Skip to main content

Effect of Phosphodiesterase-5 Inhibition on Coronary Blood Flow in Experimental Animals

  • Chapter
Heart Disease and Erectile Dysfunction

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 138 Accesses

Abstract

Nitric oxide (NO) produced by the endothelium diffuses into the vascular smooth muscle, where it activates soluble guanylyl cyclase (sGC); the resultant increase in cyclic guanosine monophosphate (cGMP) causes vasodilation of the resistance arteries through modulation of calcium channels and by decreasing the calcium sensitivity of the vascular smooth muscle contractile proteins (1). The response to guanylyl cyclase activation is terminated by enzymatic hydrolysis of cGMP. Coronary artery vascular smooth muscle cGMP-hydrolyzing activity is mainly the result of phosphodiesterase-1 (PDE1), a calmodulin-dependent PDE, and PDE5, which is a calcium-calmodulin independent cGMP-specific PDE (2). Of the total cGMP hydrolyzing activity, PDE1 constituted 73% in porcine and approximately 80% in bovine normal epicardial coronary artery (3). Vinpocetin, a selective inhibitor PDE1, has been shown to cause concentration-dependent relaxation of isolated arterial vessel segments (4). Similarly, the PDE5 inhibitors zaprinast, E4021, and sildenafil caused relaxation of isolated porcine or canine normal epicardial coronary artery segments in vitro that was associated with an increase of vascular cGMP concentration (5–7). Comparable results have been obtained in vivo where E4021, 10 µg/kg/min iv, a dose that produced no change in aortic pressure, caused epicardial coronary artery dilation in awake pigs with a 2.9 ± 0.5% increase in coronary diameter (6). The findings indicate that selective inhibition of either PDE1 or PDE5 alone can cause an increase in coronary cGMP content with resultant vasodilation and imply that either PDE pathway alone may be insufficient to maintain normal cGMP levels. It should be noted that these findings apply to epicardial coronary arteries, and that measurements of PDE activity and cGMP content in coronary resistance vessels (where blood flow is regulated) are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murad F, Waldman S, Molina C, et al. Regulation and role of guanylate cyclasecyclic GMP in vascular relaxation. Prog Clin Biol 1987; 249: 65–76.

    CAS  Google Scholar 

  2. Polson JB, Strada SJ. Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annu Rev Pharmacol Toxicol 1996; 36: 403–427.

    Article  PubMed  CAS  Google Scholar 

  3. Ahn HS, Crim W, Pitts B, et al. Calcium-calmodulin-stimulated and cyclic-GMPspecific phosphodiesterases. Tissue distribution, drug sensitivity, and regulation of cyclic GMP levels. Adv Sec Messenger Phosphoprotein Res 1992; 25: 271–288.

    CAS  Google Scholar 

  4. Hagiwara M, Endo T, Hidaka H. Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 1984; 33: 453–457.

    Article  PubMed  CAS  Google Scholar 

  5. Merkel LA, Rivera LM, Perrone MH, et al. In vitro and in vivo interactions of nitrovasodilators and zaprinast, a cGMP-selective phosphodiesterase inhibitor. Eur J Pharmacol 1992; 216: 29–35.

    Article  PubMed  CAS  Google Scholar 

  6. Saeki T, Adachi H, Takase Y, et al. A selective type V phosphodiesterase inhibitor, E4021, dilates porcine large coronary artery. J Pharmacol Exp Ther 1995; 272: 825–831.

    PubMed  CAS  Google Scholar 

  7. Wallis RM, Corbin JD, Francis SH, et al. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999; 83: 3C - 12C.

    Article  PubMed  CAS  Google Scholar 

  8. Chambers JW, Voss GS, Snider JR, et al. Direct in vivo effects of nitric oxide on the coronary circulation. Am J Physiol Heart Circ Physiol 1996; 271: H1584 - H1598.

    CAS  Google Scholar 

  9. Duncker DJ, Mizrahi J, Bache RJ. Nitrovasodilators ITF 296 and isosorbide dinitrate exert antiischemic activity by dilating coronary penetrating arteries. J Cardiovasc Pharmacol 1995; 25: 823–832.

    Article  PubMed  CAS  Google Scholar 

  10. Altman JD, Kinn J, Duncker DJ, et al. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res 1994; 28: 119–124.

    Article  PubMed  CAS  Google Scholar 

  11. Chen YJ, Du R, Traverse JH, et al. Effect of sildenafil on coronary activity and reactive hyperemia. Am J Physiol Heart Circ Physiol 2000; 279: H2319 - H2325.

    PubMed  CAS  Google Scholar 

  12. Laughlin MH, Korthuis RJ, Duncker DJ, et al. Control of blood flow to cardiac and skeletal muscle during exercise. In: Rowell LB, Shepherd JT, eds. Regulation and Integration of Multiple Systems: American Physiological Society Handbook Section 12, Oxford Press, New York, 1996, pp. 770–838.

    Google Scholar 

  13. Kanatsuka H, Lamping KG, Eastham CL, et al. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res 1990; 66: 389–396.

    Article  PubMed  CAS  Google Scholar 

  14. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986; 251: H779 - H788.

    PubMed  CAS  Google Scholar 

  15. Komaru T, Lamping KG, Eastham CL, et al. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res 1991; 69: 1146–1151.

    Article  PubMed  CAS  Google Scholar 

  16. Kuo L, Chilian WM, Davis MJ. Interaction of pressure-and flow-induced responses in porcine coronary resistance vessels. Am J Physiol 1991; 261: H1706 - H1715.

    PubMed  CAS  Google Scholar 

  17. Traverse JH, Wang YL, Du R, et al. Coronary nitric oxide production in response to exercise and endothelium-dependent agonists. Circulation 2000; 101: 2526–2531.

    Article  PubMed  CAS  Google Scholar 

  18. Chu A, Chambers DE, Lin CC, et al. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol Heart Circ Physiol 1990; 258: H1250 - H1254.

    CAS  Google Scholar 

  19. Jones CJ, Kuo L, Davis MJ, et al. Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 1995; 29; 585–596.

    PubMed  CAS  Google Scholar 

  20. Sato N, Shen YT, Kiuchi K, et al. Splenic contraction-induced increases in arterial OZreduce requirement for CBF in conscious dogs. Am J Physiol Heart Circ Physiol 1995;269:H491–HSO3.

    CAS  Google Scholar 

  21. Parameswaran N, Hamlin RL, Nakayama T, et al. Increased splenic capacity in response to transdermal application of nitroglycerine in the dog. J Vet Int Med 1999; 13: 44–46.

    Article  CAS  Google Scholar 

  22. Bassenge E, Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis 1988; 30: 349–380.

    Article  PubMed  CAS  Google Scholar 

  23. Laxson DD, Dai XZ, Homans DC, et al. Coronary vasodilator reserve in ischemic myocardium of the exercising dog. Circulation 1992; 85: 313–322.

    Article  PubMed  CAS  Google Scholar 

  24. Przyklenk K, Kloner RA. Sildenafil citrate (Viagra) does not exacerbate myocardial ischemia in canine models of coronary artery stenosis. J Am Coll Cardiol 2001; 37: 286–292.

    Article  PubMed  CAS  Google Scholar 

  25. Ball RM, Bache RJ. Distribution of the myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ Res 1976; 38: 60–66.

    Article  PubMed  CAS  Google Scholar 

  26. Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res 1991; 69: 561–570.

    Article  PubMed  CAS  Google Scholar 

  27. Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 2000; 86: 87–110.

    Article  PubMed  CAS  Google Scholar 

  28. Traverse JH, Chen Y-J, Du R, et al. Cyclic nucleotide phosphodiesterase type 5 activity limits blood flow to hypoperfused myocardium during exercise. Circulation 2000; 102: 2997–3002.

    Article  PubMed  CAS  Google Scholar 

  29. Laxson DD, Dai X, Homans DC, et al. The role alphal-and alpha2-adrenergic receptors in mediating coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 1989; 65: 1688–1697.

    Article  PubMed  CAS  Google Scholar 

  30. Vanhoutte PM. Endothelial adrenoceptors. J Cardiovas Pharmacol 2001; 38: 796–808.

    Article  CAS  Google Scholar 

  31. Kaneko H, Endo T, Kiuchi K, et al. Inhibition of nitric oxide synthesis reduces coronary blood flow response but does not increase cardiac contractile response to beta-adrenergic stimulation in normal dogs. J Cardiovasc Pharmacol 1996; 27: 247–254.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz JS, Tockman B, Cohn JN, et al. Exercise-induced fall in flow through stenotic coronary arteries in the dog. Am J Cardiol 1982; 50: 1409–1413.

    Article  PubMed  CAS  Google Scholar 

  33. Folts JD, Schafer AI, Loscalzo J, et al. A perspective on the potential problems with aspirin as an antithrombotic agent: a comparison of studies in an animal model with clinical trials. J Am Coll Cardiol 1999; 33: 295–303.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt U, Han RO, DiSalvo TG, et al. Cessation of platelet-mediated cyclic canine coronary occlusion after thrombolysis by combining nitric oxide inhalation with phosphodiesterase-5 inhibition. J Am Coll Cardiol 2001; 37: 1981–1988.

    Article  PubMed  CAS  Google Scholar 

  35. Ogawa Y, Itoh H, Nakao K. Molecular biology and biochemistry of natriuretic peptide family. Clin Exp Pharmacol Physiol 1995; 22: 49–53.

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Seyedi N, Xu XB, et al. Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol 1994; 266; H670 - H680.

    PubMed  CAS  Google Scholar 

  37. Yamamoto K, Burnett JC Jr., Redfield MM. Effect of endogenous natriuretic peptide system on ventricular and coronary function in failing heart. Am J Physiol 1997; 273; H2406 - H2414.

    PubMed  CAS  Google Scholar 

  38. Chen Y, Traverse JH, Hou M, et al. Effect of PPE5 inhibition on coronary hemodynamics in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 2003; 284: 1513–1520.

    Google Scholar 

  39. Traverse JH, Melchert P, Pierpont GL, et al. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res 1999; 5; 84: 401–408.

    Article  Google Scholar 

  40. Matsumoto T, Wada A, Tsutamoto T, et al. Vasorelaxing effects of atrial and brain natriuretic peptides on coronary circulation in heart failure. Am J Physiol 1999; 276: H1935 - H1942.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chen, Y.J., Traverse, J.H., Bache, R.J. (2004). Effect of Phosphodiesterase-5 Inhibition on Coronary Blood Flow in Experimental Animals. In: Kloner, R.A. (eds) Heart Disease and Erectile Dysfunction. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-748-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-748-2_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9849-3

  • Online ISBN: 978-1-59259-748-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics