Skip to main content

Phosphodiesterase-5 Inhibition

Importance to the Cardiovascular System

  • Chapter
Book cover Heart Disease and Erectile Dysfunction

Abstract

Mammalian cyclic nucleotide phosphodiesterases (PDE) are a super-family of enzymes that currently consists of 11 families named PDE1–PDEll (Fig. 1; ref. 1). Some of these families contain multiple genes so that now there are known to be more than 20 PDE genes, and splicing variation of most of the genes yields even more PDEs with a final total of more than 50 isoforms (2). Some of the PDEs degrade cyclic guanosine monophosphate (cGMP), some degrade cyclic adenine monophosphate (cAMP), and some degrade both cyclic nucleotides. These enzymes vary in tissue distributions and are believed to have different physiological roles. PDE1, PDE2, PDE3, PDE4, and PDE7 are present in cardiac tissue, and PDE1, PDE2, PDE3, PDE4, PDE5, and PDEll are present in vascular smooth muscle.

Model for domain structure, regulatory features, and catalytic specificities of PDE families. cGMP, cyclic GMP; cAMP, cyclic AMP; GAF, cyclic GMP-Anabaena adenylyl cyclase-Escherchia coli FhIA, a domain present in many proteins that binds various ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francis SH, Turko IV, Corbin JD. Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 2001; 65: 1–52.

    Article  PubMed  CAS  Google Scholar 

  2. Conti M, Jin SL. The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic Acid Res Mol Biol 1999; 63: 1–38.

    Article  PubMed  CAS  Google Scholar 

  3. Fink TL, Francis SH, Beasley A, et al. Expression of a fully active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J Biol Chem 1999; 274: 34613–34620.

    Article  PubMed  CAS  Google Scholar 

  4. Aravind L, Ponting CP. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 1997; 22: 458–459.

    Article  PubMed  CAS  Google Scholar 

  5. Francis SH, Colbran JL, McAllister-Lucas LM, et al. Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J Biol Chem 1994; 269: 22477–22480.

    PubMed  CAS  Google Scholar 

  6. Turko IV, Francis SH, Corbin JD. Potential roles of conserved amino acids in the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 1998; 273: 6460–6466.

    Article  PubMed  CAS  Google Scholar 

  7. Xu RX, Hassell AM, Vanderwall D, et al. Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 2000; 288: 1822–1825.

    Article  PubMed  CAS  Google Scholar 

  8. Corbin JD, Francis SH. Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 1999; 274: 13729–13732.

    Article  PubMed  CAS  Google Scholar 

  9. Boolell M, Allen MJ, Ballard SA, et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impotence Res 1996; 8: 47–52.

    CAS  Google Scholar 

  10. Uckert S, Kuthe A, Stief CG, et al. Phosphodiesterase isoenzymes as pharmacological targets in the treatment of male erectile dysfunction. World J Urol 2001; 19: 14–22.

    Article  PubMed  CAS  Google Scholar 

  11. Waldman SA, Murad F. Biochemical mechanisms underlying vascular smooth muscle relaxation: the guanylate cyclase-cyclic GMP system. J Cardiovasc Pharmacol 1988; 12 (Suppl 5): S115 - S118.

    PubMed  CAS  Google Scholar 

  12. Jiang H, Colbran JL, Francis SH, et al. Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 1992; 267: 1015–1019.

    PubMed  CAS  Google Scholar 

  13. Lincoln TM, Cornwell TL. Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 1991; 28: 129–137.

    PubMed  CAS  Google Scholar 

  14. Walter U. Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 1989; 113: 41–88.

    Article  PubMed  CAS  Google Scholar 

  15. Gopal VK, Francis SH, Corbin JD. Allosteric sites of phosphodiesterase-5 (PDE5). A potential role in negative feedback regulation of cGMP signaling in corpus cavernosum. Eur J Biochem 2001; 268: 3304–3312.

    Article  PubMed  CAS  Google Scholar 

  16. Corbin JD, Francis SH. Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 2002; 56: 453–459.

    PubMed  CAS  Google Scholar 

  17. Jackson G, Benjamin N, Jackson N, et al. Effects of sildenafil citrate on human hemodynamics. Am J Cardiol 1999; 83: 13C - 20C.

    Article  PubMed  CAS  Google Scholar 

  18. Lynch JJ Jr., Uprichard AC, Frye JW, et al. Effects of the positive inotropic agents milrinone and pimobendan on the development of lethal ischemic arrhythmias in conscious dogs with recent myocardial infarction. J Cardiovasc Pharmacol 1989; 14: 585–597.

    Article  PubMed  CAS  Google Scholar 

  19. Nawrath H. Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 1977; 267: 72–74.

    Article  PubMed  CAS  Google Scholar 

  20. Hartzell HC, Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Cat+ current in single heart cells. Nature 1986; 323: 273–275.

    Article  PubMed  CAS  Google Scholar 

  21. Wallis RM, Corbin JD, Francis SH, et al. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999; 83: 3–12.

    Article  Google Scholar 

  22. Corbin J, Rannels S, Neal D, et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin 2003; 19: 747–752.

    Article  PubMed  CAS  Google Scholar 

  23. Maurice DH, Haslam RJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 1990; 37: 671–681.

    PubMed  CAS  Google Scholar 

  24. Loughney K, Hill TR, Florio VA, et al. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding cGMP-specific 3’,5’-cyclic nucleotide phosphodiesterase. Gene 1998; 216: 137–147.

    Article  Google Scholar 

  25. Yanaka N, Kotera J, Ohtsuka A, et al. Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur J Biochem 1998; 255: 391–399.

    Article  PubMed  CAS  Google Scholar 

  26. Kotera J, Fujishige K, Akatsuka H, et al. Novel alternative splice variants of cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 1998; 273: 26982–26990.

    Article  PubMed  CAS  Google Scholar 

  27. Kotera J, Fujishige K, Imai Y, et al. Genomic origin and transcriptional regulation of two variants of cGMP-binding cGMP-specific phosphodiesterases. Eur J Biochem 1999; 262: 866–872.

    Article  PubMed  CAS  Google Scholar 

  28. Senzaki H, Smith CJ, Juang GJ, et al. Cardiac phosphodiesterase 5 (cGMPspecific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 2001; 15: 1718–1726.

    Article  PubMed  CAS  Google Scholar 

  29. McAllister-Lucas LM, Sonnenburg WK, Kadlecek A, et al. The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem 1993; 268: 22863–22873.

    PubMed  CAS  Google Scholar 

  30. Liu L, Underwood T, Li H, et al. Specific cGMP binding by the cGMP binding domains of cGMP-binding cGMP-specific phosphodiesterase. Cell Signalling 2001; 13: 1–7.

    Article  Google Scholar 

  31. Charbonneau H, Prusti RK, LeTrong H, et al. Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc Natl Acad Sci USA 1990; 87: 288–292.

    Article  PubMed  CAS  Google Scholar 

  32. Charbonneau H. Structure-function relationships among cyclic nucleotide phosphodiesterases. In: Beavo J, Houslay MD, eds. Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. Wiley, New York, 1990, pp. 267–296.

    Google Scholar 

  33. Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci USA 1999; 96: 7071–7076.

    Article  PubMed  CAS  Google Scholar 

  34. Fujishige K, Kotera J, Michibata H, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999; 274: 18438–18445.

    Article  PubMed  CAS  Google Scholar 

  35. Fawcett L, Baxendale R, Stacey P, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci USA 2000; 97: 3702–3707.

    PubMed  CAS  Google Scholar 

  36. Stroop SD, Beavo JA. Structure and function studies of the cGMP-stimulated phosphodiesterase. J Biol Chem 1991; 266: 23802–23809.

    PubMed  CAS  Google Scholar 

  37. Yamazaki A, Sen I, Bitensky MW, et al. Cyclic GMP-specific, high affinity, non-catalytic binding sites on light-activated phosphodiesterase. J Biol Chem 1980; 255: 11619–11624.

    PubMed  CAS  Google Scholar 

  38. Beavo JA, Hardman JG, Sutherland EW. Stimulation of adenosine 3’,5’monophosphate hydrolysis by guanosine 3’,5’-monophosphate. J Biol Chem 1971; 246: 3841–3846.

    PubMed  CAS  Google Scholar 

  39. Thomas MK, Francis SH, Corbin JD. Substrate-and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J Biol Chem 1990; 265: 14971–14978.

    PubMed  CAS  Google Scholar 

  40. Wyatt TA, Naftilan AJ, Francis SH, et al. ANF elicits phosphorylation of the cGMP phosphodiesterase in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 1998; 274: H448 - H455.

    CAS  Google Scholar 

  41. Murthy KS. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem J 2001; 360: 199–208.

    Article  PubMed  CAS  Google Scholar 

  42. Mullershausen F, Russwurm M, Thompson WJ, et al. Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J Cell Biol 2001; 155: 271–278.

    Article  PubMed  CAS  Google Scholar 

  43. Rybalkin SD, Rybalkina IG, Feil R, et al. Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 2002; 277: 3310–3317.

    Article  PubMed  CAS  Google Scholar 

  44. Corbin JD, Turko IV, Beasley A, et al. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 2000; 267: 2760–2767.

    Article  PubMed  CAS  Google Scholar 

  45. Francis SH, Bessay EP, Kofera J, et al. Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J Biol Chem 2002; 277: 47581–47587.

    Article  PubMed  CAS  Google Scholar 

  46. Thomas MK, Francis SH, Corbin JD. Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 1990; 265: 14964–14970.

    PubMed  CAS  Google Scholar 

  47. Weber G. Energetics of ligand binding to protein. Adv Protein Chem 1975; 29: 1–83.

    Article  PubMed  CAS  Google Scholar 

  48. Francis SH, Thomas MK, Corbin JD. Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In: Beavo, J., Houslay, M. D., eds.Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action. Wiley, New York, 1990, pp. 117–140.

    Google Scholar 

  49. Okada D, Asakawa S. Allosteric activation of cGMP-specific, cGMP-binding phosphodiesterase (PDE5) by cGMP. Biochemistry 2002; 41: 9672–9679.

    Article  PubMed  CAS  Google Scholar 

  50. Corbin J, Blount MA, Weeks JL, et al. [3H] sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 2003; 63: 1364–1372.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Corbin, J.D., Rannels, S.R., Francis, S.H. (2004). Phosphodiesterase-5 Inhibition. In: Kloner, R.A. (eds) Heart Disease and Erectile Dysfunction. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-748-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-748-2_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9849-3

  • Online ISBN: 978-1-59259-748-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics