Skip to main content

Biological Protein Nanostructures and Targeted Drug Delivery

  • Chapter
  • 168 Accesses

Abstract

Targeted drug delivery refers to the site-specific drug delivery that directs drugs mainly to certain cell types within a tissue and to certain molecular complexes or organelles within a cell while avoiding drug loading in nontargeted cells. Targeted delivery of drugs to specific cells involves the specific interactions between drugs or drug carriers and the cell-surface proteins through ligand—receptor interactions or antigen—antibody interactions. Targeted drug delivery to specific molecular complexes or organelles within a cell requires the specific interactions of drug with the targeted complexes to lead to the therapeutic effect. In the biological systems, these interactions generally occur on various types of biological nanostructures of protein origin. Understanding and utilization of these biological nanostructures could lead to significant improvement in drug targeting and drug carriers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roco MC. Nanotechnology: a frontier for engineering education. Int J Eng Edu 2002; 18 (5): 488–497.

    Google Scholar 

  2. Jones AL, Hradek GT, Hornick C, Renaud G, Windier EET, Havel RJ. Uptake and processing of remnants of chlomicrons and very low density lipoproteins by rat liver. J Lipid Res 1984; 25: 1151–1158.

    PubMed  CAS  Google Scholar 

  3. Umeda Y, Redgrave TG, Mortimer B-C, Mamo JCL. Kinetics and uptake oxidatively modified lymph chylomicrons. Am J Physiol 1995; 268: G709 - G716.

    PubMed  CAS  Google Scholar 

  4. Soued M, Mansbach II CM. Chylomicron remnant uptake by enterocytes is receptor dependent. Am J Physiol 270 1996; (1 Pt 1): G203 - G212.

    PubMed  CAS  Google Scholar 

  5. Porter CJH, Charman WH. Uptake of drugs into the intestinal lymphatic after oral administration. Adv Drug Deliv Rev 1997; 25: 71–89.

    Article  CAS  Google Scholar 

  6. Rensen PCN, De Vrueh RLA, van Berkel TJC. Targeting hepatitis B therapy to the liver: clinical pharmacokinetic considerations. Clin Pharmacokinet 1996; 31: 131–155.

    Article  PubMed  CAS  Google Scholar 

  7. Hara T, Tan Y, Huang L. In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc Natl Acad Sci USA 1997; 94: 14547–14552.

    Article  PubMed  CAS  Google Scholar 

  8. Hara T, Liu F, Liu DX, Huang L. Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv Drug Deliv Rev 1997; 24: 265–271.

    Article  CAS  Google Scholar 

  9. Olofsson, SO, Bjursell G, Bostrom K, et al. Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process. Atherosclerosis 1987; 68: 1–17.

    Article  PubMed  CAS  Google Scholar 

  10. Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Control Rel 2002; 80: 29–44.

    Article  CAS  Google Scholar 

  11. Shawer M, Greenspan P, oie S, DR Lu. VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting. J Pharm Sci 2002; 91: 1405–1413.

    Article  PubMed  CAS  Google Scholar 

  12. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Scientific American 1984; 251: 58–66.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47.

    Article  PubMed  CAS  Google Scholar 

  14. Shepherd J, Packard CJ, Bicker S, Lawrie TD, Morgan HG. Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. New Engl J Med 1980; 302: 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  15. Kesaniemi YA, Witztum JL, Steibrecher UP. Receptor-mediated catabolism of low density lipoprotein in man: Quantitation using glucosylated low density lipoprotein. J Clin Invest 1983; 71: 950–959.

    Article  PubMed  CAS  Google Scholar 

  16. Kader A, Davis PJ, Kara M, Liu H. Drug targeting using low density lipoprotein (LDL): physicochemical factors affecting drug loading into LDL particles. J Control Rel 1998; 55: 231–243.

    Article  CAS  Google Scholar 

  17. Vitols S, Gahrton G, Ost A, Peterson C. Elevated low density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 1984; 63: 1186–1193.

    PubMed  CAS  Google Scholar 

  18. Vitols S, Gahrton G, Bjorkholm M, Peterson C. Hypocholesterolaemia in malignancy due to elevated low-density-lipoprotein-receptor activity in tumor cells: evidence from studies in patients with leukemia. Lancet 1985; 2: 1150–1153.

    Article  PubMed  CAS  Google Scholar 

  19. Vitols S, Peterson C, Larsson O, Holm P, Aberg B. Elevated uptake of low density lipoprotein by human lung cancer tissue in vivo. Cancer Res 1992; 52: 6244–6247.

    PubMed  CAS  Google Scholar 

  20. Rudling MJ, Angelin B, Peterson CO, Collins VP. Low density lipoprotein receptor activity in human intracranial tumors and its relation to the cholesterol requirement. Cancer Res 1990; 50: 483–487.

    PubMed  CAS  Google Scholar 

  21. Jung-Testas I, Weintraub H, Dupuis D, et al. Low density lipoprotein-receptor in primary cultures of rat glial cells. J. Steroid Biochem. Mol Biol 1992; 42: 597–605.

    Article  PubMed  CAS  Google Scholar 

  22. Maletinska L, Blakely EA, Bjornstad KA, et al. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res 2000; 60: 2300–2303.

    PubMed  CAS  Google Scholar 

  23. Firestone RA. Low-density lipoproteins as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem 1994; 5: 105–113.

    Article  PubMed  CAS  Google Scholar 

  24. de Smidt PC, van Berkel TJ. Prolonged serum half-life of antineoplastic drugs by incorporation into the low density lipoprotein. Cancer Res 1990; 50: 7476–7482.

    PubMed  Google Scholar 

  25. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivatives. Br J Cancer 1994; 69: 833–839.

    Article  PubMed  CAS  Google Scholar 

  26. Soncin M, Polo L, Reddi E, et al. Effect of the delivery system on the biodistribution of Ge(IV)octabutoxy-phthalocyanines in tumor-bearing mice. Cancer Lett 1995; 89: 101–106.

    PubMed  CAS  Google Scholar 

  27. Joni G, Reddi E. The role of lipoproteins in the delivery of tumor-targeting photosensitizers. Int J Biochem 1993; 25: 1369–1375.

    Article  Google Scholar 

  28. Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 1991; 259: 66–70.

    PubMed  CAS  Google Scholar 

  29. Chen D, Lee KH. Biodistribution of calcitonin encapsulated in liposomes in mice with particular reference to the central nerve system. Biochem Biophys Acta 1993; 1158: 244–250.

    Article  PubMed  CAS  Google Scholar 

  30. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93: 14164–14169.

    Article  PubMed  CAS  Google Scholar 

  31. Meresse S, Delbart C, Fruchart JC, Cecchelli R. Low-density lipoprotein receptor on endothelium of brain capillaries. J Neurochem 1989; 53 (2): 340–345.

    Article  PubMed  CAS  Google Scholar 

  32. Lucarelli M, Gennarelli M, Cardelli P, et al. Expression of receptors for native and chemically modified low-density lipoprotein in brain microvessels. FEBS Lett 1997; 401 (1): 53–58.

    Article  PubMed  CAS  Google Scholar 

  33. Dehouck B, Fenart L, Dehouck M, et al. A new function for the LDL receptor: transcytosis of LDL across the blood brain barrier. J Cell Biol 1997; 138 (4): 877–889.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto A, Naito M, Itakura H, et al. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci USA 1990; 87: 9133–9137.

    Article  PubMed  CAS  Google Scholar 

  35. Meltzer MS, Gendelman HE. Mononuclear phagocytes as targets, tissue reservoirs, and immunoregulatory cells in human immunodeficiency virus disease. Curr Top Microbiol Immunol 1992; 181: 239–263.

    Article  PubMed  CAS  Google Scholar 

  36. Gendelman HE, Orenstein JM, Baca LM, et al. The macrophage in the persistence and pathogenesis of HIV infection. AIDS 1989; 3 (8): 475–495.

    Article  PubMed  CAS  Google Scholar 

  37. Hu J, Liu H, Wang L. Enhanced delivery of AZT to macrophages via acetylated LDL. J Control Rel 2000; 69: 327–335.

    Article  CAS  Google Scholar 

  38. Jaeschke H, Smith CW, Clemens MG, Ganey PE, Roth RA. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophiles. Toxicol Appl Pharmacol 1996; 139: 213–226.

    Article  PubMed  CAS  Google Scholar 

  39. Bijsterbosch MK, Ziere GJ, van Berkel TJ. Lactosylated low density lipoprotein: a potential carrier for the site specific delivery of drugs to Kupffer cells. Mol Pharmacol 1989; 36: 481 189.

    Google Scholar 

  40. Bijsterbosch MK, Manoharan M, Dorland R, et al. Delivery of cholesteryl-conjugated phosphorothioate oligodeoxynucleotides to Kupffer cells by lactosylated low-density lipoprotein. Biochem Pharmacol 2001; 62: 627–633.

    Article  PubMed  CAS  Google Scholar 

  41. Nyamekye I, Buonaccorsi G, McEwan J, et al. Inhibition of intimal hyperplasia in balloon injured arteries with adjunctive phthalocyanine sensitized photodynamic therapy. Eur J Vasc Endovasc Surg 1996; 11: 19–28.

    Article  PubMed  CAS  Google Scholar 

  42. de Varies HE, Moor ACE, Dubbelman TMAR, et al. Oxidized low-density lipoprotein as a delivery system for photosensitizers: Implications for photodynamic therapy of atherosceloris. J Pharmacol Exper Ther 1999; 289: 528–534.

    Google Scholar 

  43. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol 2001; 53: 1169–1174.

    Article  PubMed  CAS  Google Scholar 

  44. Kim J-S, Maruyama A, Akaike T, Kim SW. In vitro gene expression on smooth muscle cells using a terplex delivery system. J Control Rel 1997; 47: 51–59.

    Article  CAS  Google Scholar 

  45. Kim J-S, Kim B-I, Maruyame A, et al. A new non-viral DNA delivery vector: the terplex system. J Control Rel 1998; 53: 175–182.

    Article  CAS  Google Scholar 

  46. Steinberg D. A docking receptor for HDL cholesterol esters. Science 1996; 271: 460–461.

    Article  PubMed  CAS  Google Scholar 

  47. Rensen PC, de Vrueh RL, Kuiper J, et al. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev 2001; 47 (2–3): 251–276.

    Article  PubMed  CAS  Google Scholar 

  48. Lacko AG, Nair M, Paranjape S, et al. High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res 2002; 22: 2045–2049.

    PubMed  CAS  Google Scholar 

  49. Reisinger RE, Atkinson D. Phospholipid/cholesteryl ester microemulsion containing unesterified cholesterol: model systems for low density lipoproteins. J Lipid Res 1990; 31: 849–858.

    PubMed  CAS  Google Scholar 

  50. Chun PW, Brumbauge EE, Shiremann RB. Interaction of human low density lipoprotein and apolipoprotein B with ternary lipid microemulsion. Biophys Chem 1986; 25: 223–241.

    Article  PubMed  CAS  Google Scholar 

  51. Hirata RDC, Hirata MH, Mesquita CH, et al. Effects of apolipoprotein B-100 on the metabolism of a lipid microemulsion model in rats. Biochim Biophy Acta 1999; 1437: 53–62.

    Article  CAS  Google Scholar 

  52. Maranhao RC, Cesar TB, Pedross-Mariani SR, et al. Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 1993; 28: 691–695.

    Article  PubMed  CAS  Google Scholar 

  53. Pan G, Shawer M, Oie S, Lu RD. In vitro gene transfection in human glioma cells using a novel and less cytotoxic artificial lipoprotein delivery system. Pharm Res 2003; 20 (5): 738–733.

    Article  PubMed  CAS  Google Scholar 

  54. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  PubMed  CAS  Google Scholar 

  55. Croix BS, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  Google Scholar 

  56. Hong FD, Clayman GL. Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 2000; 60: 6551–6556.

    PubMed  CAS  Google Scholar 

  57. Molema G. Tumor vasculature directed drug targeting: applying new technologies and knowledge to the development of clinically relevant therapies. Pharm Res 2002; 19 (9): 1251–1258.

    Article  PubMed  CAS  Google Scholar 

  58. Loregian A, Marsden HS, Palu G. Protein-protein interactions as targets for antiviral chemotherapy. Rev Med Virol 2002; 12: 239–262.

    Article  PubMed  CAS  Google Scholar 

  59. Huang Z. Structural chemistry and therapeutic intervention of protein-protein interactions in immune response, human immunodeficiency virus entry, and apoptosis. Pharmacol Ther 2000; 86: 201–215.

    Article  PubMed  CAS  Google Scholar 

  60. Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996; 93: 13–20.

    Article  PubMed  CAS  Google Scholar 

  61. Cohen GH. Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. J Virol 1972; 9: 408–418.

    PubMed  CAS  Google Scholar 

  62. Dutia BM. Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. J Gen Virol 1983; 64: 513–521.

    Article  PubMed  CAS  Google Scholar 

  63. Paradis H, Gaudreau P, Brazeau P, Langelier Y. Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxy-terminus of its subunits. J Biol Chem 1988; 263: 16045–16050.

    PubMed  CAS  Google Scholar 

  64. McClements W, Yamanaka G, Garsky V. Oligonucleotides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Viology 1988; 162: 270–273.

    Article  CAS  Google Scholar 

  65. Pillay D, Taylor S, Richman DD. Incidence and impact of resistance against approved antiretroviral drugs. Rev Med Virol 2000; 10: 231–253.

    Article  PubMed  CAS  Google Scholar 

  66. Zutshi R, Franciskovich J, Slultz M, et al. Targeting the dimerization interface of HIV-1 protease: inhibition with cross-linked interfacial peptides. J Am Chem Soc 1997; 119: 4841–4845.

    Article  CAS  Google Scholar 

  67. Bouras A, Boggetto N, Benatalah Z, et al. Design, synthesis, and evaluation of conformation-ally constrained tongs, new inhibitors of HIV-1 protease dimerization. J Med Chem 1999; 42: 957–962.

    Article  PubMed  CAS  Google Scholar 

  68. Morris MC, Robert-Hebmann V, Chaloin L, et al. A new potent HIV-1 reverse transcriptase inhibitor. J Biol Chem 1999; 274: 24941–24946.

    Article  PubMed  CAS  Google Scholar 

  69. Maroun RG, Krebs D, Roshani M, et al. Conformational aspects of HIV-1 integrase inhibition by a peptide derived from the enzyme central domain and by antibodies raised against this peptide. Eur J Biochem 1999; 260: 145–155.

    Article  PubMed  CAS  Google Scholar 

  70. Kasukawa H, Howley PM, Benson JD. A fifteen-amino-acid peptide inhibits human papilloma E1–E2 interaction and human papillomavirus DNA replication in vitro. J Virol 1998; 72: 8166–8173.

    PubMed  CAS  Google Scholar 

  71. Huang H, Chopra R, Verdine GL, Harrision SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implication for drug resistance. Science 1998; 282: 1669–1675.

    Article  PubMed  CAS  Google Scholar 

  72. Bundell TL. Structure-based drug design. Nature 1996; 384: 23–26.

    Article  Google Scholar 

  73. Johnsson K, Ge L. Phage display of combinatorial peptide and protein libraries and their application in biology and chemistry. Curr Top Microbiol Immunol 1999; 243: 87–105.

    Article  PubMed  CAS  Google Scholar 

  74. Shih HM, Goldman PS, Demaggio AJ, et al. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci USA 1997; 94: 13396–13401.

    Article  Google Scholar 

  75. Weiner AL. Liposomes for protein delivery selecting manufacture and development processes. Immunomethods 1994; 4: 201–209.

    Article  PubMed  CAS  Google Scholar 

  76. Blanke SR, Milne JC, Benson EL, Collier RJ. Fused polycationic peptide mediated delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci USA 1996; 93: 8437–8442.

    Article  PubMed  CAS  Google Scholar 

  77. Elliot G, O’Hare P. Intracellular trafficking and protein delivery by a herpes structural protein. Cell 1997; 88: 223–233.

    Article  Google Scholar 

  78. Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous protein into cells. Proc Natl Acad Sci USA 1994; 91: 664–668.

    Article  PubMed  CAS  Google Scholar 

  79. Loregian A, D’Acunto MR, Battistutta R, et al. Crystal structure of the B subunit of Eshcherichia coli heat-labile enterotoxin carrying peptides with anti-herpes simplex virus type 1 activity. J Biol Chem 1999; 274: 8764–8769.

    PubMed  Google Scholar 

  80. Dwek R. Glycobiology: toward understanding the function of sugars. Chem Rev 1996; 96: 683–720.

    Article  PubMed  CAS  Google Scholar 

  81. Karpas A, Fleet GWJ, Dwek RA, et al. Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc Natl Acad Sci USA 1988; 85: 9229–9233.

    Article  PubMed  CAS  Google Scholar 

  82. Jiang S, Zhao Q, Debnath AK. Peptide and non-peptide HIV fusion inhibitors. Curr Phar Des 2002; 8 (8): 563–580.

    Article  CAS  Google Scholar 

  83. D’Souza MP, Cairns JS, Plaeger SF. Current evidence and future direction for targeting HIV entry: therapeutic and prophylactic strategies. JAMA 2000; 284 (2): 215–222.

    Article  PubMed  Google Scholar 

  84. Goss PE, Baker MA, Carver JP, Dennis JW. Inhibitors of carbohydrate processing: A new class of anticancer agents. Clin Cancer Res 1995; 1 (9): 935–944.

    PubMed  CAS  Google Scholar 

  85. Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets 2000; 1 (1): 85–99.

    Article  PubMed  CAS  Google Scholar 

  86. Campbell KR, Ohman EM, Cantor W, Lincoff AM. The use of glycoprotein IIb/IIIa inhibitor therapy in acute ST-segment elevation myocardial infarction: current practice and future trends. Am J Cardiol 2000; 85 (8A): 32C - 38C.

    Article  PubMed  CAS  Google Scholar 

  87. Meier-Ewert HK, Nesto RW. Targeting the use of glycoprotein IIb/IIIa antagonists-the diabetic patient. Rev Cardiovasc Med 2002; 3 (Suppl 1): 520 - S27.

    Google Scholar 

  88. Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structure of protein-DNA complexes. Genome Biol 2000; 1 (1): 1–10.

    Article  Google Scholar 

  89. Rhodes D, Schwabe JW, Chapman L, Fairall L. Towards an understanding of protein-DNA recognition. Philos Trans R Soc Lond Biol Sci 1996; 351 (1339): 501–509.

    Article  CAS  Google Scholar 

  90. Good L, Nielsen PE. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev 1997; 7 (4): 431–437.

    Article  PubMed  CAS  Google Scholar 

  91. Welch JJ, Rauscher FJ, Beerman TA. Targeting DNA-binding drugs to sequence-specific transcription factor-DNA complexes. Differential effects of intercalating and minor groove binding drugs. J Biol Chem 1994; 269 (49): 31051–31058.

    PubMed  CAS  Google Scholar 

  92. Henderson D, Hurley H. Specific targeting of protein-DNA complexes by DNA-reactive drugs (+)-CC-1065 and pluramycin. J Mol Recog 1996; 9 (2): 75–87.

    Article  CAS  Google Scholar 

  93. Kondo S, Kondo Y, Li G, et al. Targeted therapy of human malignant glioma in a mouse model by 2–5A antisense directed against telomerase RNA. Oncogene 1998; 16 (25): 3323–3330.

    Article  PubMed  CAS  Google Scholar 

  94. Stewart SA, Hahn WC. Prospects for anti-neoplastic therapies based on telomere biology. Cuff Cancer Drug Targets 2001; 2 (1): 1–17.

    Article  CAS  Google Scholar 

  95. Blackburn EH. The telomere and telomerase: nucleic acid-protein complexes acting in a telomere homeostasis system: a review. Biochem (Mosc) 1997; 62 (11): 1196–1201.

    CAS  Google Scholar 

  96. Neidle S, Kelland LR. Telomerase as an anti-cancer target: current status and future prospects. Anticancer Drug Des 1999; 14 (4): 341–347.

    PubMed  CAS  Google Scholar 

  97. Perry PJ, Arnold JR, Jenkins TC. Telomerase inhibitors for the treatment of cancer: the current perspective. Expert Opin Investig Drugs 2001; 10 (12): 2141–2156.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pan, G., Øie, S., Lu, D.R. (2004). Biological Protein Nanostructures and Targeted Drug Delivery. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics