornithine: reduced incidence of dimethylhydrazine-induced colon tumors in mice. Cancer Res 1983;43:2545–2549.

    PubMed  CAS  Google Scholar 

  97. Tempero MA, Nishioka K, Knott K, Zetterman RK. Chemoprevention of mouse colon tumors with difluoromethylornithine during and after carcinogen treatment. Cancer Res 1989;49:5793–5797.

    PubMed  CAS  Google Scholar 

  98. Peralta Soler A, Gilliard G, Megosh L, et al. Polyamines regulate expression of the neoplastic phenotype in mouse skin. Cancer Res 1998;58:1654–1659.

    PubMed  CAS  Google Scholar 

  99. Feith DJ, Shantz LM, Pegg AE. Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 2001;61: 6073–6081.

    PubMed  CAS  Google Scholar 

  100. Arbeit JM, Riley RR, Huey B, et al. Difluoromethylornithine chemoprevention of epidermal carcinogenesis in K14–HPV16 transgenic mice. Cancer Res 1999;59: 3610–3620.

    PubMed  CAS  Google Scholar 

  101. Gupta S, Ahmad N, Marengo SR, et al. Chemoprevention of prostate carcinogenesis by α-difluoromethylornithine in TRAMP mice. Cancer Res 2000;60:5125–5133.

    PubMed  CAS  Google Scholar 

  102. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159–170.

    Article  PubMed  CAS  Google Scholar 

  103. Rubinfeld B, Albert I, Porfiri E, et al. Binding of GSK3ß to the APC-3-catenin complex and regulation of complex assembly. Science 1996;272:1023–1026.

    Article  PubMed  CAS  Google Scholar 

  104. Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992;359:235–237.

    Article  PubMed  CAS  Google Scholar 

  105. Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:229–233.

    Article  PubMed  CAS  Google Scholar 

  106. Pena A, Reddy CD, Wu S, et al. Regulation of human ornithine decarboxylase expression by the c-Myc-Max protein complex. J Biol Chem 1993;268:27,277–27,285.

    CAS  Google Scholar 

  107. Fultz KE, Gerner EW. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol Carcinog 2002;34:10–18.

    Article  PubMed  CAS  Google Scholar 

  108. Hurta RA, Huang A, Wright JA. Basic fibroblast growth factor selectively regulates ornithine decarboxylase gene expression in malignant H-ras transformed cells. J Cell Biochem 1996;60:572–583.

    Article  PubMed  CAS  Google Scholar 

  109. Shantz LM, Pegg AE. Ornithine decarboxylase induction in transformation by H-Ras and RhoA. Cancer Res 1998;58:2748–2753.

    PubMed  CAS  Google Scholar 

  110. Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 1999;19:1101–1115.

    PubMed  CAS  Google Scholar 

  111. Reddig PJ, Kim YJ, Verma AK. Localization of the 12-O-tetradecanoylphorbol-13-acetate response of the human ornithine decarboxylase promoter to the TATA box. Mol Carcinog 1996;17:92–104.

    Article  PubMed  CAS  Google Scholar 

  112. Berger FG, Szymanski P, Read E, Watson G. Androgenregulated ornithine decarboxylase mRNAs of mouse kidney. J Biol Chem 1984;259:7941–7946.

    PubMed  CAS  Google Scholar 

  113. Abrahamsen MS, Li RS, Dietrich-Goetz W, Morris DR. Multiple DNA elements responsible for transcriptional regulation of the ornithine decarboxylase gene by protein kinase A. J Biol Chem 1992;267:18,866–18,873.

    CAS  Google Scholar 

  114. Kumar AP, Mar PK, Zhao B, et al. Regulation of rat ornithine decarboxylase promoter activity by binding of transcription factor Spl. J Biol Chem 1995;270:4341–4348.

    Article  PubMed  CAS  Google Scholar 

  115. Wrighton C, Busslinger M. Direct transcriptional stimulation of the ornithine decarboxylase gene by Fos in PC 12 cells but not in fibroblasts. Mol Cell Biol 1993;13:4657–4669.

    PubMed  CAS  Google Scholar 

  116. Law GL, Itoh H, Law DJ, et al. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J Biol Chem 1998;273:19,955–19,964.

    Article  CAS  Google Scholar 

  117. Moshier JA, Skunca M, Wu W, et al. Regulation of ornithine decarboxylase gene expression by the Wilms’ tumor suppressor WT 1. Nucleic Acids Res 1996;24:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  118. Li RS, Law GL, Seifert RA, et al. Ornithine decarboxylase is a transcriptional target of tumor suppressor WT 1. Exp Cell Res 1999;247:257–266.

    Article  PubMed  CAS  Google Scholar 

  119. Pegg AE, Shantz LM, Coleman CS. Ornithine decarboxylase as a target for chemoprevention. J Cell Biochem Suppl 1995;22:132–138.

    Article  PubMed  CAS  Google Scholar 

  120. Takigawa M, Verma AK, Simsiman RC, Boutwell RK. Polyamine biosynthesis and skin tumor promotion: inhibition of 12-O-tetradecanoylphorbol-13-acetate-promoted mouse skin tumor formation by the irreversible inhibitor of ornithine decarboxylase α-difluoromethylornithine. Biochem Biophys Res Commun 1982;105:969–976.

    Article  PubMed  CAS  Google Scholar 

  121. Slaga TJ, Fischer SM, Weeks CE, et al. Specificity and mechanism(s) of promoter inhibitors in multistage promotion. Carcinog Compr Sury 1982;7:19–34.

    CAS  Google Scholar 

  122. Verma AK, Erickson D, Dolnick BJ. Increased mouse epidermal ornithine decarboxylase activity by the tumour promoter 12-O-tetradecanoylphorbol 13-acetate involves increased amounts of both enzyme protein and messenger RNA. Biochem J 1986;237:297–300.

    PubMed  CAS  Google Scholar 

  123. Gilmour SK, Verma AK, Madara T, O’Brien TG. Regulation of ornithine decarboxylase gene expression in mouse epidermis and epidermal tumors during two-stage tumorigenesis. Cancer Res 1987;47:1221–1225.

    PubMed  CAS  Google Scholar 

  124. Koza RA, Megosh LC, Palmieri M, O’Brien TG. Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis 1991;12:1619–1665.

    Article  PubMed  CAS  Google Scholar 

  125. O’Brien TG, Simsiman RC, Boutwell RK. Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res 1975;35:1662–1670.

    PubMed  Google Scholar 

  126. Megosh L, Gilmour SK, Rosson D, et al. Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res 1995;55:4205–4209.

    PubMed  CAS  Google Scholar 

  127. Thompson HJ, Herbst EJ, Meeker LD, et al. Effect of D,L-α-difluoromethylornithine on murine mammary carcinogenesis. Carcinogenesis 1984;5:1649–1651.

    Article  PubMed  CAS  Google Scholar 

  128. Thompson HJ, Ronan AM, Ritacco KA, Meeker LD. Effect of tamoxifen and D,L-2-difluoromethylornithine on the growth, ornithine decarboxylase activity and polyamine content of mammary carcinomas induced by 1-methyl- 1-nitrosourea. Carcinogenesis 1986;7:837–840.

    Article  PubMed  CAS  Google Scholar 

  129. Manni A, Wright C, Pontari M. Polyamines and estrogen control of growth of the NMU-induced rat mammary tumor. Breast Cancer Res Treat 1985;5:129–136.

    Article  PubMed  CAS  Google Scholar 

  130. Thompson HJ, Meeker LD, Herbst EJ, et al. Effect of concentration of D,L-2-difluoromethylornithine on murine mammary carcinogenesis. Cancer Res 1985;45:1170–1173.

    PubMed  CAS  Google Scholar 

  131. Green JE, Shibata MA, Shibata E, et al. 2-difluoromethylornithine and dehydroepiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(1)/SV40 T/t-antigen transgenic mice. Cancer Res 2001;61:7449–7455.

    PubMed  CAS  Google Scholar 

  132. Heby O, Andersson G, Gray JW. Interference with S and G2 phase progression by polyamine synthesis inhibitors. Exp Cell Res 1978;111:461–464.

    Article  PubMed  CAS  Google Scholar 

  133. Seidenfeld J, Block AL, Komar KA, Naujokas MF. Altered cell cycle phase distributions in cultured human carcinoma cells partially depleted of polyamines by treatment with difluoromethylornithine. Cancer Res 1986;46:47–53.

    PubMed  CAS  Google Scholar 

  134. Muller R, Mumberg D, Lucibello FC. Signals and genes in the control of cell-cycle progression. Biochim Biophys Acta 1993;1155:151–179.

    PubMed  CAS  Google Scholar 

  135. Koza RA, Herbst EJ. Deficiencies in DNA replication and cell-cycle progression in polyamine-depleted HeLa cells. Biochem J 1992;281:87–93.

    PubMed  CAS  Google Scholar 

  136. Ray RM, Zimmerman BJ, McCormack SA, et al. Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf l/Cip 1), p27(Kip 1), and p53 in IEC-6 cells. Am J Physiol 1999;276:C684–C691.

    PubMed  CAS  Google Scholar 

  137. Celano P, Baylin SB, Giardiello FM, et al. Effect of polyamine depletion on c-myc expression in human colon carcinoma cells. J Biol Chem 1988;263:5491–5494.

    PubMed  CAS  Google Scholar 

  138. Gilmour SK, Birchler M, Smith MK, et al. Effect of elevated levels of ornithine decarboxylase on cell cycle progression in skin. Cell Growth Differ 1999;10:739–748.

    PubMed  CAS  Google Scholar 

  139. Shore LJ, Soler AP, Gilmour SK. Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem 1997;272:12536–12543.

    Article  PubMed  CAS  Google Scholar 

  140. Smith MK, Goral MA, Wright JH, et al. Ornithine decarboxylase overexpression leads to increased epithelial tumor invasiveness. Cancer Res 1997;57:2104–2108.

    PubMed  CAS  Google Scholar 

  141. Wallon UM, Shassetz LR, Cress AE, et al. Polyaminedependent expression of the matrix metalloproteinase matrilysin in a human colon cancer-derived cell line. Mol Carcinog 1994;11:138–144.

    Article  PubMed  CAS  Google Scholar 

  142. Kubota S, Kiyosawa H, Nomura Y, et al. Ornithine decarboxylase overexpression in mouse 10T1/2 fibroblasts: cellular transformation and invasion. J Natl Cancer Inst 1997;89:567–571.

    Article  PubMed  CAS  Google Scholar 

  143. Lawson KR, Ignatenko NA, Piazza GA, et al. Influence of K-ras activation on the survival responses of Caco-2 cells to the chemopreventive agents sulindac and difluoromethylornithine. Cancer Epidemiol Biomark Prey 2000;9: 1155–1162.

    CAS  Google Scholar 

  144. Smith MK, Trempus CS, Gilmour SK. Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin. Carcinogenesis 1998;19:1409–1415.

    Article  PubMed  CAS  Google Scholar 

  145. Takahashi Y, Mai M, Nishioka K. α-difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int J Cancer 2000:85:243–247.

    PubMed  CAS  Google Scholar 

  146. Jasnis MA, Klein S, Monte M, et al. Polyamines prevent DFMO-mediated inhibition of angiogenesis. Cancer Lett 1994;79:39–43.

    Article  PubMed  CAS  Google Scholar 

  147. Kubota S, Ohsawa N, Takaku F. Effects of DL-α-difluoromethylornithine on the growth and metastasis of B16 melanoma in vivo. Int J Cancer 1987;39:244–247.

    Article  PubMed  CAS  Google Scholar 

  148. Sunkara PS, Rosenberger AL. Antimetastatic activity of DL-α-difluoromethylornithine, an inhibitor of polyamine biosynthesis, in mice. Cancer Res 1987;47:933–935.

    PubMed  CAS  Google Scholar 

  149. Fong LY, Nguyen VT, Pegg AE, Magee PN. α-Difluoromethylornithine induction of apoptosis: a mechanism which reverses pre-established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc-deficient rats. Cancer Epidemiol Biomark Prey 2001;10:191–199.

    CAS  Google Scholar 

  150. Takigawa M, Nishida Y, Suzuki F, et al. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 1990;171:1264–1271.

    Article  PubMed  CAS  Google Scholar 

  151. Sjoerdsma A, Schechter PJ. Chemotherapeutic implications of polyamine biosynthesis inhibition. Clin Pharmacol Ther 1984; 5:287–300.

    Article  Google Scholar 

  152. Schechter PJ, Barlow JLR, Sjoerdsma A. Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of eflornithine (DFMO) in cancer and protozoan diseases, in Inhibition of Polyamine Metabolism. Biological Significance and Basis for New Therapies. McCann PP, Pegg AE, Sjoerdsma A, eds. Academic Press, Inc., Orlando; 1987 pp. 345–364.

    Google Scholar 

  153. Abeloff MD, Slavik M, Luk GD, et al. Phase I trial and pharmacokinetic studies of α-difluoromethylornithine-an inhibitor of polyamine biosynthesis. J Clin Oncol 1984;2:124–130.

    PubMed  CAS  Google Scholar 

  154. Maddox AM, Keating MJ, McCredie KE, et al. Phase I evaluation of intravenous difluoromethylornithine-a polyamine inhibitor. Investig New Drugs 1985;3:287–922.

    Article  CAS  Google Scholar 

  155. Croghan MK, Aickin MG, Meyskens FL. Dose-related α-difluoromethylornithine ototoxicity. Am J Clin Oncol 1991;14:331–335.

    Article  PubMed  CAS  Google Scholar 

  156. Marton LJ, Pegg AE. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 1995;35:55–91.

    Article  PubMed  CAS  Google Scholar 

  157. Luk GD, Goodwin G, Marton LJ, Baylin SB. Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc Natl Acad Sci USA 1981;78:2355–2358.

    Article  PubMed  CAS  Google Scholar 

  158. Luk GD, Abeloff MD, McCann PP, et al. Long-term maintenance therapy of established human small cell variant lung carcinoma implants in athymic mice with a cyclic regimen of difluoromethylornithine. Cancer Res 1986;46:1849–1853.

    PubMed  CAS  Google Scholar 

  159. Abeloff MD, Rosen ST, Luk GD, et al. Phase II trials of α-difluoromethylornithine, an inhibitor of polyamine synthesis, in advanced small cell lung cancer and colon cancer. Cancer Treat Rep 1986;70:843–845.

    PubMed  CAS  Google Scholar 

  160. Marton LJ, Levin VA, Hervatin SJ, et al. Potentiation of the antitumor therapeutic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea by α-difluoromethylornithine, an ornithine decarboxylase inhibitor. Cancer Res 1981;41:4426–4431.

    PubMed  CAS  Google Scholar 

  161. Porter CW, Janne J. Modulation of antineoplastic drug action by inhibitors of polyamine biosynthesis, in Inhibition of Polyamine Metabolism. Biological Significance and Basis for New Therapies. Academic Press, Orlando; 1987, pp 203–248.

    Google Scholar 

  162. Bacchi CJ, Garofalo J, Mockenhaupt D, et al. In vivo effects of α-DL-difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei. Mol Biochem Parasitol 1983;7:209–225.

    Article  PubMed  CAS  Google Scholar 

  163. Gilman TM, Paulson YJ, Boylen CT, et al. Eflornithine treatment of Pneumocystis carinii pneumonia in AIDS. JAMA 1986;256:2197–2198.

    Article  PubMed  CAS  Google Scholar 

  164. Hixson LJ, Garewal HS, McGee DL, et al. Ornithine decarboxylase and polyamines in colorectal neoplasia and mucosa. Cancer Epidemiol Biomark Prey 1993;2:369–374.

    CAS  Google Scholar 

  165. Meyskens FL Jr, Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 1999;5:945–951.

    PubMed  CAS  Google Scholar 

  166. Love RR, Jacoby R, Newton MA, et al. A randomized, placebo-controlled trial of low-dose α-difluoromethylornithine in individuals at risk for colorectal cancer. Cancer Epidemiol Biomark Prey 1998;7:989–992.

    CAS  Google Scholar 

  167. Baron JA, Beach M, Mandel JS, et al. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 1999;340:101–107.

    Article  PubMed  CAS  Google Scholar 

  168. Alberts DS, Martinez ME, Roe DJ, et al. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians’ Network. N Engl J Med 2000;342:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  169. Schatzkin A, Lanza E, Corle D, et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med 2000;342:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  170. Gerner EW, Garewal HS, Emerson SS, Sampliner RE. Gastrointestinal tissue polyamine contents of patients with Barrett’s esophagus treated with α-difluoromethylornithine. Cancer Epidemiol Biomark Prey 1994;3:325–330.

    CAS  Google Scholar 

  171. Simoneau AR, Gerner EW, Phung M, et al. α-Difluoromethylornithine and polyamine levels in the human prostate: results of a Phase IIa trial. J Natl Cancer Inst 2001;93:57–59.

    Article  PubMed  CAS  Google Scholar 

  172. Bostick RM, Fosdick L, Wood JR, et al. Calcium and colorectal epithelial cell proliferation in sporadic adenoma patients: a randomized, double-blinded, placebo-controlled clinical trial. J Natl Cancer Inst 1995;87:1307–1315.

    Article  PubMed  CAS  Google Scholar 

  173. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183–1188.

    PubMed  CAS  Google Scholar 

  174. Dannenberg AJ, Zakim D. Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol 1999;26:499–504.

    PubMed  CAS  Google Scholar 

  175. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87:803–809.

    Article  PubMed  CAS  Google Scholar 

  176. Chulada PC, Thompson MB, Mahler JF, et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 2000;60:4705–4708.

    PubMed  CAS  Google Scholar 

  177. Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998;58:409–412.

    PubMed  CAS  Google Scholar 

  178. Reddy BS, Hirose Y, Lubet R, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000;60:293–297.

    PubMed  CAS  Google Scholar 

  179. Jacoby RF, Seibert K, Cole CE, et al. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 2000;60:5040–5044.

    PubMed  CAS  Google Scholar 

  180. Oshima M, Murai N, Kargman S, et al. Chemoprevention of intestinal polyposis in the ApcΔ716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001;61:1733–1740.

    PubMed  CAS  Google Scholar 

  181. Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol 1983;24:83–87.

    Article  PubMed  CAS  Google Scholar 

  182. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000;342:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  183. Wargovich MJ, Jimenez A, McKee K, et al. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis 2000;21:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  184. Jacoby RF, Cole CE, Tutsch K, et al. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res 2000;60:1864–1870.

    PubMed  CAS  Google Scholar 

  185. Li H, Schut HA, Conran P, et al. Prevention by aspirin and its combination with α-difluoromethylornithine of azoxymethane-induced tumors, aberrant crypt foci and prostaglandin E2 levels in rat colon. Carcinogenesis 1999;20:425–430.

    Article  PubMed  CAS  Google Scholar 

  186. Nigro ND, Bull AW, Boyd ME. Inhibition of intestinal carcinogenesis in rats: effect of difluoromethylornithine with piroxicam or fish oil. J Natl Cancer Inst 1986.77:1309–1313.

    PubMed  CAS  Google Scholar 

  187. Reddy BS, Nayini J, Tokumo K, et al. Chemoprevention of colon carcinogenesis by concurrent administration of piroxicam, a nonsteroidal antiinflammatory drug with D,L-α-difluoromethylornithine, an ornithine decarboxylase inhibitor, in diet. Cancer Res 1990;50:2562–2568.

    PubMed  CAS  Google Scholar 

  188. Rao CV, Tokumo K, Rigotty J, et al. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, α-difluoromethylornithine, 16 α-fluoro-5-androsten-17-one, and ellagic acid individually and in combination. Cancer Res 1991;51:4528–4534.

    PubMed  CAS  Google Scholar 

  189. Calaluce R, Earnest DL, Heddens D, et al. Effects of piroxicam on prostaglandin E2 levels in rectal mucosa of adenomatous polyp patients: a randomized Phase IIb trial. Cancer Epidemiol Biomark Prey 2000;9:1287–1292.

    CAS  Google Scholar 

  190. Saydjari R, Townsend CM Jr, Barranco SC, Thompson JC. Differential sensitivity of pancreatic and colon cancer to cyclosporine and α-difluoromethylornithine in vivo. Investig New Drugs 1988;6:265–272.

    Article  CAS  Google Scholar 

  191. Saydjari R, Townsend CM Jr, Barranco SC, Thompson JC. Effects of cyclosporine and α-difluoromethylornithine on the growth of mouse colon cancer in vitro. Life Sci 1987;40:359–366.

    Article  PubMed  CAS  Google Scholar 

  192. McGarrity TJ, Peiffer LP. Selenium and difluoromethylornithine additively inhibit DMH-induced distal colon tumor formation in rats fed a fiber-free diet. Carcinogenesis 1993;14:2335–2340.

    Article  PubMed  CAS  Google Scholar 

  193. Carbone PP, Douglas JA, Larson PO, et al. Phase I chemoprevention study of piroxicam and α-difluoromethylornithine. Cancer Epidemiol Biomark Prey 1998;7:907–912.

    CAS  Google Scholar 

  194. Carbone PP, Pirsch JD, Thomas JP, et al. Phase I chemoprevention study of difluoromethylornithine in subjects with organ transplants. Cancer Epidemiol Biomark Prey 2001;10:657–661.

    CAS  Google Scholar 

  195. Love RR, Carbone PP, Verma AK, et al. Randomized Phase I chemoprevention dose-seeking study of α-difluoromethylornithine. J Natl Cancer Inst 1993;85:732–737.

    Article  PubMed  CAS  Google Scholar 

  196. Pendyala L, Creaven PJ, Porter CW. Urinary and erythrocyte polyamines during the evaluation of oral α-difluoromethylornithine in a Phase I chemoprevention clinical trial. Cancer Epidemiol Biomark Prey 1993;2:235–241.

    CAS  Google Scholar 

  197. Weeks RS, Vanderwerf SM, Carlson CL, et al. Novel lysinespermine conjugate inhibits polyamine transport and inhibits cell growth when given with DFMO. Exp Cell Res 2000;261:293–302.

    Article  PubMed  CAS  Google Scholar 

  198. Burns MR, Carlson CL, Vanderwerf SM, et al. Amino acid/spermine conjugates: polyamine amides as potent spermidine uptake inhibitors. J Med Chem 2001;44:3632–3644.

    Article  PubMed  CAS  Google Scholar 

  199. Devens BH, Weeks RS, Bums MR, et al. Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis 2000;3:275–279.

    Article  PubMed  CAS  Google Scholar 

  200. Belting M, Borsig L, Fuster MM, et al. Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 2002;99:371–376.

    Article  PubMed  CAS  Google Scholar 

  201. Regenass U, Caravatti G, Mett H, et al. New S-adenosylmethionine decarboxylase inhibitors with potent antitumor activity. Cancer Res 1992;52:4712–4718.

    PubMed  CAS  Google Scholar 

  202. Kramer D, Mett H, Evans A, et al. Stable amplification of the S-adenosylmethionine decarboxylase gene in Chinese hamster ovary cells. J Biol Chem 1995;270:2124–2132.

    Article  PubMed  CAS  Google Scholar 

  203. Regenass U, Mett H, Stanek J, et al. CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity. Cancer Res 1994;54:3210–3217.

    PubMed  CAS  Google Scholar 

  204. Siu LL, Rowinsky EK, Hammond LA, et al. A Phase I and pharmacokinetic study of SAM486A, a novel polyamine biosynthesis inhibitor, administered on a daily-times five every three-week schedule in patients with advanced solid malignancies. Clinical Cancer Res 2002;8:2157–2166.

    CAS  Google Scholar 

  205. Manni A, Badger B, Wechter R, et al. Biochemical and growth-modulatory effects of the new S-adenosylmethionine decarboxylase inhibitor CGP 48664 in malignant and immortalized normal human breast epithelial cells in culture. Int J Cancer 1995;62:485–491.

    Article  PubMed  CAS  Google Scholar 

  206. Dorhout B, Odink MF, de Hoog E, et al. 4-amidinoindan-1-one 2’-amidinohydrazone (CGP 48664A) exerts in vitro growth inhibitory effects that are not only related to S-adenosylmethionine decarboxylase (SAMdc) inhibition. Biochim Biophys Acta 1997;1335:144–152.

    Article  PubMed  CAS  Google Scholar 

  207. Pegg AE, Erwin BG. Induction of spermidine/spermine N1-acetyltransferase in rat tissues by polyamines. Biochem J 1985;231:285–289.

    PubMed  CAS  Google Scholar 

  208. Porter CW, Bergeron RJ. Enzyme regulation as an approach to interference with polyamine biosynthesis-an alternative to enzyme inhibition. Adv Enzyme Regul 1988;27:57–79.

    Article  PubMed  CAS  Google Scholar 

  209. Porter CW, Sufrin JR. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res 1986;6:525–542.

    PubMed  CAS  Google Scholar 

  210. Bergeron RJ, Feng Y, Weimar WR, et al. A comparison of structure-activity relationships between spermidine and spermine analogue antineoplastics. J Med Chem 1997;40:1475–1494.

    Article  PubMed  CAS  Google Scholar 

  211. Libby PR, Bergeron RJ, Porter CW. Structure-function correlations of polyamine analog-induced increases in spermidine/spermine acetyltransferase activity. Biochem Pharmacol 1989;38:1435–1442.

    Article  PubMed  CAS  Google Scholar 

  212. Libby PR, Henderson M, Bergeron RJ, Porter CW. Major increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells. Cancer Res 1989;49:6226–6231.

    PubMed  CAS  Google Scholar 

  213. Casero RA Jr, Celano P, Ervin SJ, et al. Differential induction of spermidine/sperm ine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res 1989.49:3829–3833.

    PubMed  CAS  Google Scholar 

  214. Fogel-Petrovic M, Shappell NW, Bergeron RJ, Porter CW. Polyamine and polyamine analog regulation of spermidine/spermine N1-acetyltransferase in MALME-3M human melanoma cells. J Biol Chem 1993;268:19,118–19,125.

    CAS  Google Scholar 

  215. Fogel-Petrovic M, Kramer DL, Vujcic S, et al. Structural basis for differential induction of spermidine/spermine N1-acetyltransferase activity by novel spermine analogs. Mol Pharmacol 1997;52:69–74.

    PubMed  CAS  Google Scholar 

  216. Shappell NW, Fogel-Petrovic MF, Porter CW. Regulation of spermidine/spermine N1-acetyltransferase by intracellular polyamine pools. Evidence for a functional role in polyamine homeostasis. FEBS Lett 1993;321:179–183.

    Article  PubMed  CAS  Google Scholar 

  217. Porter CW, Bernacki RJ, Miller J, Bergeron RJ. Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Cancer Res 1993;53:581–58

    PubMed  CAS  Google Scholar 

  218. Bernacki RJ, Bergeron RJ, Porter CW. Antitumor activity of N,N1-bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts. Cancer Res 1992;52:2424–2430.

    PubMed  CAS  Google Scholar 

  219. Bernacki RJ, Oberman EJ, Seweryniak KE, et al. Preclinical antitumor efficacy of the polyamine analogue N1,N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1995;1:847–857.

    PubMed  CAS  Google Scholar 

  220. Streiff RR, Bender JF. Phase 1 study of N1,N11-diethylnorspermine (DENSPM) administered tid for 6 days in patients with advanced malignancies. Invest New Drugs 2001;19:29–39.

    Article  PubMed  CAS  Google Scholar 

  221. Creaven PJ, Perez R, Pendyala L, et al. Unusual central nervous system toxicity in a Phase I study of N 1 ,N 11 diethylnorspermine in patients with advanced malignancy. Invest New Drugs 1997;15:227–234.

    Article  PubMed  CAS  Google Scholar 

  222. Carnesecchi S, Schneider Y, Ceraline J, et al. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J Pharmacol Exp Ther 2001;298:197–200.

    PubMed  CAS  Google Scholar 

  223. Babbar N, Ignatenko NA, Casero RA Jr, Gerner EW. Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J Biol Chem 2003;278:47,762–47,775.

    Article  CAS  Google Scholar 

  224. Dai H, Kramer DL, Yang C, et al. The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res 1999;59:4944–4954.

    PubMed  CAS  Google Scholar 

  225. Erwin BG, Pegg AE. Uptake of α-difluoromethylornithine by mouse fibroblasts. Biochem Pharmacol 1982;31:2820–2823.

    Article  PubMed  CAS  Google Scholar 

  226. Bartholeyns J, Mamont P, Casara P. Antitumor properties of (2R,5R)-6-heptyne-2,5-diamine, a new potent enzymeactivated irreversible inhibitor of ornithine decarboxylase, in rodents. Cancer Res 1984;44:4972–4977.

    PubMed  CAS  Google Scholar 

  227. Mamont PS, Siat M, Joder-Ohlenbusch AM, et al. Effects of (2R, 5R)-6-heptyne-2,5-diamine, a potent inhibitor of L-ornithine decarboxylase, on rat hepatoma cells cultured in vitro. Eur J Biochem 1984;142:457–463.

    Article  PubMed  CAS  Google Scholar 

  228. Pera PJ, Kramer DL, Sufrin JR, Porter CW. Comparison of the biological effects of four irreversible inhibitors of ornithine decarboxylase in two murine lymphocytic leukemia cell lines. Cancer Res 1986;46:1148–1154.

    PubMed  CAS  Google Scholar 

  229. Boyle JO, Meyskens FL Jr, Garewal HS, Gerner EW. Polyamine contents in rectal and buccal mucosae in humans treated with oral difluoromethylornithine. Cancer Epidemiol Biomark Prey 1992;1:131–135.

    CAS  Google Scholar 

  230. Loprinzi CL, Messing EM, O’Fallon JR, et al. Toxicity evaluation of difluoromethylornithine: doses for chemoprevention trials. Cancer Epidemiol Biomark Prey 1996;5:371–374.

    CAS  Google Scholar 

  231. Klemp J, Brady D, Frank TS, et al. Incidence of BRCA1/2 germ line alterations in a high risk cohort participating in a Phase II chemoprevention trial. Eur J Cancer 2000;36:1209–1214.

    Article  PubMed  CAS  Google Scholar 

  232. Sistonen L, Holtta E, Makela TP, et al. The cellular response to induction of the p21 c-Ha-ras oncoprotein includes stimulation of jun gene expression. EMBO J 1989;8:815–822.

    PubMed  CAS  Google Scholar 

  233. Sheng H, Shao J, Dubois RN. K-ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1 Cancer Res 2001;61:2670–2675.

    PubMed  CAS  Google Scholar 

  234. Hsi LC, Angerman-Stewart J, Eling TE. Introduction of full-length APC modulates cyclooxygenase-2 expression in HT-29 human colorectal carcinoma cells at the translational level. Carcinogenesis 1999;20:2045–2049.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kramer, D.L., Gerner, E.W. (2004). Therapeutic Strategies Targeting Polyamines. In: Kelloff, G.J., Hawk, E.T., Sigman, C.C. (eds) Cancer Chemoprevention. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-767-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-767-3_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-342-8

  • Online ISBN: 978-1-59259-767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics