Skip to main content

Role of Hematopoietic Growth Factors As Adjuncts to the Treatment of Hodgkin’s and Non-Hodgkin’s Lymphomas

  • Chapter
Hematopoietic Growth Factors in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 161 Accesses

Abstract

Lymphomas are malignancies of lymphoid cells categorized as either Hodgkin’s disease (HD) or non-Hodgkin’s lymphomas (NHL). Disease presentations are similar with infiltrations of malignant lymphocytes in lymph nodes or extranodal tissues with or without the presence of constitutional symptoms. Overall, the prognosis for HD is better, with an overall survival rate of >80% at 5 yr (1). NHL is a more complex entity, with many histologies ranging from indolent to highly aggressive in behavior. It occurs in greater frequency in elderly patients with a median age of onset of 50 yr of age (2). In contrast, HD has a bimodal distribution with a peak incidence in the third decade and a second smaller peak in the sixth decade (1). In both HD and NHL, initial treatment consists of chemotherapy, radiation, or both depending on extent of disease. Despite improvements in therapy, however, a significant proportion of patients will progress, relapse, and die from their disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yahalom J, Straus D. Hodgkin’s disease. In: Pazdur R, Coia LR, Hoskins WJ, Wagman LD, eds., Cancer Management: A Multidisciplinary Approach. Melville, NY: PRR. 2002: 603–622.

    Google Scholar 

  2. Molina A, Al-Kadhimi Z, Nicolaou N. Non-Hodgkin’s lymphoma. In: Pazdur R, Coia LR, Hoskins WJ, Wagman LD, eds., Cancer Management: A Multidisciplinary Approach. Melville, NY: PRR. 2002: 623–666.

    Google Scholar 

  3. Donnelly G, Glassman J, Long C, et al. Granulocyte-colony stimulating factor (G-CSF) may improve disease outcome in elderly patients with diffuse large cell lymphoma (DLCL) treated with CHOP chemotherapy. Leuk Lymphoma 2000; 39: 67–75.

    Article  PubMed  CAS  Google Scholar 

  4. Gomez H, Mas L, Casanova L, et al. Elderly patients with aggressive non-Hodgkin’s lymphoma treated with CHOP chemotherapy plus granulocyte-macrophage colony-stimulating factor: identification of two age subgroups with differing hematologic toxicity. J Clin Oncol 1998; 16: 2352–2358.

    PubMed  CAS  Google Scholar 

  5. Kouroukis C, Meyer R. Treatment strategies in elderly patients with aggressive histology lymphoma. Ann Hematol 2001; 80: B86 - B88.

    PubMed  CAS  Google Scholar 

  6. Kouroukis C, Browman GP, Esmail R, et al. Chemotherapy for older patients with newly diagnosed, advanced-stage, aggressive-histology non-Hodgkin’s lymphoma: a systematic review. Ann Intern Med 2002; 136: 144–152.

    PubMed  CAS  Google Scholar 

  7. Niitsu N, lijima K. Full-dose CHOP chemotherapy combined with granulocyte colony-stimulating factor for aggressive non-Hodgkin’s lymphoma in elderly patients: a prospective study. Ann Hematol 2001; 80: 602–606.

    Article  PubMed  CAS  Google Scholar 

  8. Peters F, Fickers MMF, Erdkamp FLG, et al. The effect of optimal treatment on elderly patients with aggressive non-Hodgkin’s lymphoma: more patients treated with unaffected response rates. Ann Hematol 2001; 80: 406–410.

    Article  PubMed  CAS  Google Scholar 

  9. Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nature 1999; 5: 1171–1177.

    Article  CAS  Google Scholar 

  10. Borrello I, Sotomayor EM, Cooke S, et al. A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum Gene Ther 1999; 10: 1983–1991.

    Article  PubMed  CAS  Google Scholar 

  11. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993; 329: 987–994.

    Article  Google Scholar 

  12. Kwak L, Halpern J, Olshen RA, et al. Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J Clin Oncol 1990; 8: 963–977.

    PubMed  CAS  Google Scholar 

  13. Jacobson J, Grossbard M, Shulman LN, et al. CHOP chemotherapy with preemptive granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin’s lymphoma: a dose-intensity analysis. Clin Lymphoma 2000; 1: 211–217.

    Article  PubMed  CAS  Google Scholar 

  14. Bjorkholm M, Osby E, Hagberg H, et al. Randomized trial of r-metHu granulocyte colony-stimulating Factor (G-CSF) as adjunct to CHOP or CNOP treatment of elderly patients with aggressive non-Hodgkin’s lymphoma. Blood 1999; 94: 599a (abstract 2665).

    Google Scholar 

  15. Doorduijn J, van der Holt B, van der Hem KG, et al. Randomized trial of granulocyte-colony stimulating factor (G-CSF) added to CHOP in elderly patients with aggressive non-Hodgkin’s lymphoma (NHL). Blood 2000; 96: 133a (abstract 575).

    Google Scholar 

  16. Zinzani P, Pavone E, Storti S, et al. Randomized trial with or without granulocyte colony-stimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin’s lymphoma. Blood 1997; 89: 3974–3979.

    PubMed  CAS  Google Scholar 

  17. Bobey N, Woodman R. Neutropenic complications in advanced-stage non-Hodgkin’s lymphoma: implications for the use of prophylactic recombinant human granulocyte-colony stimulating factor (GCSF). Clin Invest Med 1998; 21: 63–70.

    PubMed  CAS  Google Scholar 

  18. Chrischilles E, Delgado DJ, Stolshek BS, et al. Impact of age and colony-stimulating factor use on hospital length of stay for febrile neutropenia in CHOP-treated non-Hodgkin’s lymphoma. Cancer Control 2002; 9: 203–211.

    PubMed  Google Scholar 

  19. Ozer H, Armitage JO, Bennett C, et al. 2000 Update of Recommendations for the Use of Hematopoietic Colony-Stimulating Factors. www.asco.org, 2003.

    Google Scholar 

  20. Bartlett N, Petroni GR, Parker BA, et al. Dose-escalated cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide (CHOPE) chemotherapy for patients with diffuse lymphoma. Cancer 2001; 92: 207–217.

    Article  PubMed  CAS  Google Scholar 

  21. Dan K, Ogura M, Oyama A, et al. Long-term follow-up in aggressive non-Hodgkin’s lymphoma (NHL) patients treated with rHuG-CSF (lenograstim) combined biweekly CHOP chemotherapy. Blood 2001; 98: 1452a.

    Google Scholar 

  22. Gordon L, Young M, Weller E, et al. A phase II trial of 200% ProMACE-CytaBOM in patients with previously untreated aggressive lymphoma: analysis of response, toxicity, and dose intensity. Blood 1999; 94: 3307–3314.

    Google Scholar 

  23. Itoh K, Ohtsu T, Wakita H, et al. Dose-escalation study of CHOP with or without prophylactic G-CSF in aggressive non-Hodgkin’s lymphoma. Ann Oncol 2000; 11: 1241–1247.

    Article  PubMed  CAS  Google Scholar 

  24. Koc H, Arslan O, Gurman G, et al. Use of high-dose chemotherapy plus granulocyte colony-stimulating factor for the salvage of refractory or resistant-relapse lymphoma patients without stem cell support. Acta Haematol 1997; 98: 136–139.

    Article  PubMed  CAS  Google Scholar 

  25. Nikkuni K, Aoki S, Tsukada N, et al. A phase II multicenter clinical trial of high-dose bi-weekly THPCOP with G-CSF support (HDBW-TCOP (G)) for non-Hodgkin’s lymphoma. Blood 2001; 98: 571a.

    Google Scholar 

  26. Pfreundschuh M, Trumper L, Kloess M, et al. CHOEP (CHOP + etoposide): the new standard regimen for younger patients with low risk (low LDH) aggressive non-Hodgkin’s lymphoma (NHL). Blood 2001; 98 (abstr 3026): 725a.

    Google Scholar 

  27. Diehl V, Franklin J, Paulus U, et al. BEACOPP chemotherapy with dose escalation in advanced Hodgkin’s disease: final analysis of the German Hodgkin Lymphoma Study Group HD9 Randomized Trial. Blood 2001; 98: 769a (abstract 3202).

    Google Scholar 

  28. Tesch H, Diehl V, Lathan B, et al. Moderate dose escalation for advanced stage Hodgkin’s disease using the bleomycin, etoposide, Adriamycin, cyclophosphamide, vincristine, procarbazine, and prednisone scheme and adjuvant radiotherapy: a study of the German Hodgkin’s Lymphoma Study Group. Blood 1998; 92: 4560–4567.

    PubMed  CAS  Google Scholar 

  29. Pfreundschuh M, Trumper L, Kloess M, et al. 2-Weekly CHOP (CHOP-4): the new standard regimen for patients with aggressive non-Hodgkin’s lymphoma (NHL) > 60 years of age. Blood 2001; 98: 725a (abstract 3027).

    Google Scholar 

  30. Aviles A, Garcia EL, Cuadra I, et al. High dose chemotherapy with G-CSF in refractory Hodgkin’s disease. Leuk Lymphoma 1999; 361: 139–145.

    Article  Google Scholar 

  31. Pfreundschuh M, Hasenclever D, Loeffler M, et al. Dose escalation of cytotoxic drugs using haematopoietic growth factors: a randomized trial to determine the magnitude of increase provided by GM-CSF. Ann Oncol 2001; 12: 471–477.

    Article  PubMed  CAS  Google Scholar 

  32. Aglietta M, Montemurro F, Fagioli F, et al. Short term treatment with Escheria coli recombinant human granulocyte-macrophage-colony stimulating factor prior to chemotherapy for Hodgkin disease. Cancer 2000; 88: 454–460.

    Article  PubMed  CAS  Google Scholar 

  33. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 1995; 333: 1540–1545.

    Article  PubMed  CAS  Google Scholar 

  34. Schmitz N, Linch DC, Dreger P, et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  PubMed  CAS  Google Scholar 

  35. Ballestero A, Ferrando F, Garuti A, et al. Comparative effects of three cytokine regimens after high-dose cyclophosphamide: granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF) and sequential interleukin-3 and GM-CSF. J Clin Oncol 1999; 17: 1296–1303.

    Google Scholar 

  36. Gazitt Y, Callander N, Freytes CO, et al. Peripheral blood stem cell mobilization with cyclophosphamide in combination with G-CSF, GM-CSF, or sequential GM-CSF/G-CSF in non-Hodgkin’s lymphoma patients: a randomized prospective study. J Hematother Stem Cell Res 2000; 9: 737–748.

    Article  PubMed  CAS  Google Scholar 

  37. Narayanasami U, Kanteti R, Morelli J, et al. Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood 2001; 98: 2059–2064.

    Article  PubMed  CAS  Google Scholar 

  38. Pavone V, Gaudio F, Guarini A, et al. Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant 2002; 29: 285–290.

    Article  PubMed  CAS  Google Scholar 

  39. Watts M, Ings SJ, Leverett D, et al. ESHAP and G-CSF is a superior blood stem cell mobilizing regimen compared to cyclophosphamide 1.5 g/m2 and G-CSF for pre-treated lymphoma patients: a matched pairs analysis of 78 patients. Br J Cancer 2000; 82: 278–282.

    Article  PubMed  CAS  Google Scholar 

  40. Lee S, Radford JA, Dobson L, et al. Recombinant human granulocyte colony-stimulating factor (filgrastim) following high-dose chemotherapy and peripheral blood progenitor cell rescue in high-grade non-Hodgkin’s lymphoma: clinical benefits at no extra cost. Br J Cancer 1998; 77: 1294–1299.

    Article  PubMed  CAS  Google Scholar 

  41. Linch D, Milligan DW, Winfield DA, et al. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Br J Hematol 1997; 99: 933–938.

    Article  CAS  Google Scholar 

  42. Ojeda E, Garcia-Bustos J, Aguado MJ, et al. A prospective randomized trial of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in adults. Bone Marrow Transplant 1999; 24: 601–607.

    Article  PubMed  CAS  Google Scholar 

  43. Bishop M, Tarantolo S, Geller R, et al. A randomized, double blind trial of filgrastim (granulocyte colony-stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood 2000; 96: 80–85.

    PubMed  CAS  Google Scholar 

  44. Ozcan M, Ustun C, Akcaglayan E, et al. Recombinant human granulocyte colony-stimulating factor (rh-G-CSF) may accelerate hematopoietic recovery after HLA-identical sibling allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2001; 27: 499–505.

    Article  PubMed  CAS  Google Scholar 

  45. Przepiorka D, Smith TL, Folloder J, et al. Controlled trial of filgrastim for acceleration of neutrophil recovery after allogeneic blood stem cell transplantation from human leukocyte antigen-matched related donors. Blood 2001; 97: 3405–3410.

    Article  PubMed  CAS  Google Scholar 

  46. Mellstedt H, Fagerberg J, Frodin JE, et al. Augmentation of the immune response with granulocyte-macrophage colony-stimulating factor and other hematopoietic growth factors. Curr Opin Hematol 1999; 6: 169–175.

    Article  PubMed  CAS  Google Scholar 

  47. Hsu F, Caspar CB, Czerwinski D, et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma-long-term results of a clinical trial. Blood 1997; 89: 3129–3135.

    PubMed  CAS  Google Scholar 

  48. Caspar C, Levy S, Levy R. Idiotype vaccines for non-Hodgkin’s lymphoma induce polyclonal immune responses that cover mutated tumor idiotypes: comparison of different vaccine formulations. Blood 1997; 90: 3699–3706.

    PubMed  CAS  Google Scholar 

  49. Masucci G, Wersall P, Ragnhammar P, et al. Granulocyte-monocyte-colony-stimulating factor augments the cytotoxic capacity of lymphocytes and monocytes in antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother 1989; 29: 288–292.

    Article  PubMed  CAS  Google Scholar 

  50. Burgaleta C, Villalba S, Gonzalez N. Defective activity of monocytes from patients with non-Hodgkin lymphoma: the modulatory effect of granulocyte-macrophage-colony stimulating factor. Cancer 1999; 86: 2133–2137.

    Article  PubMed  CAS  Google Scholar 

  51. Ragnhammar P. Anti-tumoral effect of GM-CSF with or without cytokines and monoclonal antibodies in solid tumors. Med Oncol 1996; 13: 167–176.

    Article  PubMed  CAS  Google Scholar 

  52. Stockmeyer B, Elsasser D, Dechant M, et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods 2001; 248: 103–111.

    Article  PubMed  CAS  Google Scholar 

  53. Kwak L, Campbell MJ, Czerwinski DK, et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 1992; 327: 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  54. Nelson E, Li X, Hsu FJ, et al. Tumor-specific, cytotoxic T-lymphocyte response after idiotype vaccination for B-cell, non-Hodgkin’s lymphoma. Blood 1996; 88: 580–589.

    PubMed  CAS  Google Scholar 

  55. Kwak L, Young HA, Pennington RW, Weeks SD. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc Natl Acad Sci USA 1996; 93: 10972–10977.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tomblyn, M.R., Winter, J.N. (2004). Role of Hematopoietic Growth Factors As Adjuncts to the Treatment of Hodgkin’s and Non-Hodgkin’s Lymphomas. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics