Skip to main content

Thrombopoietin Factors

  • Chapter
  • 163 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Thrombopoietin (TPO) was the name proposed by Kelemen in 1958 for the hematopoietic growth factor (HGF) presumed to regulate platelet production like erythropoietin (EPO) regulates erythrocyte production (1,2). Despite almost 40 years of research efforts, TPO was finally purified in 1994 by five separate groups using several approaches. Two of the research groups purified the molecule directly from the plasma of thrombocytopenic mice (3) or sheep (4) using bioassays to detect the stimulation of megakaryocyte growth. The others purified TPO from thrombocytopenic animal plasma by affinity purification methods that used the previously described, presumed TPO receptor, c-mpl (5,6). Finally, one group subjected a BaF3 cell line containing the presumed TPO receptor, c-mpl, to mutagenesis and selected for clones exhibiting exogenous factor-independent autocrine growth (7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelemen E. Thrombopoietin. BMJ 1970; 2: 733–734.

    Article  PubMed  CAS  Google Scholar 

  2. Kelemen E, Cserhati I, Tanos B. Demonstration and some properties of human thrombopoietin in thrombocythaemic sera. Acta Haematol 1958; 20: 350–355.

    Article  PubMed  CAS  Google Scholar 

  3. Kato T, Ogami K, Shimada Y, et al. Purification and characterization of thrombopoietin. J Biochem 1995; 118: 229–236.

    PubMed  CAS  Google Scholar 

  4. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA 1994; 91: 11104–11108.

    Google Scholar 

  5. Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 1994; 77: 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  6. de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369: 533–538.

    Article  PubMed  Google Scholar 

  7. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 1994; 369: 565–568.

    Article  PubMed  CAS  Google Scholar 

  8. Hunt P, Li YS, Nichol JL, et al. Purification and biologic characterization of plasma-derived megakaryocyte growth and development factor. Blood 1995; 86: 540–547.

    PubMed  CAS  Google Scholar 

  9. Kuter DJ, Rosenberg RD. Appearance of a megakaryocyte growth-promoting activity, megapoietin, during acute thrombocytopenia in the rabbit. Blood 1994; 84: 1464–1472.

    PubMed  CAS  Google Scholar 

  10. Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell 1990; 63: 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  11. Vigon I, Mornon JP, Cocault L, et al. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci USA 1992; 89: 5640–5644.

    Article  PubMed  CAS  Google Scholar 

  12. Foster DC, Sprecher CA, Grant FJ, et al. Human thrombopoietin: gene structure, cDNA sequence, expression, and chromosomal localization. Proc Natl Acad Sci USA 1994; 91: 13023–13027.

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman RC, Andersen H, Walker K, et al. Peptide, disulfide, and glycosylation mapping of recombinant human thrombopoietin from Serl to Arg246. Biochemistry 1996; 35: 14849–14861.

    Article  PubMed  CAS  Google Scholar 

  14. Kato T, Oda A, Inagaki Y, et al. Thrombin cleaves recombinant human thrombopoietin: one of the proteolytic events that generates truncated forms of thrombopoietin. Proc Natl Acad Sci USA 1997; 94: 4669–4674.

    Article  PubMed  CAS  Google Scholar 

  15. Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc Natl Acad Sci USA 1995; 92: 5292–5296.

    Article  PubMed  CAS  Google Scholar 

  16. Gurney AL, Kuang WJ, Xie MH, Malloy BE, Eaton DL, de Sauvage F.J. Genomic structure, chromosomal localization, and conserved alternative splice forms of thrombopoietin. Blood 1995; 85: 981–988.

    PubMed  CAS  Google Scholar 

  17. Deane CM, Kroemer RT, Richards WG. A structural model of the human thrombopoietin receptor complex. JMo1 Graph Model 1997; 15: 170–1788, 185–188.

    Google Scholar 

  18. Wada T, Nagata Y, Nagahisa H, et al. Characterization of the truncated thrombopoietin variants. Biochem Biophys Res Commun 1995; 213: 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  19. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 1995; 86: 4486–4492.

    PubMed  CAS  Google Scholar 

  20. Foster D, Hunt P. The biological significance of truncated and full-length forms of Mpl ligand. In: Kuter DJ, Hunt P, Sheridan W, Zucker-Franklin D, eds., Thrombopoiesis and Thrombopoietins: Molecular, Cellular, Preclinical, and Clinical Biology. Totowa, NJ: Humana. 1997: 203–214.

    Google Scholar 

  21. Spivack JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood 1989; 73: 90–99.

    Google Scholar 

  22. Foster D, Lok S. Biological roles for the second domain of thrombopoietin. Stem Cells 1996; 14: 102–107.

    Article  PubMed  Google Scholar 

  23. Park H, Park SS, Jin EH, et al. Identification of functionally important residues of human thrombopoietin. J Biol Chem 1998; 273: 256–261.

    Article  PubMed  CAS  Google Scholar 

  24. Pearce KH Jr, Potts BJ, Presta LG, Bald LN, Fendly BM, Wells JA. Mutational analysis of thrombopoietin for identification of receptor and neutralizing antibody sites. J Biol Chem 1997; 272: 20595–20602.

    Article  PubMed  CAS  Google Scholar 

  25. Nomura S, Ogami K, Kawamura K, et al. Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization. Exp Hematol 1997; 25: 565–572.

    PubMed  CAS  Google Scholar 

  26. Lok S, Foster DC. The structure, biology and potential therapeutic applications of recombinant thrombopoietin. Stem Cells 1994; 12: 586–598.

    Google Scholar 

  27. Guerriero A, Worford L, Holland HK, Guo GR, Sheehan K, Waller EK. Thrombopoietin is synthesized by bone marrow stromal cells. Blood 1997; 90: 3444 3455.

    Google Scholar 

  28. McCarty JM, Sprugel KH, Fox NE, Sabath DE, Kaushansky K. Murine thrombopoietin mRNA levels are modulated by platelet count. Blood 1995; 86: 3668–3675.

    PubMed  CAS  Google Scholar 

  29. Sungaran R, Markovic B, Chong BH. Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 1997; 89: 101–107.

    PubMed  CAS  Google Scholar 

  30. Schnittger S, de Sauvage FJ, Le Paslier D, Fonatsch C. Refined chromosomal localization of the human thrombopoietin gene to 3q27-q28 and exclusion as the responsible gene for thrombocytosis in patients with rearrangements of 3g21 and 3q26. Leukemia 1996; 10: 1891–1906.

    PubMed  CAS  Google Scholar 

  31. Chang MS, Hsu RY, McNinch J, Copeland NG, Jenkins NA. The gene for murine megakaryocyte growth and development factor (thrombopoietin, TPO) is located on mouse chromosome 16. Genomics 1995; 26: 636–637.

    Article  PubMed  CAS  Google Scholar 

  32. Chang MS, McNinch J, Basu R, et al. Cloning and characterization of the human megakaryocyte growth and development factor (MGDF) gene. J Biol Chem 1995; 270: 511–514.

    Article  PubMed  CAS  Google Scholar 

  33. Ghilardi N, Wiestner A, Skoda RC. Thrombopoietin production is inhibited by a translational mechanism. Blood 1998; 92: 4023–4030.

    PubMed  CAS  Google Scholar 

  34. Wiestner A, Schlemper RJ, van der Maas AP, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet 1998; 18: 49–52.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo T, Okabe M, Sanada M, et al. Familial essential thrombocythemia associated with one-base deletion in the 5’-untranslated region of the thrombopoietin gene. Blood 1998; 92: 1091–1096.

    PubMed  CAS  Google Scholar 

  36. Li J, Xia Y, Kuter DJ. The platelet thrombopoietin receptor number and function are markedly decreased in patients with essential thrombocythaemia. Br J Haematol 2000; 111: 943–953.

    Article  PubMed  CAS  Google Scholar 

  37. Zauli G, Vitale M, Falcieri E, et al. In vitro senescence and apoptotic cell death of human megakaryocytes. Blood 1997; 90: 2234–2243.

    PubMed  CAS  Google Scholar 

  38. Raslova H, Roy L, Vourc’h C, et al. Megakaryocyte polyploidization is associated with a functional gene amplification. Blood 2003; 101: 541–544.

    Article  PubMed  CAS  Google Scholar 

  39. Choi ES, Hokom M, Bartley T, et al. Recombinant human megakaryocyte growth and development factor (rHuMGDF), a ligand for c-Mpl, produces functional human platelets in vitro. Stem Cells 1995; 13: 317.

    Article  PubMed  CAS  Google Scholar 

  40. Choi ES, Hokom MM, Chen JL, et al. The role of megakaryocyte growth and development factor in terminal stages of thrombopoiesis. Br J Haematol 1996; 95: 227–233.

    Article  PubMed  CAS  Google Scholar 

  41. Kaushansky K, Lin N, Grossmann A, Humes J, Sprugel KH, Broudy VC. Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocytic progenitor cells in normal and myelosuppressed mice. Exp Hematol 1996; 24: 265–269.

    PubMed  CAS  Google Scholar 

  42. Solar GP, Kerr WG, Zeigler FC, et al. Role of c-mpl in early hematopoiesis. Blood 1998; 92: 4–10.

    PubMed  CAS  Google Scholar 

  43. Ihara K, Ishii E, Eguchi M, et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 1999; 96: 3132–3136.

    Article  PubMed  CAS  Google Scholar 

  44. Van Den Oudenrijn S, Bruin M, Folman CC, et al. Mutations in the thrombopoietin receptor, mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 2000; 110: 441–448.

    Article  PubMed  Google Scholar 

  45. Kuter DJ, Rosenberg RD. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 1995; 85: 2720–2730.

    PubMed  CAS  Google Scholar 

  46. Li J, Xia Y, Kuter D. Interaction of thrombopoietin with the platelet c-mpl receptor in plasma: binding, internalization, stability and pharmacodynamics. Br J Haematol 1999; 106: 345–356.

    Article  PubMed  CAS  Google Scholar 

  47. Fielder PJ, Hass P, Nagel M, et al. Human platelets as a model for the binding and degradation of thrombopoietin. Blood 1997; 89: 2782–2788.

    PubMed  CAS  Google Scholar 

  48. Fielder PJ, Gurney AL, Stefanich E, et al. Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood 1996; 87: 2154–2161.

    PubMed  CAS  Google Scholar 

  49. Li J, Xia Y, Kuter DJ. Interaction of thrombopoietin with the platelet c-mpl receptor in plasma: binding, internalization, stability and pharmacokinetics. Br J Haematol 1999; 106: 345–56.

    Article  PubMed  CAS  Google Scholar 

  50. Harker LA, Hunt P, Marzec UM, et al. Regulation of platelet production and function by megakaryocyte growth and development factor in nonhuman primates. Blood 1996; 87: 1833–1844.

    PubMed  CAS  Google Scholar 

  51. Harker LA, Marzec UM, Hunt P, et al. Dose-response effects of pegylated human megakaryocyte growth and development factor on platelet production and function in nonhuman primates. Blood 1996; 88: 511–521.

    PubMed  CAS  Google Scholar 

  52. Peng J, Friese P, Wolf RF, et al. Relative reactivity of platelets from thrombopoietin-and interleukin6-treated dogs. Blood 1996; 87: 4158–4163.

    PubMed  CAS  Google Scholar 

  53. Kroner C, Eybrechts K, Akkerman JW. Dual regulation of platelet protein kinase B. J Biol Chem 2000; 275:27790–27798.

    Google Scholar 

  54. Snyder E, Perrotta P, Rinder H, Baril L, Nichol J, Gilligan D. Effect of recombinant human megakaryocyte growth and development factor coupled with polyethylene glycol on the platelet storage lesion. Transfusion 1999; 39: 258–264.

    Article  PubMed  CAS  Google Scholar 

  55. Xia Y, Li J, Bertino A, Kuter DJ. Thrombopoietin and the TPO receptor during platelet storage. Transfusion 2000; 40:976–987.

    Google Scholar 

  56. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 1996; 87: 2162–2170.

    PubMed  CAS  Google Scholar 

  57. de Sauvage FJ, Villeval JL, Shivdasani RA. Regulation of megakaryocytopoiesis and platelet production: lessons from animal models. J Lab Clin Med 1998; 131:496–501.

    Google Scholar 

  58. Sauvage FJ, Carver-Moore K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 1996; 183:651–656.

    Google Scholar 

  59. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science 1994; 265: 1445–1447.

    Article  PubMed  CAS  Google Scholar 

  60. Carver-Moore K, Broxmeyer HE, Luoh SM, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin- and c-mpl-deficient mice. Blood 1996; 88: 803–808.

    PubMed  CAS  Google Scholar 

  61. Kuter DJ. Thrombopoietin: biology, clinical applications, role in the donor setting. J Clin Apheresis 1996; 11:149–159.

    Google Scholar 

  62. 62. Kuter DJ. The physiology of platelet production. Stem Cells 1996; 14:88–101.

    Google Scholar 

  63. 63. Kuter DJ. Thrombopoietin: biology and clinical applications. Oncologist 1996; 1:98–106.

    Google Scholar 

  64. Kuter DJ. The regulation of platelet production. In: Kuter DJ, Hunt P, Sheridan W, Zucker-Franklin D, eds., Thrombopoiesis and Thrombopoietins: Molecular, Cellular, Preclinical and Clinical Biology. Totowa, NJ: Humana. 1997: 377–395.

    Google Scholar 

  65. Stoffel R, Wiestner A, Skoda RC. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood 1996; 87: 567–573.

    PubMed  CAS  Google Scholar 

  66. Scheding S, Bergmann M, Shimosaka A, et al. Human plasma thrombopoietin levels are regulated by binding to platelet thrombopoietin receptors in vivo. Transfusion 2002; 42: 321–327.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Kuter DJ. Whatever happened to thrombopoietin? Transfusion 2002; 42:279–283.

    Google Scholar 

  68. Siemensma NP, Bathal PS, Penington DG. The effect of massive liver resection on platelet kinetics in the rat. J Lab Clin Med 1975; 86:817–833.

    Google Scholar 

  69. Quin S, Fu F, Li W, Chen Q, de Sauvage FJ. Primary role of the liver in thrombopoietin production shown by tissue-specific knockout. Blood 1998; 92: 2189–2191.

    Google Scholar 

  70. 70. Peck-Radosavljevic M, Zacherl J, Meng YG, et al. Is inadequate thrombopoietin production a major cause of thrombocytopenia in cirrhosis of the liver? JHepatol 1997; 27:127–131.

    Google Scholar 

  71. Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood 2000; 95: 795–801.

    PubMed  CAS  Google Scholar 

  72. Li J, Yang C, Xia Y, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 2001; 98: 3241–3248.

    Article  PubMed  CAS  Google Scholar 

  73. Sheridan WP, Kilter DJ. Mechanism of action and clinical trials of Mpl ligand. Curr Opin Hematol 1997; 4:312–316.

    Google Scholar 

  74. Begley CG, Basser RL. Biologic and structural differences of thrombopoietic growth factors. Semin Hematol 2000; 37:19–27.

    Google Scholar 

  75. Giri JG, Smith WG, Kahn LE, et al. Promegapoietin, a chimeric growth factor for megakaryocyte and platelet restoration. Blood 1997; 90: 580a.

    Google Scholar 

  76. Cwirla SE, Balasubramanian P, Duffin DJ, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997; 276: 1696–1699.

    Article  PubMed  CAS  Google Scholar 

  77. de Serres M, Ellis B, Dillberger JE, et al. Immunogenicity of thrombopoietin mimetic peptide GW395058 in BALB/c mice and New Zealand white rabbits: evaluation of the potential for thrombopoietin neutralizing antibody production in man. Stem Cells 1999; 17: 203–209.

    Article  PubMed  CAS  Google Scholar 

  78. Erickson-Miller CL, Delorme E, Tian SS, et al. Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Blood 2000; 96: 675a.

    Google Scholar 

  79. Duffy KJ, Darcy MG, Delorme E, et al. Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J Med Chem 2001; 44: 3730–3745.

    Article  PubMed  CAS  Google Scholar 

  80. Duffy KJ, Price AT, Delorme E, et al. Identification of a pharmacophore for thrombopoietic activity of small, non-peptidyl molecules. 2. Rational design of naphtho[1,2-d]imidazole thrombopoietin mimics. J Med Chem 2002; 45: 3576–3578.

    Article  PubMed  CAS  Google Scholar 

  81. Duffy KJ, Shaw AN, Delorme E, et al. Identification of a pharmacophore for thrombopoietic activity of small, non-peptidyl molecules. 1. Discovery and optimization of salicylaldehyde thiosemicarbazone thrombopoietin mimics. J Med Chem 2002; 45: 3573–3575.

    Article  PubMed  CAS  Google Scholar 

  82. Naranda T, Wong K, Kaufman RI, Goldstein A, Olsson L. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site. Proc Natl Acad Sci USA 1999; 96: 7569–7574.

    Article  PubMed  CAS  Google Scholar 

  83. Yan XQ, Lacey D, Hill D, et al. A model of myelofibrosis and osteosclerosis in mice induced by over-expressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 1996; 88: 402–409.

    PubMed  CAS  Google Scholar 

  84. Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 1995; 86: 4025–4033.

    PubMed  CAS  Google Scholar 

  85. Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 1997; 90: 4369–4383.

    PubMed  CAS  Google Scholar 

  86. Frey BM, Rafii S, Teterson M, Eaton D, Crystal RG, Moore MA. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J Immunol 1998; 160: 691–699.

    PubMed  CAS  Google Scholar 

  87. Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood 1996; 87: 5006–15.

    PubMed  CAS  Google Scholar 

  88. Ulich TR, del Castillo J, Yin S, et al. Megakaryocyte growth and development factor ameliorates carboplatin-induced thrombocytopenia in mice. Blood 1995; 86: 971–976.

    PubMed  CAS  Google Scholar 

  89. Farese AM, Hunt P, Grab LB, MacVittie TJ. Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest 1996; 97: 2145–2151.

    Article  PubMed  CAS  Google Scholar 

  90. Neelis KJ, Visser TP, Dimjati W, et al. A single dose of thrombopoietin shortly after myelosuppressive total body irradiation prevents pancytopenia in mice by promoting short-term multilineage spleen-repopulating cells at the transient expense of bone marrow-repopulating cells. Blood 1998; 92: 1586–1597.

    PubMed  CAS  Google Scholar 

  91. Kaushansky K. Thrombopoietin: more than a lineage-specific megakaryocyte growth factor. Stem Cells 1997; 15: 97–103.

    Article  PubMed  CAS  Google Scholar 

  92. Mouthon MA, Van der Meeren A, Gaugler MH, et al. Thrombopoietin promotes hematopoietic recovery and survival after high-dose whole body irradiation. Int J Radiat Oncol Biol Phys 1999; 43: 867–875.

    Article  PubMed  CAS  Google Scholar 

  93. Fibbe WE, Heemskerk DP, Laterveer L, et al. Accelerated reconstitution of platelets and erythrocytes after syngeneic transplantation of bone marrow cells derived from thrombopoietin pretreated donor mice. Blood 1995; 86: 3308–3313.

    PubMed  CAS  Google Scholar 

  94. Somlo G, Sniecinski I, ter Veer A, et al. Recombinant human thrombopoietin in combination with granulocyte colony-stimulating factor enhances mobilization of peripheral blood progenitor cells, increases peripheral blood platelet concentration, and accelerates hematopoietic recovery following high-dose chemotherapy. Blood 1999; 93: 2798–2806.

    PubMed  CAS  Google Scholar 

  95. Yagi M, Ritchie KA, Sitnicka E, Storey C, Roth GJ, Bartelmez S. Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin. Proc Natl Acad Sci USA 1999; 96: 8126–8131.

    Article  PubMed  CAS  Google Scholar 

  96. Harker LA, Marzec UM, Novembre F, et al. Treatment of thrombocytopenia in chimpanzees infected with human immunodeficiency virus by pegylated recombinant human megakaryocyte growth and development factor. Blood 1998; 91: 4427–4433.

    PubMed  CAS  Google Scholar 

  97. Kuter DJ. The use of PEG-rhuMGDF in platelet apheresis. Stem Cells 1998; 16: 231–242.

    Article  PubMed  Google Scholar 

  98. Nakamura M, Toombs CF, Duarte IG, et al. Recombinant human megakaryocyte growth and development factor attenuates postbypass thrombocytopenia. Ann Thorac Surg 1998; 66: 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  99. Tornita D, Petrarca M, Paine T, Olson K, Roskos L, Cheung E. Effect of a single dose of pegylated human recombinant megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet counts: implications for platelet apheresis. Transfusion 1997; 37: 2S.

    Google Scholar 

  100. Kuter DJ, Goodnough LT, Romo J, et al. Thrombopoietin therapy increases platelet yields in healthy platelet donors. Blood 2001; 98: 1339–1345.

    Article  PubMed  CAS  Google Scholar 

  101. Goodnough LT, Kuter DJ, McCullough J, et al. Prophylactic platelet transfusions from healthy apheresis platelet donors undergoing treatment with thrombopoietin. Blood 2001; 98: 1346–1351.

    Article  PubMed  CAS  Google Scholar 

  102. Kuter D, McCullough J, Romo JD, et al. Treatment of platelet (PLT) donors with pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) increases circulating PLT counts (CTS) and PLT apheresis yields and increases platelet increments in recipients of PLT transfusions. Blood 1997; 90: 579a.

    Google Scholar 

  103. Chen J, Herceg-Harjacek L, Groopman JE, Grabarek J. Regulation of platelet activation in vitro by the c-Mpl ligand, thrombopoietin. Blood 1995; 86: 4054–4062.

    PubMed  CAS  Google Scholar 

  104. Kubota Y, Arai T, Tanaka T, et al. Thrombopoietin modulates platelet activation in vitro through protein-tyrosine phosphorylation. Stem Cells 1996; 14: 439–444.

    Article  PubMed  CAS  Google Scholar 

  105. Montrucchio G, Brizzi MF, Calosso G, Marengo S, Pegoraro L, Camussi G. Effects of recombinant human megakaryocyte growth and development factor on platelet activation. Blood 1996; 87: 2762–2768.

    PubMed  CAS  Google Scholar 

  106. Fanucchi M, Glaspy J, Crawford J, et al. Effects of polyethylene glycol-conjugated recombinant human megakaryocyte growth and development factor on platelet counts after chemotherapy for lung cancer. N Engl J Med 1997; 336: 404–409.

    Article  PubMed  CAS  Google Scholar 

  107. Basser RL, Rasko JE, Clarke K, et al. Randomized, blinded, placebo-controlled phase I trial of pegylated recombinant human megakaryocyte growth and development factor with filgrastim after dose-intensive chemotherapy in patients with advanced cancer. Blood 1997; 89: 3118–3128.

    PubMed  CAS  Google Scholar 

  108. Basser RL, Rasko JE, Clarke K, et al. Thrombopoietic effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in patients with advanced cancer. Lancet 1996; 348: 1279–1281.

    Article  PubMed  CAS  Google Scholar 

  109. Basser RL, Underhill C, Davis I, et al. Enhancement of platelet recovery after myelosuppressive chemotherapy by recombinant human megakaryocyte growth and development factor in patients with advanced cancer. J Clin Oncol 2000; 18: 2852–2861.

    PubMed  CAS  Google Scholar 

  110. Moskowitz C, Nimer S, Gabrilove J, et al. A randomized, double blind, placebo-controlled, dose finding, efficacy and safety study of PEG-rHuMGDF (M) in non-Hodgkin’s lymphoma (NHL) patients (pts) treated with ICE (ifosfamide, carboplatin and etoposide). J Clin Oncol 1998; 17: 76a.

    Google Scholar 

  111. O’Malley CJ, Rasko JE, Basser RL, et al. Administration of pegylated recombinant human megakaryocyte growth and development factor to humans stimulates the production of functional platelets that show no evidence of in vivo activation. Blood 1996; 88: 3288–3298.

    PubMed  Google Scholar 

  112. Vadhan-Raj S, Patel S, Broxmeyer HE, et al. Phase I-II investigation of recombinant human thrombopoietin (rhTPO) in patients with sarcoma receiving high dose chemotherapy (CT) with Adriamycin (A) and ifosfamide (I). Blood 1996; 88: 448a.

    Google Scholar 

  113. Vadhan-Raj S, Murray LI, Bueso-Ramos C, et al. Stimulation of megakaryocyte and platelet production by a single dose of recombinant human thrombopoietin in patients with cancer. Ann Intern Med 1997; 126: 673–681.

    PubMed  CAS  Google Scholar 

  114. Vadhan-Raj S, Verschraegen C, McGarry L, et al. Recombinant human thrombopoietin (rhTPO) attenuates high-dose carboplatin (C)-induced thrombocytopenia in patients with gynecological malignancy. Blood 1997; 90: 580a.

    Google Scholar 

  115. Vadhan-Raj S, Patel S, Broxmeyer H, et al. Schedule-dependent reduction in thrombocytopenia by recombinant human thrombopoietin (rhTPO) in patients with sarcoma receiving high dose chemotherapy (CT) with Adriamycin (A) and ifosfamide (I). J Clin Oncol 1999; 18: 52A.

    Google Scholar 

  116. Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, et al. Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann Intern Med 2000; 132: 364–368.

    PubMed  CAS  Google Scholar 

  117. Gajewski J, Korbling M, Donato M, et al. Recombinant human thrombopoietin (rhTPO) for mobilization of peripheral blood progenitor cells (PBPC) for autologous transplantation in breast cancer: preliminary results of a phase I trial. Blood 1997; 90: 97A.

    Google Scholar 

  118. Linker C, Anderlini P, Herzig R, et al. A randomized, placebo-controlled, phase II trial of recombinant human thrombopoietin (rhTPO) in subjects undergoing high dose chemotherapy (HDC) and PBPC transplant. Blood 1998; 92.

    Google Scholar 

  119. Rasko JE, Basser RL, Boyd J, et al. Multilineage mobilization of peripheral blood progenitor cells in humans following administration of PEG-rHuMGDF. Br J Haematol 1997; 97: 871–880.

    Article  PubMed  CAS  Google Scholar 

  120. Murray LJ, Luens KM, Estrada MF, et al. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis. Exp Hematol 1998; 26: 207–216.

    PubMed  CAS  Google Scholar 

  121. Piacibello W, Sanavio F, Garetto L, et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89: 2644–2653.

    PubMed  CAS  Google Scholar 

  122. Crawford J, Glaspy J, Belani C, et al. A randomized, placebo-controlled, blinded, dose scheduling trial of pegylated recombinant human megakaryocyte growth and development factor (PEGHUMGDF) with filgrastim support in non-small cell lung cancer (NSCLC) patients treated with paclitaxel and carboplatin during multiple cycles of chemotherapy. Proc ASCO 1998; 17: 73a.

    Google Scholar 

  123. Yang C, Xia Y, Li J, Kuter DJ. The appearance of anti-thrombopoietin antibody and circulating thrombopoietin-IgG complexes in a patient developing thrombocytopenia after the injection of PEGrHuMGDF. Blood 1999; 94: 681a.

    Google Scholar 

  124. Basser RL, O’Flaherty E, Green M, et al. Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 2002; 99: 2599–2602.

    Article  PubMed  CAS  Google Scholar 

  125. F-D-C-Reports. In brief: Amgen Megagen. Pink Sheet 1998; 60: 27.

    Google Scholar 

  126. Kuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 2002; 100: 3457–3469.

    Article  PubMed  CAS  Google Scholar 

  127. Vigon I, Dreyfus F, Melle J, et al. Expression of the c-mpl proto-oncogene in human hematologic malignancies. Blood 1993; 82: 877–883.

    PubMed  CAS  Google Scholar 

  128. Schiffer CA, Miller K, Larson RA, et al. A double-blind, placebo-controlled trial of pegylated recombinant human megakaryocyte growth and development factor as an adjunct to induction and consolidation therapy for patients with acute myeloid leukemia. Blood 2000; 95: 2530–2535.

    PubMed  CAS  Google Scholar 

  129. Archimbaud E, Ottmann OG, Yin JA, et al. A randomized, double-blind, placebo-controlled study with pegylated recombinant human megakaryocyte growth and development factor (PEGrHuMGDF) as an adjunct to chemotherapy for adults with de novo acute myeloid leukemia. Blood 1999; 94: 3694–3701.

    PubMed  CAS  Google Scholar 

  130. Columbyova L, Loda M, Scadden DT. Thrombopoietin receptor expression in human cancer cell lines and primary tissues. Cancer Res 1995; 55: 3509–3512.

    PubMed  CAS  Google Scholar 

  131. Molineux G, Hartley C, McElroy P, McCrea C, Kerzic P, McNiece I. An analysis of the effects of combined treatment with rmGM-CSF and PEG- rHuMGDF in murine bone marrow transplant recipients. Stem Cells 1997; 15: 43–49.

    Article  PubMed  CAS  Google Scholar 

  132. Rebulla P, Finazzi G, Marangoni F, et al. The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. N Engl J Med 1997; 337: 1870–1875.

    Article  PubMed  CAS  Google Scholar 

  133. Rebulla P. Trigger for platelet transfusion. Vox Sang 2000; 78: 179–182.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kuter, D.J. (2004). Thrombopoietin Factors. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics