Skip to main content

Formulation Considerations for DNA-Based Therapeutics

  • Chapter
Cellular Drug Delivery

Abstract

The ability to deliver genes to cells and tissues in vivo offers the potential to develop potent vaccines and treat many hereditary diseases that are currently considered incurable, e.g., cancer, cystic fibrosis (CF), severe combined immunodeficiency (SCID), and acquired immune deficiency syndrome (AIDS) (1-6). Considering the tremendous promise of DNA-delivery technology, in addition to the extensive genetic information now available from the Human Genome Project, it is not surprising that gene therapy is being touted as the next revolution in medicine. Although a strict definition of “gene therapy” would be limited to therapeutic approaches that aim to use polynucleotides as a template for the in vivo production of proteins, the term is often used to refer to a wide variety of strategies that employ nucleotide-based molecules (e.g., vaccines, antisense, ribozymes, siRNA). To date, 70 clinical protocols have been approved for the delivery of naked DNA, comprising approx 11% of the total number of gene-therapy clinical protocols (http://www.wiley.co.uk/genetherapy/clinical). Slightly more studies (~12%) have employed nonviral, lipid-based vectors to facilitate DNA delivery. In comparison, the large majority of clinical gene therapy trials (>70%) utilizes viruses to deliver therapeutic genes because viruses are more efficient than contemporary synthetic gene-delivery systems. The higher efficiency of viruses should not be surprising if we recognize that these organisms have been evolving their gene-delivery machinery for billions of years. In contrast, the development of nonviral systems for therapeutic gene delivery can be traced back a mere 15 years (7). Although more efficient nonviral gene-delivery systems continue to be developed, synthetic systems have yet to replicate the efficiency of viruses. One significant drawback of viral delivery is the immunogenicity of viruses, which causes significant inflammation in vivo (8), and eliminates the potential for multiple dosing (anyone who has ever had a cold is familiar with the fever and inflammation associated with an immune response to viruses). In fact, the adverse reactions associated with viral delivery have been implicated as the cause of death in clinical trials (9,10). Also, a clinical trial involving liver infusion of an adenoassociated virus (AAV) for the treatment of hemophilia B was halted because of the presence of the viral vector in patient semen, and the concern that the genetic alteration could be passed to offspring (11). More recently, two patients treated with ex vivo genetherapy for the treatment of SCID have developed leukemia owing to insertional mutagenesis caused by the retroviral vector used in the study (12,13). Considering the potential safety risk involved in employing viruses as a therapeutic moiety, there is renewed interest in developing safe, efficient, nonviral gene-delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavazzana-Calvo M, Hacein-Bey S, Basile CD, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  PubMed  CAS  Google Scholar 

  2. Blaese RM. Gene therapy for cancer. Sci Am 1997; 276: 111–115.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson WF. Gene therapy. Sci Am 1995; 273: 124–128.

    PubMed  CAS  Google Scholar 

  4. Boyer JD, Chattergoon MA, Ugen KE, et al. Enhancement of cellular immune response in HIV-1 seropositive individuals: a DNA-based trial. Clin Immunol 1999; 90: 100–107.

    Article  PubMed  CAS  Google Scholar 

  5. Tuteja R. DNA vaccines: a ray of hope. Crit Rev Biochem Mol Biol 1999; 34: 1–24.

    Article  PubMed  CAS  Google Scholar 

  6. Restifo NP, Ying H, Hwang L, Leitner WW. The promise of nucleic acid vaccines. Gene Ther 2000; 7: 89–92.

    Article  PubMed  CAS  Google Scholar 

  7. Felgner PL, Gadek TR, Holm MR, et al. Lipofection: a highly efficient, lipid-mediated DNA transfection procedure. Proc Natl Acad Sci USA 1987; 87: 7413–7417.

    Article  Google Scholar 

  8. Dewey RA, Morrissey G, Cowsill CM, et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nature Med 1999; 5: 1256–1263.

    Article  PubMed  CAS  Google Scholar 

  9. Fox JL. Gene-therapy death prompts broad civil lawsuit. Nat Biotech 2000; 18: 1136.

    Article  CAS  Google Scholar 

  10. Nasto, B. Questions about systemic adenovirus delivery. Mol Ther 2002; 5: 652–653.

    Article  PubMed  CAS  Google Scholar 

  11. Biospace. Avigen reports status on liver infusion of gene therapy treatment for hemophilia B; Avigen’s Coagulin-B clinical trial on hold. Biospace October 8 (2001) http://www.biospace.com/news.

  12. Lemoine NR. Risks and benefits of gene therapy for immunodeficiency: a reality check. Gene Ther 2002; 9: 1561–1562.

    Article  CAS  Google Scholar 

  13. Weiss R. Second boy receiving gene therapy develops cancer. Washington Post 1/15/03 p. A9.

    Google Scholar 

  14. Sen L, Hong Y-S, Luo H, et al. Efficiency, efficacy, and adverse effects of adenovirus-vs. liposome-mediated gene therapy in cardiac allografts. Am J Physiol Heart Circ Physiol 2001; 281: H1433 - H1441.

    PubMed  CAS  Google Scholar 

  15. Nabel GJ, Nabel EG, Yang Z-Y, et al. Direct gene Transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993; 90: 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  16. Goddard CA, Ratcliff R, Anderson JR, et al. A second dose of a CFTR cDNA-liposome complex is as effective as the first dose in restoring cAMP-dependent chloride secretion to null CF mice trachea. Gene Ther 1997; 4: 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer O, Schughart K, Pavirani A, Kolbe HVJ. Multiple systemic expression of human interferon-13 in mice can be achieved upon repeated administration of optimized pcTG90-lipoplex. Gene Ther 2000; 7: 1606–1611.

    Article  PubMed  CAS  Google Scholar 

  18. Hyde SC, Southern KW, Gileadi U, et al. Repeat Administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 2000; 7: 1156–1165.

    Article  PubMed  CAS  Google Scholar 

  19. Handumrongkul C, Zhong W, Debs R. Distinct sets of cellular gene control the expression of tranfected, nuclear-localized genes. Mol Ther 20002; 5: 186–194.

    Google Scholar 

  20. Chen Z-Y, Yant SR, He C-Y, et al. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 2001; 3: 403–410.

    Article  PubMed  CAS  Google Scholar 

  21. Yew NS, Przybylska M, Ziegler RJ, et al. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4: 75–82.

    Article  PubMed  CAS  Google Scholar 

  22. Dow SW, Fradkin LG, Liggitt, DH, et al. Lipid/DNA complexes induce a potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 1999; 163: 1552–1561.

    PubMed  CAS  Google Scholar 

  23. Siders WM, Vergillis K, Johnson C, et al. Tumor treatment with complexes of cationic lipid and noncoding plasmid DNA results in the induction of cytotoxic T cells and systemic tumor elimination. Mol Ther 2002; 6: 519–527.

    Article  PubMed  CAS  Google Scholar 

  24. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  PubMed  CAS  Google Scholar 

  25. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotech 2002; 20: 1006–1010.

    Article  CAS  Google Scholar 

  26. Middaugh CR, Evans RK, Montgomery DL, Casimiro DR. Analysis of Plasmid DNA from a Pharmaceutical Perspective. J Pharm Sci 1998; 87: 130–146.

    Article  PubMed  CAS  Google Scholar 

  27. Evans RK, Xu Z, Bohannon KE, et al. Evaluation of degradation pathways for plasmid DNA in pharmaceutical formulations via accelerated stability studies. J Pharm Sci 2000; 89: 76–87.

    Article  PubMed  CAS  Google Scholar 

  28. Pogocki D, Schoneich C. Chemical stability of nucleic acid-derived drugs. J Pharm Sci 2000; 89: 443–456.

    Article  PubMed  CAS  Google Scholar 

  29. Hovorka SW, Schoneich C. Oxidative degradation of pharmaceuticals: theory, mechanisms and inhibition. J Pharm Sci 2001; 90: 253–269.

    Article  PubMed  CAS  Google Scholar 

  30. Durland RH, Eastman EM. Manufacturing and quality control of plasmid-based gene expression systems. Adv Drug Del Rev 1998; 30: 33–48.

    Article  CAS  Google Scholar 

  31. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  32. Moelling K. Naked DNA: the poor man’s gene therapy? Gene Ther 1998; 5: 573–574.

    Article  PubMed  CAS  Google Scholar 

  33. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Rad Biol Med 1995; 18: 1033–1077.

    Article  PubMed  CAS  Google Scholar 

  34. Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8Oxoguanine in DNA induces Targeted G•C -> T•A transversions in simian kidney cells. Proc Natl Acad Sci USA 1993; 90: 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng KC, Cahill DS, Kasai H, et al. 8-Hydroxyguanine, an Abundant Form of Oxidative DNA Damage, Causes G- >T and A- >C substitutions. J Biol Chem 1992; 267: 166–172.

    PubMed  CAS  Google Scholar 

  36. Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 1972; 11: 3610–3618.

    Article  PubMed  CAS  Google Scholar 

  37. Lindahl T, Karlstrom O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 1973; 12: 5151–5154.

    Article  PubMed  CAS  Google Scholar 

  38. Shapiro R, Klein RS. The Deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry 1966; 5: 2358–2362.

    Article  PubMed  CAS  Google Scholar 

  39. Zoltewicz JA, Clark DF, Sharpless TW, Grahe G. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J Am Chem Soc 1970; 92: 1741–1750.

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro R, Danzig M. Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis. Biochemistry 1972; 11: 23–29.

    Article  PubMed  CAS  Google Scholar 

  41. Vernooij EAAM, Kettenes-van den Bosch JJ, Underberg WJM, Crommelin DJA. Chemical hydrolysis of DOTAP and DOPE in a liposomal environment. J Cont Release 2002; 79: 299–303.

    Article  CAS  Google Scholar 

  42. Marrot L, Giacomoni PU. Enhancement of oxidative DNA degradation by histidine: the role of stereochemical parameters. Mutation Res 1992; 275: 69–79.

    Article  PubMed  CAS  Google Scholar 

  43. Graf E, Mahoney JR, Bryant RG, Eaton JW. Iron-catalyzed hydroxyl radical formation. J Biol Chem 1984; 259: 3620–3624.

    PubMed  CAS  Google Scholar 

  44. Shikama K. Effect of freezing and thawing on the stability of double helix of DNA. Nature 1965; 207: 529–530.

    Article  PubMed  CAS  Google Scholar 

  45. Lyscov VN, Moshkovsky YS. DNA cryolysis. Biochim Biophys Acta 1969; 190: 101–110.

    Article  CAS  Google Scholar 

  46. Davis DL, O’Brien EP, Bentzley CM. Analysis of the degradation of oligonucleotide strands during the freezing/thawing processes using MALDI-MS. Anal Chem 2000; 72: 5092–5096.

    Article  PubMed  CAS  Google Scholar 

  47. Ando S, Putnam D, Pack DW, Langer R. PLGA microshperes containing plasmid DNA: preservation of Ssupercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 1999; 88: 126–130.

    Article  PubMed  CAS  Google Scholar 

  48. Levine H, Slade L. Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water systems: a review. Cryo-Lett 1988; 9: 21–63.

    CAS  Google Scholar 

  49. Davison BF. The effect of hydrodynamic shear on the deoxyribonucleic acid from T2 and T4 bacteriophages. Proc Natl Acad Sci USA 1959; 45: 1560–1568.

    Article  PubMed  CAS  Google Scholar 

  50. Levinthal C Davison PF. Degradation of deoxyribonucleic acid under hydrodynamic shearing forces. J Mol Biol 1961; 3: 674–683.

    Article  PubMed  CAS  Google Scholar 

  51. Bowman RD, Davidson N. Hydrodynamic shear breakage of DNA. Biopolymers 1972; 11: 2601–2624.

    Article  PubMed  CAS  Google Scholar 

  52. Lengsfeld CS, Anchordoquy TJ. Shear-induced degradation of plasmid DNA. J Pharm Sci 2002; 91: 1581–1589.

    Article  PubMed  CAS  Google Scholar 

  53. Poxon SW, Hughes JA. The effect of lyophilization on plasmid DNA activity. Pharm Dev Tech 2000; 5: 115–122.

    Article  CAS  Google Scholar 

  54. Jameel F, Amsberry KL, Pikal MJ. Freeze drying properties of some oligonucleotides. Pharm Dev Tech 2001; 6: 151–157.

    Article  CAS  Google Scholar 

  55. Tamm C, Shapiro HS, Chargaff E. Correlation between the action of pancreatic desoxyribonuclease and the nature of its substrates. J Biol Chem 1952; 199: 313–327.

    PubMed  CAS  Google Scholar 

  56. Richards OC, Boyer D. Chemical mechanism of sonic, acid, alkaline and enzymatic degradation of DNA. J Mol Biol 1965; 11: 327–340.

    Article  PubMed  CAS  Google Scholar 

  57. Tamm C, Shapiro HS, Liphitz R, Chargaff E. Distribution density of nucleotides within a desoxyribonucleic acid chain. J Biol Chem 1953; 203: 673–688.

    PubMed  CAS  Google Scholar 

  58. Kolobov AV, Vainberg YP. Stability of the physicochemical parameters of DNA during prolonged keeping. Bull Exp Biol Med 1976; 81: 360–363.

    Article  Google Scholar 

  59. Gedik CM, Wood SG, Collins AR. Measuring oxidative damage to DNA; HPLC and the comet assay compared. Free Rad Res 1998; 29: 609–615.

    Article  CAS  Google Scholar 

  60. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362: 709–715.

    Article  PubMed  CAS  Google Scholar 

  61. Wolf SG, Frenkiel D, Arad T, et al. DNA protection by stress-induced biocrystalliation. Nature 1999; 400: 83–85.

    Article  PubMed  CAS  Google Scholar 

  62. Ljungman M, Hanawalt PC. Efficient protection against oxidative DNA damage in chromatin. Mol Carcinogen 1992; 5: 264–269.

    Article  CAS  Google Scholar 

  63. Ward JF, Kuo I. Radiation damage to DNA in aqueous solution: a comparison of the response of the single-stranded form with that of double-stranded rorm. Rad Res 1978; 75: 278–285.

    Article  CAS  Google Scholar 

  64. Fuciarelli AF, Wegher BJ, Blakely WF, Dizdaroglu M. Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. Int J Radiat Biol 1990; 58: 397–415.

    Article  PubMed  CAS  Google Scholar 

  65. Ribeiro DT, Madzak C, Sarasin A, et al. Photochem Photobiol 1992; 55: 39–45.

    Article  PubMed  CAS  Google Scholar 

  66. Mahato RI, Rolland A, Tomlinson E. Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm Res 1997; 14: 853–859.

    Article  PubMed  CAS  Google Scholar 

  67. Mahato RI. Non-viral peptide-based approaches to gene therapy. J Drug Target 1999; 7: 249–268.

    Article  PubMed  CAS  Google Scholar 

  68. Anchordoquy TJ, Koe GS. Physical stability of nonviral plasmid-based therapeutics. J Pharm Sci 2000; 89: 289–296.

    Article  PubMed  CAS  Google Scholar 

  69. Anwer K, Earle KA, Shi M, et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm Res 1999; 16: 889–895.

    Article  PubMed  CAS  Google Scholar 

  70. Lemieux P, Guerin N, Paradis G, et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 2000; 7: 986–991.

    Article  PubMed  CAS  Google Scholar 

  71. Miedan VM, Cohen JS, Amariglio N, et al. Interaction of oligonucleotides with cationic lipids: the relationship between electrostatics, hydration and state of aggregation. Biochim Biophys Acta 2000; 1464: 251–261.

    Article  Google Scholar 

  72. Zabner J, Fasbender AJ, Moninger T, et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995;270:18997–19007.

    Article  PubMed  CAS  Google Scholar 

  73. Gustafsson J, Arvidson G, Karlsson G, Almgren M. Complexes between cationic liposomes and DNA visualized by Cryo-TEM. Biochim Biophys Acta 1995; 1235: 305–312.

    Article  PubMed  Google Scholar 

  74. Smith JG, Wedeking T, Vernachio JH, et al. Characterization and in vivo testing of a hetergenous cationic lipid-DNA formulation. Pharm Res 1998; 15: 1356–1363.

    Article  PubMed  CAS  Google Scholar 

  75. Kwoh DY, Coffin CC, Lollo CP, et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1999; 1444: 171–190.

    Article  PubMed  CAS  Google Scholar 

  76. Wasan EK, Harvie P, Edwards K, et al. A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection. Biochim Biophys Acta 1999; 1461: 27–46.

    Article  PubMed  CAS  Google Scholar 

  77. Kichler A, Zauner W, Orgis M, Wagner E. Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Ther 1998; 5: 855–860.

    Article  PubMed  CAS  Google Scholar 

  78. Yang J-P, Huang L. Time-dependent maturation of cationic liposome-DNA complex for serum resistance. Gene Ther 1998; 5: 380–387.

    Article  PubMed  CAS  Google Scholar 

  79. Kennedy MT, Pozharski EV, Rakhmanova VA, MacDonald RC. Factors governing the assembly of cationic phospholipid-DNA complexes. Biophys J 2000; 78: 1620–1633.

    Article  PubMed  CAS  Google Scholar 

  80. Sakurai F, Inoue R, Nishino Y, et al. Effect of DNA/liposome mixing ratio on the physiochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/ cationic liposome complexes and subsequent gene expression. J Cont Rel 2000; 66: 255–269.

    Article  CAS  Google Scholar 

  81. Sparrow JT, Edwards VV, Tung C, et al. Synthetic peptide-based DNA complexes for nonviral gene delivery. Adv Drug Delivery Rev 1998; 30: 115–131.

    Article  Google Scholar 

  82. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997; 4: 823–832.

    Article  PubMed  CAS  Google Scholar 

  83. Kim J-S, Kim B-I, Maruyama A, et al. A new non-viral DNA delivery vector: the terplex system. J Cont Release 1998; 53: 175–182.

    Article  CAS  Google Scholar 

  84. Allison SD, Anchordoquy TJ. Lyophilization of nonviral gene delivery systems. In Findeis M., ed. Nonviral Vectors for Gene Therapy. Methods in Molecular Medicine, Humana Press, Totowa, NJ, (2001), pp. 225–252.

    Chapter  Google Scholar 

  85. Anchordoquy TJ. Physical stabilization of DNA-based therapeutics during freezing and drying. Am Pharm Rev 2001; 4: 34–41.

    CAS  Google Scholar 

  86. Finsinger D, Remy JS, Erbacher P, et al. Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery. Gene Ther 2000; 7: 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  87. Erbacher P, Zou S, Bettinger T, et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 1998; 15: 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  88. Yi SW, Yune TY, Kim TW, et al. A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm Res 2000; 17: 314–320.

    Article  PubMed  CAS  Google Scholar 

  89. Nabel GJ, Chang A, Nabel EG, et al. Immunotherapy of malignancy by in vivo gene transfer into tumors. Human Gene Ther 1992; 3: 399–410.

    Article  Google Scholar 

  90. Caplen NJ, Kinrade E, Sorgi F, et al. In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE. Gene Ther 1995; 2: 603–613.

    PubMed  CAS  Google Scholar 

  91. Caplen NJ, Alton EWFW, Middleton PG, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Med 1995; 1: 39–46.

    Article  PubMed  CAS  Google Scholar 

  92. Hofland HE, Shepard L, Sullivan SM. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci USA 1996; 93: 7305–7309.

    Article  PubMed  CAS  Google Scholar 

  93. Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 1996; 35: 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  94. Hofland HE, Nagy D, Liu JJ, et al. In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm Res 1997; 14: 742–749.

    Article  PubMed  CAS  Google Scholar 

  95. Hong K, Zheng W, Baker A, Papahadjopoulos D. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 1997; 400: 233–237.

    Article  PubMed  CAS  Google Scholar 

  96. Eastman SJ, Lukason MJ, Tousignant JD, et al. A concentrated and stable aerosol formulation of cationic lipid:DNA complexes giving high-level gene expression in mouse lung. Human Gene Ther 1997; 8: 765–773.

    Article  CAS  Google Scholar 

  97. Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999; 6: 595–605.

    Article  PubMed  CAS  Google Scholar 

  98. Wheeler JJ, Palmer L, Ossanlou M, et al. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 1999; 6: 271–281.

    Article  PubMed  CAS  Google Scholar 

  99. Armstrong TC, Girouard LG, Anchordoquy TJ. PEGylation does not preserve cationic lipid/ DNA complexes during freeze-thawing and lyophilization. J Pharm Sci 2002; 91: 2549–2558.

    Article  PubMed  CAS  Google Scholar 

  100. Harvie P, Wong FMP, Bally MB. Use of poly(ethylene glycol)-lipid conjugates to regulate the surface attributes and transfection activity of lipid-DNA particles. J Pharm Sci 2000; 89: 652–663.

    Article  PubMed  CAS  Google Scholar 

  101. Li B, Li S, Tan Y, et al. Lyophilization of cationic lipid-protamine-DNA (LPD) complexes. J Pharm Sci 2000; 89: 355–364.

    Article  PubMed  CAS  Google Scholar 

  102. Cherng J-Y, Talsma H, Crommelin DJA, Hennink WE. Long term stability of poly((2dimethylamino)ethyl methacrylate)-based gene delivery systems. Pharm Res 1999; 16: 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  103. Zelphati O, Nguyen C, Ferrari M, et al. Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 1998; 5: 1272–1282.

    Article  PubMed  CAS  Google Scholar 

  104. Lai E, van Zanten JH. Evidence of lipoplex dissociation in liquid formulations. J Pharm Sci 2002; 91: 1225–1232.

    Article  PubMed  CAS  Google Scholar 

  105. Anchordoquy TJ, Girouard LG, Carpenter JF, Kroll DK. Stability of lipid/DNA complexes during agitation and freeze-thawing. J Pharm Sci 1998; 87: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  106. Rosenzweig HS, Rakhmanova VA, McIntosh TJ, Macdonald RC. 0-alkyl dioleoylphosphatidylcholinium compounds: the effect of varying alkyl chain length on their physical properties and in vitro DNA transfection activity. Bioconj Chem 2000; 11: 306–313.

    Article  CAS  Google Scholar 

  107. Allison SD, Anchordoquy TJ, TJ. Mechanisms of protection of cationic lipid-DNA complexes during lyophilization. J Pharm Sci 2000; 89: 682–691.

    Article  PubMed  CAS  Google Scholar 

  108. Allison SD, Molina MdC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim Biophys Acta 2000; 1468: 127–138.

    Article  PubMed  CAS  Google Scholar 

  109. Faneca H, Simoes S, Pedroso de Lima MC. Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim Biophys Acta 2002; 1567: 23–33.

    Article  PubMed  CAS  Google Scholar 

  110. Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 1987; 24: 324–331.

    Article  PubMed  CAS  Google Scholar 

  111. Carpenter JF, Crowe JH. The mechanism of cryoprotection of proteins by solutes. Cryobiology 1988; 25: 244–255.

    Article  PubMed  CAS  Google Scholar 

  112. Strauss G, Hauser H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci USA 198683: 2422–2426.

    Google Scholar 

  113. Strauss G, Schurtenberger P, Hauser H. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying. Biochim Biophys Acta 1986; 858: 169–180.

    Article  PubMed  CAS  Google Scholar 

  114. Prestrelski SJ, Arakawa T, Carpenter JF, JF. In: Cleland JL, Langer R, eds. Formulation and Delivery of Proteins and Peptides ACS Symposium Series 567, 1994, pp. 148–169.

    Chapter  Google Scholar 

  115. Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem 1981; 256: 7193–7201.

    PubMed  CAS  Google Scholar 

  116. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry 1982; 21: 6536–6544.

    Article  PubMed  CAS  Google Scholar 

  117. Hincha DK. Low concentrations of trehalose protect isolated thylakoids against mechanical freeze-thaw damage. Biochim Biophys Acta 1989; 987: 231–234.

    Article  CAS  Google Scholar 

  118. Hincha DK, Bakaltcheva I, Schmitt JM. Galactose-specific lectins protect isolated thylakoids against freeze-thaw damage. Plant Physiol 1993; 103: 59–65.

    PubMed  CAS  Google Scholar 

  119. Sanatarius KA. The mechanism of cryoprotection of biomembrane systems by carbohydrates. In: Li PH, Sakai A, eds. Plant Cold Hardiness and Freezing Stress. New York, Academic Press, 1982, pp. 475–486.

    Google Scholar 

  120. Johnston DS, Coppard E, Parera GV, Chapman D. Langmuir film balance study of the interactions between carbohydrates and phospholipid monolayers. Biochemistry 1984; 23: 6912–6919.

    Article  CAS  Google Scholar 

  121. Bummer P, Zografi G. The association of D-ghirnse with unilamellar phospholipid vesicles. Biophys Chem 1988; 30: 173–183.

    Article  PubMed  CAS  Google Scholar 

  122. Bechinger B, Macdonald PM, Seelig J. Deuterum NMR studies of the interactions of polyhydroxyl compounds and of glycolipids with lipid model membranes. Biochim Biophys Acta 1988; 943: 381–385.

    Article  PubMed  CAS  Google Scholar 

  123. PR Harrigan, Madden TD, Cullis PR. Protection of liposomes during dehydration or freezing. Chem Phys Lip 1990; 52: 139–149.

    Article  CAS  Google Scholar 

  124. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically Stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991;88(24):11460–11464.

    Article  PubMed  CAS  Google Scholar 

  125. Molina MdC, Allison SD, Anchordoquy TJ. Maintenance of particle size during the freezing step of the lyophilization process is insufficient for preservation of activity: insight from other structural indicators. J Pharm Sci 2001; 90: 1445–1455.

    Article  Google Scholar 

  126. Luyet BJ. Physical changes occurring in frozen solutions during rewarming and melting. In: Wolstenholme GEW, O’Conner M, eds. The Frozen Cell. London, J. & A. Churchill, 1970, pp. 27–50.

    Google Scholar 

  127. Cherng JY, Wetering Pvd., Talsma H, et al. Freeze-drying of poly((2-dimethylamino) ethyl methacrylate)-based gene delivery systems. Pharm Res 1997; 24: 1838–1841.

    Article  Google Scholar 

  128. Kuhl T, Guo Y, Alderfer JL, et al. Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir 1996; 12: 3003–3014.

    Article  CAS  Google Scholar 

  129. Kawakami K, Nishihara Y, Hirano K. Effect of hydrophilic polymers on physical stability of liposome dispersions. J Phys Chem B 2001; 105: 2374–2385.

    Article  CAS  Google Scholar 

  130. Hirsch-Lerner D, Barenholz Y. Probing DNA-cationic lipid interactions with the fluorophore trimethylammonium diphenyl-hexatriene (TMADPH). Biochim Biophys Acta 1998; 1370: 17–30.

    Article  PubMed  CAS  Google Scholar 

  131. Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998; 281: 78–81.

    Article  PubMed  CAS  Google Scholar 

  132. Subramanian M, Holopainen JM, Paukku T, et al. Characterisation of three novel cationic lipids as liposomal complexes with DNA. Biochim Biophys Acta 2000; 1466: 289–305.

    Article  PubMed  CAS  Google Scholar 

  133. Choosakoonkriang S, Wiethoff CM, Anchordoquy TJ, et al. Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA. J Biol Chem 2001; 276 (11): 8037–8043.

    Article  PubMed  CAS  Google Scholar 

  134. Wiethoff CM, Gill ML, Koe GS, et al. The structural organization of cationic lipid-DNA complexes. J Biol Chem 2002; 277: 44980–44987.

    Article  PubMed  CAS  Google Scholar 

  135. Braun CS, Jas GS, Choosakoonkriang S, et al. The structure of DNA within cationic lipid/ DNA complexes. Biophys J 2003; 84: 1114–1123.

    Article  PubMed  CAS  Google Scholar 

  136. Sorgi F, Huang L. A dry powder formulation for gene therapy. Pharm Res 1995;12:S-266.

    Google Scholar 

  137. Densmore CL, Giddings TH, Waldrep JC, et al. Gene transfer by guanidinium-cholesterol: dioleoylphosphatidyl-ethanolamine liposome-DNA complexes in aerosol. J Gene Med 1999; 1: 251–264.

    Article  PubMed  CAS  Google Scholar 

  138. Densmore CL, Orson FM, Xu B, et al. Aerosol delivery of robust polyethyleneimine DNA complexes for gene therapy and genetic immunization. Mol Ther 2000; 1: 180–188.

    Article  PubMed  CAS  Google Scholar 

  139. Crook K, McLachlan G, Stevenson BJ, Porteous DJ. Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolisation. Gene Ther 1996; 3: 834–839.

    PubMed  CAS  Google Scholar 

  140. Eastman SJ, Tousignant JD, Lukason MJ, et al. Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complexes. Human Gene Ther 1997; 8: 313–322.

    Article  CAS  Google Scholar 

  141. Seville PC, Kellaway IW, Birchall JC. Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J Gene Med 2002; 4: 428–437.

    Article  PubMed  CAS  Google Scholar 

  142. Talsma H, Cherng J-Y, Lehrmann H, et al. Stabilization of gene delivery systems by freeze-drying. Int J Pharm 1997; 157: 233–238.

    Article  PubMed  CAS  Google Scholar 

  143. Anchordoquy TJ, J Carpenter F, Kroll DJ. Maintenance of transfection rates and physical characterization of lipid/DNA complexes after freeze-drying and rehydration. Arch Biochem Biophys 1997; 348: 199–206.

    Article  PubMed  CAS  Google Scholar 

  144. Prasad TK, Gopal V, Rao NM. Structural changes in DNA mediated by cationic lipids alter in vitro transcriptional activity at low charge ratios. Biochim Biophys Acta 2003; 1619: 59–69.

    Article  PubMed  CAS  Google Scholar 

  145. Even-Chen S, Barenholz Y. DOTAP cationic liposomes prefer relaxed over Supercoiled plasmids. Biochim Biophys Acta 2000; 1509: 176–188.

    Article  PubMed  CAS  Google Scholar 

  146. Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: characterization studies. Biochim Biophys Acta 2000; 1475: 125–132.

    Article  PubMed  CAS  Google Scholar 

  147. McBurnie LD, Bardo B. Validation of sterile filtration of liquid nitrogen. Pharm Tech 2002; 26: 74–82.

    CAS  Google Scholar 

  148. Cherng J-Y, Wetering Pvd, Talsma H, et al. Stabilization of polymer-based gene delivery systems. Int J Pharm 1999; 183: 25–28.

    Article  PubMed  CAS  Google Scholar 

  149. Crowe JH, Clegg JS. Anhydrobiosis. Stroudsburg, PA, Dowden, Hutchinson and Ross, 1973.

    Google Scholar 

  150. Zuber G, Dauty E, Nothisen M, et al. Towards synthetic viruses. Adv Drug Del Rev 2001; 52: 245–253.

    Article  CAS  Google Scholar 

  151. Kwok KY, Adami RC, Hester KC, et al. Strategies for maintaining the particle size of peptide DNA condensates following freeze-drying. Int J Pharm 2000; 203: 81–88.

    Article  PubMed  CAS  Google Scholar 

  152. Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989; 28: 3916–3922.

    Article  PubMed  CAS  Google Scholar 

  153. Crowe JH, Crowe LM, Carpenter JF. Preserving dry biomaterials: the water replacement hypothesis, Part 1. BioPharm 1993; 6 (3): 28–37.

    CAS  Google Scholar 

  154. Crowe JH, Crowe LM, Carpenter JF. Preserving dry biomaterials: the water replacement hypothesis, Part 2. BioPharm 19936(4):40–43.

    Google Scholar 

  155. Smisterova J, Wagenaar A, Stuart MCA, et al. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J Biol Chem 2001; 276: 47615–47622.

    Article  PubMed  CAS  Google Scholar 

  156. Reimer DL, Zhang Y-P, Kong S, et al. Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry 1995; 34: 12877–12883.

    Article  PubMed  CAS  Google Scholar 

  157. Stamatatos L, Leventis R, Zuckerman MJ, Silvius JR. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 1988; 27: 3917–3925.

    Article  PubMed  CAS  Google Scholar 

  158. Bailey AL, Cullis PR. Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry 1997; 36: 1628–1634.

    Article  PubMed  CAS  Google Scholar 

  159. Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8: 1188–1196.

    Article  PubMed  CAS  Google Scholar 

  160. Bacala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci USA 1984; 81: 105–109.

    Article  Google Scholar 

  161. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci (1997)86:1–12.

    Google Scholar 

  162. Pietronigro DD, Jones WBG, Kalty K, Demopoulos HB. Interaction of DNA and liposomes as a model for membrane-mediated DNA damage. Nature 1977; 267: 78–79.

    Article  PubMed  CAS  Google Scholar 

  163. Li D, Wang M, Liehr JG, Randerath K. DNA adducts induced by lipids and lipid peroxidation products: possible relationships to I-compounds. Mut Res 1995; 344: 117–126.

    Article  CAS  Google Scholar 

  164. Wheeler CJ, Sukhu L, Yang G, et al. Converting an alcohol to an amine in a cationic lipid dramatically alters the co-lipid requirement, cellular transfection activity and the ultrastructure of DNA-cytofectin complexes. Biochim Biophys Acta 1996; 1280: 1–11.

    Article  PubMed  Google Scholar 

  165. Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther 2001; 8: 1281–1290 (2001).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anchordoquy, T.J. et al. (2004). Formulation Considerations for DNA-Based Therapeutics. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics