Skip to main content

Immunosuppression for Cardiac Transplantation

  • Chapter
Cardiac Transplantation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 172 Accesses

Abstract

Cardiac transplantation has long been the gold standard for the treatment of end-stage heart disease (1). After the first human-to-human heart transplant in 1967, the initial flurry of activity surrounding heart transplantation quickly diminished because of poor results, primarily stemming from an inability to control cardiac allograft rejection without subjecting patients to the risk of overwhelming sepsis. However, among the major advances made in the following decade were the use of endomyocardial biopsy techniques for diagnosing and monitoring rejection and the use of rabbit antithymocyte globulin and, subsequently, cyclosporine (CyA). Many immunosuppressive protocols used for cardiac transplantation were based on protocols already in place for clinical renal transplantation. This chapter discusses the current status of immunosuppression in cardiac transplantation and reviews novel modalities of immunosuppression as well as immunosuppressive management of the sensitized cardiac allograft recipient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. John R, Rajasinghe HA, Chen JM, et al. Impact of current management practices on early and late mortality in over 500 consecutive heart transplant recipients. Ann Surg 2000; 232: 302–311.

    Article  PubMed  CAS  Google Scholar 

  2. Kirklin JK, Naftel DC, Levine TB, et al. Cytomegalovirus after heart transplantation. Risk factors for infection and death: a multi-institutional study. The Cardiac Transplant Research Database Group. J Heart Lung Transplant 1994; 13: 394–404.

    PubMed  CAS  Google Scholar 

  3. Swinnen LJ, Costanzo-Nordin MR, Fisher SJ, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med 1990; 323: 1723–1728.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson MR, Mullen GM, O’ Sullivan EJ, et al. Risk/Benefit ration of perioperative OKT3 in cardiac transplantation. Am J Cardiol 1994; 74: 261–266.

    Google Scholar 

  5. O’Connell JB, Bristow MR, Hammond EH, et al. Antimurine antibody to OKT3 in cardiac transplantation: implications for prophylaxis and retreatment of rejection. Transplant Proc 1991; 23: 1157–1159.

    PubMed  Google Scholar 

  6. Taylor DO, Kfoury AG, Pisani B, et al. Anti-lymphocyte-antibody prophylaxis: review of the adult experience in heart transplantation. Transplant Proc 1997; 29: 13S - 15S.

    Article  PubMed  CAS  Google Scholar 

  7. Ma H, Hammond EH, Taylor DO, et al. Transplantation 1996; 62: 205.

    Article  PubMed  CAS  Google Scholar 

  8. Beniaminovitz A, Itescu S, Lietz K, et al. Prevention of the rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Engl J Med 2000; 342: 613–619.

    Article  PubMed  CAS  Google Scholar 

  9. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell 1993; 73: 5–8.

    Article  PubMed  CAS  Google Scholar 

  10. Reed MH, Shapiro ME, Strom TB, et al. Prolongation of primate renal allograft survival by anti-Tac, an anti-human IL-2 receptor monoclonal antibody. Transplantation 1989; 47: 55–59.

    Article  PubMed  CAS  Google Scholar 

  11. Kirkman RL, Shapiro ME, Carpenter CB, et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplantation 1991; 51: 107–113.

    Article  PubMed  CAS  Google Scholar 

  12. Vincenti F. Daclizumab in solid organ transplantation. Biodrugs 1999; 11: 333–341.

    Article  PubMed  CAS  Google Scholar 

  13. Vincenti F, Kirkman R, Light S, et al. Interleukin-2 receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 1998; 338: 161–165

    Article  PubMed  CAS  Google Scholar 

  14. Lietz K, John R, Beniaminovitz A, et al. A randomized study of interleukin-2 receptor blockade in cardiac transplantation: influence of HLA-DR locus incompatibility on treatment efficacy. Transplantation, in press.

    Google Scholar 

  15. Nashan B, Moore R, Amlot P, et al. Randomized trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet 1997; 350: 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  16. Kahan BD, Rajagopalan PR, Hall M, et al. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody. Transplantation 1999; 67: 276–284.

    Article  PubMed  CAS  Google Scholar 

  17. Costanzo MR. New immunosuppressive drugs in heart transplantation. Curr Control Trials Cardiovasc Med 2001; 2: 45–53.

    Article  PubMed  Google Scholar 

  18. Cheung A, Menkis AH. Cyclosporine heart transplantation. Transplant Proc 1998; 30: 1881–1884.

    Article  PubMed  CAS  Google Scholar 

  19. Sarris GE, Moore KA, Schroeder JS, et al. Cardiac Transplantation: the Stanford experience in the cyclosporine era. J Thorac Cardiovasc Surg 1994; 108: 240–251.

    PubMed  CAS  Google Scholar 

  20. Olivari MT, Kubo SH, Braunlin EA, et al. Five-year experience with triple-drug immunosuppressive therapy in cardiac transplantation. Circulation 1990;82; IV 276-IV280.

    Google Scholar 

  21. DeCampli WM, Luikart H, Hunt S, et al. Characteristics of patients surviving more than 10 years after cardiac transplantation. J Thorac Cardiovasc Surg 1995; 109: 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  22. John R, Rajasinghe HA, S Itescu, et al. Factors affecting long term survival (>10 years) after cardiac transplantation in the cyclosporine era. J Am Coll Cardiol 2001; 37: 189–194.

    Article  PubMed  CAS  Google Scholar 

  23. John R, Rajasinghe HA, Chen JM, et al. Long-term outcomes following cardiac transplantation: an experience based on different eras of immunosuppression. Ann Thorac Surg 2001; 72: 440–449.

    Article  PubMed  CAS  Google Scholar 

  24. Valentine H. Neoral use in the cardiac transplant recipient. Transplant Proc 2000; 32: 27S - 44S.

    Article  Google Scholar 

  25. Kahan BD, Welsh M, Schoenburg L, et al. Variable absorption of cyclosporine: a biological risk factor for chronic renal allograft rejection. Transplantation 1996; 62: 599–606.

    Article  PubMed  CAS  Google Scholar 

  26. Eisen HJ, Hobbs RE, Davis SF, et al. Safety, tolerability and efficacy of cyclosporine microemulsion in heart transplant recipients: a randomized, multicenter, double-blind comparison with the oil-based formulation of cyclosporine-results at six months after transplantation. Transplantation 1999; 68: 663–671.

    Article  PubMed  CAS  Google Scholar 

  27. Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immuno Rev 1993; 136: 5.

    Article  CAS  Google Scholar 

  28. Ensley RD, Bristow MR, Olsen SL, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 1993; 13: 571.

    Google Scholar 

  29. Renlund DG, Gopinathan SK, Kfoury AG, et al. Mycophenolate mofetil (MMF) in heart transplantation: rejection prevention and treatment. Clin Transplant 1996; 10: 13.

    Google Scholar 

  30. Kobashigawa JA. Mycophenolate mofetil in cardiac transplantaion. Cuff Opin Cardiol 1998; 13: 117–121.

    CAS  Google Scholar 

  31. Kobashigawa JA, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998; 66: 507–515.

    Article  PubMed  CAS  Google Scholar 

  32. Lietz K, John R, Schuster M, et al. Mycophenolate mofetil educes anti-HLA antibody production and cellular rejection in heart transplant recipients. Transplant Proc 2002; 34: 1828–1829.

    Article  PubMed  CAS  Google Scholar 

  33. Weigel G, Griesmacher A, Karimi A, et al. Effect of mycophenolate mofetil on lymphocyte activation in heart transplant recipients. J Heart Lung Transplant 2002; 21: 1074–1079.

    Article  PubMed  Google Scholar 

  34. Rose ML, Smith J, Dureau G, et al. Mycophenolate mofetil decreases antibody production after cardiac transplantation. J Heart Lung Transplant 2002; 21: 282–285.

    Article  PubMed  Google Scholar 

  35. Kino T, Hataraka H, Miyata S, et al. FK 506, a novel immunosuppression isolated from a streptomyces: immunosuppressive effect of FK 506 in vitro. J Antibiotics 1987; 40: 1256–1260.

    Article  CAS  Google Scholar 

  36. Taylor DO, Barr ML, Meiser BM, et al. Suggested guidelines for the use of tacrolimus in cardiac transplant recipients. J Heart Lung Transplant 2001; 20: 734–738.

    Article  PubMed  CAS  Google Scholar 

  37. Pham SM, Kormos RL, Hattler BG, et al. A prospective trial of tacrolimus (FK 506) in clinical heart transplantation: intermediate-term results. J Thorac Cardiovasc Surg 1996; 111: 764–772.

    Article  PubMed  CAS  Google Scholar 

  38. Reichart BR, Meiser BM, Vigano M, et al. European multi-center tacrolimus (FK 506) heart pilot study: one-year results-European Multicenter Heart Study Group. J Heart Lung Transplant 1998; 17: 775–781.

    PubMed  CAS  Google Scholar 

  39. Taylor DO, Barr ML, Radovancevic B, et al. Randomized, multicenter, comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant 1999; 18: 336–345.

    Article  PubMed  CAS  Google Scholar 

  40. Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999; 18: 143–149.

    Article  PubMed  CAS  Google Scholar 

  41. Mentzer RM Jr., Jahania MS, Lasley RD. Tacrolimus as a rescue immunosuppressant after heart and lung transplantation. The US Multicenter FK506 Study Group. Transplantation 1998; 65: 109–113.

    Google Scholar 

  42. Baran DA, Segura L, Kushwaha S, et al. Tacrolimus monotherapy in adult cardiac transplant receipients: intermediate-term results. J Heart Lung Transplant 2001; 20: 59–70.

    Article  PubMed  CAS  Google Scholar 

  43. Yacoub MA, Khaghani P, Mitchell A. The use of cyclosporine, azathioprine, and antithymocyte globulin with or without low dose steroids for immunosuppression of cardiac transplant patients. Transplant Proc 1985; 17: 221–222.

    Google Scholar 

  44. Brann WM, Bennett LE, Keck BM, et al. Morbidity, functional status, and immunosuppressive therapy after heart transplantation: an analysis of the joint International Society for Heart and Lung Transplantation/United Network for Organ Sharing thoracic registry. J Heart Lung Transplant 1998; 17: 374–382.

    PubMed  CAS  Google Scholar 

  45. Esmore DS, Spratt PM, Keogh AM, et al. Cyclosporine and azathioprine immunosuppression without maintenance steroids: a randomized prospective trial. J Heart Lung Transplant 1989; 8: 194–199.

    CAS  Google Scholar 

  46. Oaks TE, Wannenberg T, Close SA, et al. Steroid-free maintenance immunosuppression after heart transplantion. Ann Thorac Surg 72: 102–106.

    Google Scholar 

  47. Keogh A, Macdonald P, Mundy J, et al. Five-year follow up of a randomized double-drug versus triple drug therapy immunosuppressive trial after heart transplantation. J Heart Lung Transplant 1992; 11: 550–555.

    PubMed  CAS  Google Scholar 

  48. Kobashigawa JA, Stevenson LW, Brownfield ED, et al. Initial success of steroid weaning late after heart transplantation. J Heart Lung Transplant 1992; 11: 428–430.

    PubMed  CAS  Google Scholar 

  49. Taylor DO, Bristow MR, O’Connell JB, et al. Improved long-term survival after heart transplantation predicted by successful early withdrawal from maintenance corticosteroid therapy. J Heart Lung Transplant 1996; 15: 1039–1046.

    PubMed  CAS  Google Scholar 

  50. Olivari MT, Jessen ME, Baldwin BJ, et al. Triple-drug immunosuppression with steroid discontinuation by six months after heart transplantation. J Heart Lung Transplant 1995; 14: 127–135.

    PubMed  CAS  Google Scholar 

  51. Kobashigawa JA, Stevenson LW, Brownfield ED, et al. Corticosteroid weaning late after heart transplantation: relation to HLA-DR mismatching and long-term metabolic effects. J Heart Lung Transplant 1995; 14: 963–967.

    PubMed  CAS  Google Scholar 

  52. Felkel TO, Smith AL, Reichenspurner HC, et al. Survival and incidence of acute rejection in heart transplant recipients undergoing successful withdrawal from steroid therapy. J Heart Lung Transplant 2002; 21: 530–539.

    Article  PubMed  Google Scholar 

  53. Hosenpud JD, Bennett LE, Keck BM, et al. The registry of the International Society for Heart and Lung Transplantation: 17th official report-2000. J Heart Lung Transplant 2000; 19: 909–931.

    Article  PubMed  CAS  Google Scholar 

  54. Gummert JF, Ikonen T, Morris RE. Newer immunosuppressive drugs: a review. J A Soc Nephrol 1999; 10: 1366–1380.

    CAS  Google Scholar 

  55. Poston RS, Billingham M, Hoyt EJ, et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation 1999; 1000: 67–74.

    Article  Google Scholar 

  56. Ikonen TS, Gummert JF, Honda Y, et al. Sirolimus (rapamycin) blood levels correlate with prevention of graft vascular disease (GVD) in monkey aortic transplants as monitored by graft ultrasound. J Heart Lung Transplant 1999; 18: 72.

    Google Scholar 

  57. Groth CG, Backman L, Morales JL, et al. Sirolimus(rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Transplantation 1999; 67: 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  58. Barr ML. Photopheresis in transplantation: future research and directions. Transplant Proc 1998; 30: 2248–2250.

    Article  PubMed  CAS  Google Scholar 

  59. Pepino P, Berger CL, Fuzesi L, et al. Primate cardiac allo-and xenotransplantation: modulation of the immune response to chemotherapy. Eur Sur Res 1989; 21: 105–113.

    Article  CAS  Google Scholar 

  60. Rose E, Barr M, Xu H, et al. Photochemotherapy in human heart transplant recipients at high risk for fatal rejection. J Heart Lung Transplant 1992; 11: 746–750.

    PubMed  CAS  Google Scholar 

  61. Costanzo-Nordin MR, Hubell EA, O’Sullivan EJ, et al. Photopheresis versus corticosteroids in the therapy of heart transplant rejection. Preliminary clinical report. Circulation 1992;86:II242–II250.

    Google Scholar 

  62. Barr ML, Meiser BM, Roberts RF, et al. Photopheresis for the prevention of rejection in cardiac transplantation. Photopheresis Transplantation Study Group. N Engl J Med 1998; 339: 1744–1751.

    Article  PubMed  CAS  Google Scholar 

  63. Barr ML, Baker CJ, Schenkel FA, et al. Prophylactic photopheresis and chronic rejection: effects on graft intimal hyperplasia in cardiac transplantation. Clin Transplant 2000; 14: 162–166.

    Article  PubMed  CAS  Google Scholar 

  64. Smith JD, Danskine Ai, Laylor RM, et al. The effect of panel reactive antibodies and the donor specific crossmatch on graft survival after heart and heart-lung transplantation. Transplant Immunol 1993; 1 (1): 60–65.

    Google Scholar 

  65. Ratkovec RM, Hammond EH, O’Connell JB, et al. Outcome of cardiac transplant recipients with a positive donor-specific crossmatch-preliminary results with plasmapheresis. Transplantation 1992; 54 (4): 651–655.

    Article  PubMed  CAS  Google Scholar 

  66. John R, Lietz K, Burke E, et al. Intravenous immunoglobulin reduces anti-HLA alloreactivity and shortens waiting time to cardiac transplantation in highly sensitized left ventricular assist device recipients. Circulation. 1999;100:II.229-II.235.

    Google Scholar 

  67. Itescu S, Tung T, Burke E, et al. Preformed IgG antibodies against major histocompatibility class II antigens are major risk factors for high-grade cellular rejection in recipients of heart transplantation. Circulation 1998; 98: 786–793.

    Article  PubMed  CAS  Google Scholar 

  68. Liu Z, Colovai AI, Tugulea S, et al. Indirect recognition of donor HLA-DR peptides in organ allograft rejection. J Clin Invest 1996; 98: 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  69. Tugulea S, Ciubotariu R, Colovai Al, et al. New strategies for early diagnosis of heart allograft rejection. Transplantation 1997; 64: 842–847.

    Google Scholar 

  70. Ciubotariu R, Liu Z, Itescu S, et al. Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J Clin Invest 1997; 101: 398–405.

    Article  Google Scholar 

  71. Vanderlugt CJ, Miller SD. Epitope spreading. Cuff Opin Immunol 1996; 8: 831–836.

    Article  CAS  Google Scholar 

  72. John R, Chen JM, Weinberg A, et al. Long-term survival after cardiac retransplantation: a twenty-year single center experience. J Thorac Cardiovasc Surg 1999; 117: 543–555.

    Article  PubMed  CAS  Google Scholar 

  73. Mamula MJ, Janeway CA Jr. Do B cells drive the diversification of immune responses? Immunol Today 1993; 14: 151–154.

    Article  PubMed  CAS  Google Scholar 

  74. Reed EF, Hong B, Ho E, et al. Monitoring of soluble HLA alloantigens and antiHLA antibodies identifies heart allograft recipients at risk of transplant associated coronary artery disease. Transplantation 1996; 61: 556–572.

    Article  Google Scholar 

  75. John R, Lietz K, Naka Y, et al. Immunologic sensitization in recipients of left ventricular assist devices. J Thorac Cardiovasc Surg 2003; 125: 578–591.

    Article  PubMed  Google Scholar 

  76. Glotz D, Haymann J, Sansonetti N, et al. Suppression of HLA-specific alloantibodies by high-dose intravenous immunoglobulins (IVIg). Transplantation 1993; 56: 335–337.

    Google Scholar 

  77. Tyan TB, Li VA, Czer L, et al. Intravenous immunoglobulin suppression of HLA alloantibody in highly sensitized transplant candidates and transplantation with a histoincompatible organ. Transplantation 1994; 57: 553–562.

    PubMed  CAS  Google Scholar 

  78. Peraldi M, Akposso K, Haymann J, et al. Long-term benefit of intravenous immunoglobulins in cadaveric kidney retransplantation. Transplantation 1996; 62: 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  79. McIntyre JA, Higgins N, Britton R, et al. Utilization of intravenous immunoglobulin to ameliorate alloantibodies in a highly sensitized patient with a cardiac assist device awaiting cardiac transplantation. Transplantation 1996; 62: 691–693.

    Article  PubMed  CAS  Google Scholar 

  80. De Marco T, Damon LE, Colombe B, et al. Successful immunomodulation with intravenous immunoglobulin and cyclophosphamide in an alloimmunized heart transplant recipient. J Heart Lung Transplant 1997; 16: 360–365.

    PubMed  Google Scholar 

  81. Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326: 107–116.

    Article  PubMed  CAS  Google Scholar 

  82. Dietrich G, Algiman M, Sultan Y, et al. Origin of anti-idiotypic activity against anti-factor VIII autoantibodies in pools of normal human immunoglobulin G (IVIg). Blood 1992; 79: 2946–2951.

    Google Scholar 

  83. Rossi F, Kazatchkine MD. Antiidiotypes against autoantibodies in pooled normal human polyspecific Ig. J Immunol 1989;143:4104–4l09.

    Google Scholar 

  84. Hurez V, Kaveri SV, Mouhoub A, et al. Anti-CD4 activity of normal human immunoglobulins for therapeutic use (IVIg). Therapeut Immunol 1993; 1: 269–278.

    Google Scholar 

  85. Vassilev T, Gelin C, Kaveri SV, et al. Antibodies to the CD5 molecule in normal human immunoglobulins for therapeutic use (IVIg). Clin Exp Immunol 1993; 92: 369–372.

    Google Scholar 

  86. Blasczyk R, Westhoff U, Grossewilde H. Soluble CD4, CD8, and HLA molecules in commercial immunoglobulin preparations. Lancet 1993; 341: 789–790.

    Article  PubMed  CAS  Google Scholar 

  87. Lam L, Whitsett CF, McNicholl JM, et al. Immunologically active proteins in intravenous immunoglobulin. Lancet 1993; 342: 678.

    Article  PubMed  CAS  Google Scholar 

  88. Itescu S, Burke E, Lietz K, et al. Intravenous pulse administration of cyclophosphamide is an effective and safe treatment for sensitized cardiac allograft recipients. Circulation 2002; 105: 1214–1219.

    Article  PubMed  CAS  Google Scholar 

  89. Toungouz M, Donckier V, Goldman M. Tolerance induction in clinical transplantation: the pending questions. Transplantation 2003; 75: 585–60S.

    Article  Google Scholar 

  90. Taylor DO. Immunosuppressive therapies after heart transplantation: best, better, and beyond. Curr Opin Cardiol 2000; 15: 108–114.

    Article  PubMed  CAS  Google Scholar 

  91. Billingham RE, Brent L, Medawar PB. “Actively acquired tolerance” of foreign cells. Nature 1953; 172: 603–606.

    Article  PubMed  CAS  Google Scholar 

  92. Opelz G, Mickey MR, Sengar DPS, et al. Effect of blood transfusions on subsequent kidney transplants. Transplant Proc 1973; 5: 253.

    PubMed  CAS  Google Scholar 

  93. Salvatierra O, Vincenti F, Amend W, et al. Deliberate donor-specific blood transfusions prior to living related renal transplantation: a new approach. Ann Surg 1982; 192: 543.

    Article  Google Scholar 

  94. Mazariegos GV, Reyes J, Marino IR, et al. Weaning of immunosuppression in liver transplant recipients. Transplantation 1997; 63: 243.

    Article  PubMed  CAS  Google Scholar 

  95. Starzl TE, Demetris AJ, Trucco M, et al. Cell migration and chimerism after whole organ transplantation: the basis of graft acceptance. Hepatology 1993; 17: 1127.

    Article  PubMed  CAS  Google Scholar 

  96. Rifle G, Mousson C. Donor-derived hematopoietic cells in organ transplantation: a major step toward allograft tolerance. Transplantation 2003; 75: 3S - 7S.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

John, R., Deng, M.C., Itescu, S. (2004). Immunosuppression for Cardiac Transplantation. In: Edwards, N.M., Chen, J.M., Mazzeo, P.A. (eds) Cardiac Transplantation. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-758-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-758-1_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9853-0

  • Online ISBN: 978-1-59259-758-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics