Skip to main content

Economics of Hematopoietic Growth Factors

  • Chapter
Book cover Hematopoietic Growth Factors in Oncology

Abstract

Health care costs have risen steadily and now exceed US $1 trillion annually, including nearly US $150 billion for cancer care (1,2). By the year 2010, it is projected that health care expenditures in the United States will approach US $3 trillion with US $300 billion spent on cancer care (Fig. 1) (3). Approximately 90% of medical costs for cancer care are associated with five diagnoses: breast cancer (24%), colorectal cancer (24%), lung cancer (18%), prostate cancer (18%), and bladder cancer (8%) (4,5). Hospital care represents the largest single cost component, accounting for 40–50% of total cancer care costs (2). Other major components of health care costs include physician/ professional costs and to a lesser extent pharmaceutical and home care costs. The direct medical costs of cancer care are greatest during the period of initial diagnosis and treatment (6). Other illness-related costs in patients with cancer include direct nonmedical costs such as transportation and child care and indirect costs associated with illness-related morbidity and lost earnings owing to premature death from disease. Some intangible costs of illness for the patient and family relate to the impact on quality of life (QOL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincenzino JV. Health care costs: market forces and reform. Oncology 1995; 9: 367–374.

    Google Scholar 

  2. Schuette HL, Tucker TC, Brown ML, Potosky AC, Samuel T. The costs of cancer care in the United States: implications for action. Oncology 1995; 11: 19–22.

    Google Scholar 

  3. Centers for Medicare and Medicaid Services, 2002 Annual Report. US Washington, DC: Government Printing Office. 2003.

    Google Scholar 

  4. Brown ML. The national economic burden of cancer: an update. J Natl Cancer Inst 1990; 82: 1811–1814.

    Article  PubMed  CAS  Google Scholar 

  5. Baker MS, Kessler LC. Site-specific treatment costs in cancer. In: Cancer Care and Cost. Health Administration Press Washington, DC, 1989, pp. 140–163.

    Google Scholar 

  6. Gaumer GL, Stavins J. Medicare use in the last 90 days of life. Med Care 1991; 29: 725–742.

    Google Scholar 

  7. Task Force on Principles for Economic Analysis of Health Care Technology. Economic analyses of health care technology: a report on principles. Ann Intern Med 1995; 122: 61–70.

    Google Scholar 

  8. Schulman KA, Yabroff KR. Measuring the cost-effectiveness of cancer care. Oncology 1995; 9: 523–533.

    PubMed  CAS  Google Scholar 

  9. American Society of Clinical Oncology. Outcomes of cancer treatment for technology assessment and cancer treatment guidelines. J Clin Oncol 1996; 14: 671–679.

    Google Scholar 

  10. Smith TJ, Hillner BE, Desch CE. Efficacy and cost-effectiveness of cancer treatment: rational allocation of resources based on decision analysis. J Natl Cancer Inst 1993; 85: 1460–1474.

    Article  PubMed  CAS  Google Scholar 

  11. Russell LB, Gold MR, Siegel JE, Daniels N, Weinstein MC. The role of cost-effectiveness analysis in health and medicine. JAMA 1996; 276: 1172–1177.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein MC, Siegel JE, Gold MR, Kamiet MS, Russell LB. Recommendations of the panel on cost-effectiveness in health and medicine. JAMA 1996; 276: 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  13. Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analysis. JAMA 1996; 276: 1330–1341.

    Article  Google Scholar 

  14. Bodey GP, Buckley M, Sathe YS, et al. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966; 64: 328–340.

    PubMed  CAS  Google Scholar 

  15. Infectious Diseases Society of America. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 2002; 34: 730–751.

    Article  Google Scholar 

  16. Lyman GH, Kuderer N, Greene J, Balducci L. The economics of febrile neutropenia: ilmplications for the use of colony-stimulating factors. Eur J Cancer 1998; 34: 1857–1864.

    Article  PubMed  CAS  Google Scholar 

  17. Lyman GH, Kuderer NM, Djulbegovic B. Prophylactic granulocyte colony-stimulating factor in patients receiving dose intensive cancer chemotherapy: a meta-analysis. Am J Med 2002; 112: 406–411.

    Article  PubMed  CAS  Google Scholar 

  18. Clark O, Lyman G, Castro AA, Clark LGO, Djulbegovic B. Colony stimulating factors for the treatment of chemotherapy induced febrile neutropenia. Cochrane Database Systematic Rev 2003; 3: 1–12 (CD 00 3039).

    Google Scholar 

  19. Lyman GH, Lyman CG, Sanderson RA, Balducci L. Decision analysis of hematopoietic growth factor use in patients receiving cancer chemotherapy. J Natl Cancer Inst 1993; 85: 488–493.

    Article  PubMed  CAS  Google Scholar 

  20. Lyman GH, Balducci L. A cost analysis of hematopoietic colony-stimulating factors. Oncology 1995; 9: 85–91.

    PubMed  CAS  Google Scholar 

  21. Ozer H, Armitage JO, Bennett CL, et al. 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based clinical practice guidelines. J Clin Oncol 2000; 18: 3558–3585.

    PubMed  CAS  Google Scholar 

  22. Balducci L, Lyman GH, Ozer H. Patients aged >70 are at high risk of neutropenic infection and should receive hemopoietic growth factors when treated with moderately toxic chemotherapy. J Clin Oncol 2001; 19: 1583–1585.

    PubMed  CAS  Google Scholar 

  23. Lyman GH, Kuderer NM, Balducci L. Granulopoiesis stimulating agents: economic impact on the management of febrile neutropenia. Curr Opin Oncol 1998; 10: 291–298.

    Article  PubMed  CAS  Google Scholar 

  24. Lyman GH, Kuderer NM, Balducci L. Economic analyses of the use of the colony-stimulating factors: an update. Curr Opin Hematol 1999; 6: 145–151.

    Article  PubMed  CAS  Google Scholar 

  25. Lyman GH, Kuderer NM, Balducci L. Cost-benefit analysis of G-CSF in the management of elderly cancer patients. Curr Opin Hematol 2002; 9: 207–214.

    Article  PubMed  Google Scholar 

  26. Wright JC, Weinstein MC. Gains in life expectancy from medical interventions-standardizing data on outcomes. N Engl J Med 1998; 330: 380–404.

    Article  Google Scholar 

  27. Cella DF, Bonomi AE. Measuring quality of life: 1995 update. Oncology 1995; 9: 47–60.

    PubMed  CAS  Google Scholar 

  28. Weeks J. Measurement of utilities and quality-adjusted survival. Oncology 1995; 9: 67–70.

    PubMed  CAS  Google Scholar 

  29. Gelber RD, Goldhirsch A, Cavelli F. Quality-of-life-adjusted evaluation of adjuvant therapy for operable breast cancer. Ann Intern Med 1991; 114: 621–628.

    PubMed  CAS  Google Scholar 

  30. Gotay CC, Korn EL, McCabe MS, Moore TD, Cheson BD. Quality-of-life assessment in cancer treatment protocols: research issues in protocol development. J Natl Cancer Inst 1992; 84: 575–579.

    Article  PubMed  CAS  Google Scholar 

  31. Bottomley A, Vanvoorden V, Fletchner H, et al. The challenges and achievements involved in implementing quality of life research in cancer clinical trials. Eur J Cancer 2003; 39: 275–285.

    Article  PubMed  CAS  Google Scholar 

  32. Lyman GH. Methodological issues related to health economic analysis in controlled clinical trials. In: Crowley J, ed. Handbook of Statistics in Clinical Oncology. New York: Marcel Dekker. 2001: 291–320.

    Google Scholar 

  33. Lyman GH. The economics of randomized controlled trials. Curr Oncol Rep 2001; 3: 396 103.

    Google Scholar 

  34. Djulbegovic B, Cantor A, Lyman GH, Ruckdeschel. Understanding treatment benefits and harms, evidence-based Oncology 2000; 1: 66–68.

    Google Scholar 

  35. Lyman GH, Djulbegovic B. Understanding economic analyses: evidence-based. Oncology 2001; 2: 2–5.

    Google Scholar 

  36. Detsky AS, Naglie IG. A clinician’s guide to cost-effectiveness analysis. Ann Intern Med 1990; 113: 147–154.

    PubMed  CAS  Google Scholar 

  37. Task Force on Principles for Economic Analyses of Health Care Technology. Economic analyses of health care technology: a report on principles. Ann Intern Med 1995; 122: 61–70.

    Google Scholar 

  38. American Society of Clinical Oncology. Outcomes of cancer treatment for technology assessment and cancer treatment guidelines. J Clin Oncol 1996; 14: 671–679.

    Google Scholar 

  39. Russell LB, Gold MR, Siegel JE, Daniels N, Weinstein MC. The role of cost-effectiveness analysis in health and medicine. JAMA 1996; 276: 1172–1177.

    Article  PubMed  CAS  Google Scholar 

  40. Weinstein MC, Siegel JE, Gold MR, Kamiet MS, Russell LB. Recommendations of the panel on cost-effectiveness in health and medicine. JAMA 1996; 276: 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  41. Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analysis. JAMA 1996; 276: 1330–1341.

    Article  Google Scholar 

  42. Brown M, Glick HA, Harrell F, et al. Integrating economic analysis into cancer clinical trials: the National Cancer Institute-American Society of Clinical Oncology Economics Workbook. J Natl Cancer Inst 1998; 24: 1–28.

    Google Scholar 

  43. Coyle D, Davies L, Drummond MF. Trials and tribulations: emerging issues in designing economic evaluations alongside clinical trials. Int J Technol Assess Health Care 1998; 14: 135–144.

    Article  PubMed  CAS  Google Scholar 

  44. Barber JA, Thompson SG. Analysis and interpretation of cost data in randomized controlled trials: review of published studies. BMJ 1998; 317: 1195–1200.

    Article  PubMed  CAS  Google Scholar 

  45. Meza L, Baselga J, Holmes FA, et al. Incidence of febrile neutropenia is directly related to duration of severe neutropenia after myelosuppressive chemotherapy. Proc ASCO 2002; 21: 2556.

    Google Scholar 

  46. Myelotoxicity and dose intensity of chemotherapy: Reporting practices from randomized clinical trials. J Natl Comprehensive Cancer Network 2003; 1: 440–454.

    Google Scholar 

  47. Ellis GK, Livingston RB, Gralow JR, et al. Dose-dense anthracycline-based chemotherapy for node-positive breast cancer. J Clin Oncol 2002; 20: 3637–3643.

    Article  PubMed  CAS  Google Scholar 

  48. Lyman GH, Crawford J, Dale D, et al. Incidence, practice patterns, and predictors of low dose intensity in adjuvant breast cancer chemotherapy: results of a nationwide survey of community oncology practices. J Clin Oncol 2003 (in press).

    Google Scholar 

  49. Lyman GH, Morrison VA, Dale DC, et al. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk Lymphoma 2003; 44: 2069–2076.

    Article  PubMed  CAS  Google Scholar 

  50. Lyman GH, Delgado D. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate grades of non-Hodgkin’s lymphoma. Cancer 2003 (in press).

    Google Scholar 

  51. Lyman GH, Lyman C, Ogboola Y. Risk models for the prediction of chemotherapy-induced neutropenia. Neutropenia Oncol 2001: 1; 2–7.

    Google Scholar 

  52. Lyman GH. Risk assessment in oncology practice: from risk factors to risk models. Oncology 2003 (in press).

    Google Scholar 

  53. Lyman GH. A predictive model for neutropenia associated with cancer chemotherapy. Pharmacotherapy 2000; 20: 1045–1115.

    Article  Google Scholar 

  54. Silber JH, Fridman M, DiPaola RS, et al. First-cycle blood counts and subsequent neutropenia dose reduction or delay in early-stage breast cancer therapy. J Clin Oncol 1998; 16: 2392–2400.

    PubMed  CAS  Google Scholar 

  55. Rivera E, Erder MH, Moore TD, et al. Targeted filgrastim support in patients with early-stage breast carcinoma: toward the implementation of a risk model. Cancer 2003; 98: 222–228.

    Article  PubMed  Google Scholar 

  56. Agboola O, Crawford J, Dale DC, et al. Risk models for neutropenic complications associated with breast cancer adjuvant chemotherapy. Proc ASCO 2002; 21: 66a.

    Google Scholar 

  57. Talcott JA, Siegel RD, Finberg R, Goldman L. Risk assessment in cancer patients with fever and neutropenia: a prospective, two-center validation of a prediction rule. J Clin Oncol 1992; 10: 316–322.

    PubMed  CAS  Google Scholar 

  58. Kim YJ, Rubenstein EB, Rolston KV, et al. Colony-stimulating factors may reduce complications and death in solid tumor patients with fever and neutropenia. Proc Am Soc Clin Oncol 2000; 19: 612a.

    Google Scholar 

  59. Lyman GH, Kuderer NM. Cost effectiveness of myeloid growth factors in cancer chemotherapy. Curr Hematol Rep 2003; 2: 471–479.

    PubMed  Google Scholar 

  60. Lyman GH, Kuderer NM. Incorporation of quality of life considerations into decision models for the use of colony stimulating factors in chemotherapy patients at risk for febrile neutropenia. In: Klastersky JA, ed., Febrile Neutropenia. New York: Springer-Verlag. 1997: 17–22.

    Chapter  Google Scholar 

  61. Fortner BV, Stolshek B, Schwartzberg LS, et al. Decline in absolute neutrophil count (ANC) is associated with lower quality of life (QOL) in cancer patients receiving docetaxel. Proc ASCO 2002; 21: 2808a.

    Google Scholar 

  62. Okon TA, Fortner BV, Schwartzberg L, et al. Quality of life (QOL) in patients with grade IV chemotherapy-induced neutropenia (CIN). Proc ASCO 2002; 21: 2920a.

    Google Scholar 

  63. Calhoun EA, Chang C-H, Welshman EE, Cella D. A neutropenia-specific quality of life instrument: rationale for the development of the FACT-N. Proc ASCO 2002; 21: 1498a.

    Google Scholar 

  64. Lyman GH, Kuderer NM. Filgrastim in patients with neutropenia: potential effects on quality of life. Drugs 2002; 62: 65–78.

    Article  PubMed  CAS  Google Scholar 

  65. Crawford J, Ozer H, Stoller R, Johnson D, et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 1991; 325: 164–170.

    Article  PubMed  CAS  Google Scholar 

  66. Trillet-Lenoir V, Green J, Manegold C, et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer 1993; 29A: 319–324.

    Article  Google Scholar 

  67. Pettengell R, Gurney H, Radford JA, et al. Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin’s lymphoma: a randomized controlled trial. Blood 1992; 80: 1430–1436.

    PubMed  CAS  Google Scholar 

  68. Chevallier B, Chollet P, Merrouche Y, et al. Lenograstim prevents morbidity from intensive induction chemotherapy in the treatment of inflammatory breast cancer. J Clin Oncol 1995; 13: 1564–1571.

    PubMed  CAS  Google Scholar 

  69. Bui BN, Chevalier B, Chevreau C, et al. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J Clin Oncol 1995; 13: 2629–2636.

    PubMed  CAS  Google Scholar 

  70. Zinzani PL, Pavone E, Storti S, et al. Randomized trial with or without granulocyte colony-stimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin’s lymphoma. Blood 1997; 89: 3974–3979.

    PubMed  CAS  Google Scholar 

  71. Gisselbrecht C, Haioun C, LePage E, et al. Placebo-controlled phase III study of lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) in aggressive non-Hodgkin’s lymphoma: factors influencing chemotherapy administration. Leuk Lymphoma 1997; 25: 289–300.

    PubMed  CAS  Google Scholar 

  72. Fossa SD, Kaye SB, Mead GM, et at Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. J Clin Oncol 1998; 16: 716–724.

    PubMed  CAS  Google Scholar 

  73. Maher DW, Graham JL, Green M, et al. Filgrastim in patients with chemotherapy-induced febrile neutropenia: a double blind, placebo-controlled trial. Ann Intern Med 1994; 121: 492–501.

    Google Scholar 

  74. Mitchell PLR, Morland B, Stevens MCG, et al. Granulocyte colony-stimulating factor in established febrile neutropenia: a randomized study of pediatric patients. J Clin Oncol 1997; 15: 1163–1170.

    PubMed  CAS  Google Scholar 

  75. Garcia-Carbonero R, Mayordomo JI, Tornamira MV, et al. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. J Natl Cancer Inst 2001; 93: 31–38.

    Article  PubMed  CAS  Google Scholar 

  76. Balducci L, Hardy CL, Lyman GH. Hematopoietic growth factors in the older cancer patient. Curr Opin Hematol 2001; 8: 170–187.

    Article  PubMed  CAS  Google Scholar 

  77. Lyman GH, Balducci L, Agboola Y. Use of hematopoietic growth factors in the older cancer patient. Oncol Spectrums 2001; 2: 414–421.

    Google Scholar 

  78. Lyman GH, Kuderer NM. Epidemiology of febrile neutropenia. Supp Cancer Ther 2003 (in press).

    Google Scholar 

  79. Silber JH, Fridman, Shpilsky A, et al. Modeling the cost-effectiveness of granulocyte colony-stimulating factor use in early-stage breast cancer. J Clin Oncol 1998; 16: 2435–2444.

    PubMed  CAS  Google Scholar 

  80. Calhoun EA, Chang CH, Welshman EE, Fishman DA, Lurain JR, Bennett CL. Evaluating the total costs of chemotherapy-induced toxicity: results from a pilot study with ovarian cancer patients. Oncologist 2001; 6: 441–445.

    Article  PubMed  CAS  Google Scholar 

  81. Cosier L, Calhoun E, Agboda O, Lyman GH. Impact of indirect and out-of-pocket costs on the risk threshold for prophylaxis with colony-stimulating factors in patients at risk for neutropenia complications. Pharmacotherapy 2003 (in press).

    Google Scholar 

  82. Talcott JA, Siegel RD, Finberg R, Goldman L. Risk assessment in cancer patients with fever and neutropenia: a prospective, two-center validation of a prediction rule. J Clin Oncol 1992; 10: 316–322.

    PubMed  CAS  Google Scholar 

  83. Talcott JA, Whalen A, Clark J, et al. Home antibiotic therapy for low-risk cancer patients with fever and neutropenia: a pilot study of 30 patients based on a validated prediction rule. J Clin Oncol 1994; 12: 107–114.

    PubMed  CAS  Google Scholar 

  84. Rubenstein EB, Rolston KVI, Benjamin RS, et al. Outpatient treatment of febrile episodes in low-risk neutropenic patients with cancer. Cancer 1993; 71: 3640–3646.

    Article  PubMed  CAS  Google Scholar 

  85. Klastersky J, Paesmans M, Rubenstein EB, et al. The multinational association for supportive care in cancer risk-index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol 2000; 18: 3038–3051.

    PubMed  CAS  Google Scholar 

  86. Sivasubramaniam V, Dale D, Crawford J, et al. Impact of outpatient treatment of febrile neutropenia on risk thresholds for G-CSF prophylaxis in cancer chemotherapy. Proc Am Soc Clin Oncol 2001; 20: 392a.

    Google Scholar 

  87. Thatcher NT, Girling DJ, Hopwood P, et al. Improving survival without reducing quality of life in small-cell lung cancer patients by increasing the dose intensity of chemotherapy with granulocyte colony-stimulating factor support: results of a British Medical Research Council Multicenter Randomized Trial. J Clin Oncol 2000; 18: 395–404.

    PubMed  CAS  Google Scholar 

  88. Ellis GK, Livingston RB, Gralow JR, et al. Dose-dense anthracycline-based chemotherapy for node-positive breast cancer. J Clin Oncol 2002; 20: 3637–3643.

    Article  PubMed  CAS  Google Scholar 

  89. Citron M, Berry D, Cirrincione C, et al. Superiority of dose-dense over conventional scheduling and equivalence of sequential vs combination adjuvant chemotherapy for node-positive breast cancer. Breast Cancer Res Treat 2002.

    Google Scholar 

  90. Nabholtz J-M, Cantin J, Chang J, et al. Phase III trial comparing granulocyte colony-stimulating factor to leridistim in the prevention of neutropenic complications in breast cancer patients treated with docetaxel/doxorubicin/cyclophosphamide: results of the BCIRG 004 Trial. Clin Breast Cancer 2002; 3: 268–275.

    Article  PubMed  CAS  Google Scholar 

  91. Lyman GH, Lyman C, Agboola Y. Risk models for the prediction of chemotherapy-induced neutropenia. Neutropenia Oncol 2001; 1: 2–7.

    Google Scholar 

  92. Lyman GH, Crawford J, Dale D, Wolf D. Predicting the risk of chemotherapy-induced neutropenia (CIN) in patients with breast cancer: rationale for prospective risk model development. Breast Cancer Res Treat 2002; 76: S537.

    Google Scholar 

  93. Anaissie EJ, Vartivarian S, Bodey GP, et al. Randomized comparison between antibiotics alone and antibiotics plus granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived in cancer patients with fever and neutropenia. Am J Med 1996; 100: 17–23.

    Article  PubMed  CAS  Google Scholar 

  94. Aviles A, Guzman R, Garcia EL, Talavera A, Diaz-Maqueo JC. Results of a randomized trial of granulocyte colony-stimulating factor in patients with infection and severe granulocytopenia. Anticancer Drugs 1996; 7: 392–397.

    Article  PubMed  CAS  Google Scholar 

  95. Biesma B, de Vries EG, Willemse PH, et al. Efficacy and tolerability of recombinant human granulocyte-macrophage colony-stimulating factor in patients with chemotherapy-related leukopenia and fever. Eur J Cancer 1990; 26: 932–936.

    Article  PubMed  CAS  Google Scholar 

  96. Lopez-Hernandez MA, Jimenez-Alvarado R, Borbolla-Escoboza R, et al. Granulocyte colony-stimu-lating factor in the treatment of febrile neutropenia]. Gaceta Medica Mexicana 2000; 136: 99–105.

    CAS  Google Scholar 

  97. Mayordomo Jl, Rivera F, Diaz-Puente MT„ et al. Improving treatment of chemotherapy-induced neutropenic fever by administration of colony-stimulating factors. J Natl Cancer Inst 1995; 87: 803–808.

    Article  Google Scholar 

  98. Ravaud A, Chevreau C, Cany L, et al. Granulocyte-macrophage colony-stimulating factor in patients with neutropenic fever is potent after low-risk but not after high-risk neutropenic chemotherapy regimens: results of a randomized phase III trial. J Clin Oncol 1998; 16: 2930–2936.

    PubMed  CAS  Google Scholar 

  99. Riikonen P, Saarinen UM, Makipernaa A, et al. Recombinant human granulocyte-macrophage colony-stimulating factor in the treatment of febrile neutropenia: a double blind placebo-controlled study in children. Pediatr Infect Dis J 1994; 13: 197–202.

    Article  PubMed  CAS  Google Scholar 

  100. Vellenga E, Uyl-de Groot CA, de Wit R, et al. Randomized placebo-controlled trial of granulocyte-macrophage colony-stimulating factor in patients with chemotherapy-related febrile neutropenia. J Clin Oncol 1996; 14: 619–627.

    PubMed  CAS  Google Scholar 

  101. Bertini M, Freilone R, Vitolo U, et al. The treatment of elderly patients with aggressive non-Hodgkin’s lymphomas: Feasiblity and efficacy of an intensive multidrug regimen. Leukemia Lymphoma 1996; 22: 483–493.

    Article  PubMed  CAS  Google Scholar 

  102. Osby E, Hagberg H, Kvaloy S, et al. CHOP is superior to CNOP in elderly patients with aggressive lymphoma while outcome is unaffected by filgrastim treatment: results of a Nordic Lymphoma Group randomized trial. Blood 2003; 101: 3840–3848.

    Article  PubMed  CAS  Google Scholar 

  103. Zagonel V, Bagare R, Merola MC, et al. Cost-benefit of granulocyte colony-stimulating factor administration in older patients with non-Hodgkin’s lymphoma treated with combination chemotherapy. Ann Oncol 1994; 5 (suppl2): 127–132.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lyman, G.H., Kuderer, N.M. (2004). Economics of Hematopoietic Growth Factors. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics