Skip to main content

The Role of Receptor-Mediated Apoptosis in T-Cell Dysfunction

  • Chapter
Cancer Immunotherapy at the Crossroads

Part of the book series: Current Clinical Oncology ((CCO))

  • 118 Accesses

Abstract

Many escape mechanisms have been proposed to explain the failure of the immune system to detect and reject tumor cells. The identification of Fas ligands on the surface of multiple types of tumor cells has led to the recognition that tumor cells may escape destruction by immune effector cells, and may be actively involved in the killing of Fas-expressing lymphocytes. Thus, the Fas/Fas ligand (Fas/FasL) interaction serves both as a mechanism of cytotoxicity for T and natural killer (NK) cells, and as a tumor “counterattack” mechanism against lymphocytes. This mechanism of tumor-induced death of infiltrating lymphocytes complements the concept of FasL-mediating immune-privilege to certain organs, such as the eye, testes, or ovary, where histocompatibility differences are partially tolerated. Despite the wealth of data supporting the role of the Fas/FasL system in mediating immune-privilege and tumor counterattack, these concepts have recently been challenged by many contradictory reports. Here, we review the evidence for and against a role for the Fas/FasL system in immune escape mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagata S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol 1994; 57: 129–144.

    Article  PubMed  CAS  Google Scholar 

  2. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999; 33: 29–55.

    Article  PubMed  CAS  Google Scholar 

  3. Orlinick JR, Vaishnaw AK, Elkon KB. Structure and function of Fas/Fas ligand. Int Rev Immunol 1999; 18: 293–308.

    Article  PubMed  CAS  Google Scholar 

  4. Pinkoski MJ, Green DR. Fas ligand, death gene. Cell Death Differ 1999; 6: 1174–1181.

    Article  PubMed  CAS  Google Scholar 

  5. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Two CD95 (APO-1/ Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Google Scholar 

  6. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type lI cells. J Biol Chem 1999;274: 22, 532–22, 538.

    Google Scholar 

  7. Suda T, Nagata S. Why do defects in the Fas-Fas ligand system cause autoimmunity? J Allergy Clin Immunol 1997; 100: S97 - S101.

    Article  PubMed  CAS  Google Scholar 

  8. Nagata S, Suda T. Fas and Fas ligand: 1pr and gld mutations. Immunol Today 1995; 16: 39–43.

    Article  PubMed  CAS  Google Scholar 

  9. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;270: l 189–1192.

    Google Scholar 

  10. Hori J, Joyce N, Streilein JW. Epithelium-deficient corneal allografts display immune privilege beneath the kidney capsule. Investig Ophthalmol Vis Sci 2000; 41: 443–452.

    CAS  Google Scholar 

  11. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 1996; 5: 7–16.

    Article  PubMed  CAS  Google Scholar 

  12. Jorgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, et al. Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Investig Ophthalmol Vis Sci 1998; 39: 1590–1599.

    CAS  Google Scholar 

  13. Zhang J, Ma B, Marshak-Rothstein A, Fine A. Characterization of a novel cis-element that regulates Fas ligand expression in corneal endothelial cells. J Biol Chem 1999;274:26, 537–26, 542.

    Google Scholar 

  14. Hu MS, Schwartzman JD, Yeaman GR, Collins J, Seguin R, Khan IA, et al. Fas-FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun 1999; 67: 928–935.

    PubMed  CAS  Google Scholar 

  15. Sotozono C, Sano Y, Suzuki T, Tada R, Ikeda T, Nagata S, et al. Soluble Fas ligand expression in the ocular fluids of uveitis patients. Curr Eye Res 2000; 20: 54–57.

    Article  PubMed  CAS  Google Scholar 

  16. Sugita S, Taguchi C, Takase H, Sagawa K, Sueda J, Fukushi K, et al. Soluble Fas ligand and soluble Fas in ocular fluid of patients with uveitis. Br J Ophthalmol 2000; 84: 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  17. Gregory MS, Repp AC, Holhbaum AM, Saff RR, Marshak-Rothstein A, Ksander BR. Membrane fas ligand activates innate immunity and terminates ocular immune privilege. J Immunol 2002; 169: 2727–2735.

    PubMed  CAS  Google Scholar 

  18. Chen JJ, Sun Y, Nabel GJ. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 1998; 282: 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  19. Elzey BD, Griffith TS, Herndon JM, Barreiro R, Tschopp J, Ferguson TA. Regulation of Fas ligand-induced apoptosis by TNF. J Immunol 2001; 167: 3049–3056.

    PubMed  CAS  Google Scholar 

  20. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377: 630–632.

    Article  PubMed  CAS  Google Scholar 

  21. Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon is llografts. Proc Natl Acad Sci USA 1997; 94: 3943–3947.

    Article  PubMed  CAS  Google Scholar 

  22. Saporta S, Cameron DF, Borlongan CV, Sanberg PR. Survival of rat and porcine Sertoli cell transplants in the rat striatum without cyclosporine-A immunosuppression. Exp Neurol 1997; 146: 299–304.

    Article  PubMed  CAS  Google Scholar 

  23. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3: 738–743.

    Article  PubMed  CAS  Google Scholar 

  24. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA, Jr., et al. The role of Fas in autoimmune diabetes. Cell 1997: 89: 17–24.

    Article  PubMed  CAS  Google Scholar 

  25. Hsu PN, Lin HH, Tu CF, Chen NJ, Wu KM, Tsai HF, et al. Expression of human Fas ligand on mouse beta islet cells does not induce insulitis but is insufficient to confer immune privilege for islet grafts. J Biomed Sci 2001; 8: 262–269.

    Article  PubMed  CAS  Google Scholar 

  26. Takeuchi T, Ueki T, Nishimatsu H, Kajiwara T, Ishida T, Jishage K, et al. Accelerated rejection of Fas ligand-expressing heart grafts. J Immunol 1999; 162: 518–522.

    PubMed  CAS  Google Scholar 

  27. Turvey SE, Gonzalez-Nicolini V, Kingsley CI, Larregina AT, Morris PJ, Castro MG, et al. Fas ligand-transfected myoblasts and islet cell transplantation. Transplantation 2000; 69: 1972–1976.

    Article  PubMed  CAS  Google Scholar 

  28. Li XK, Okuyama T, Tamura A, Enosawa S, Kaneda Y, Takahara S, et al. Prolonged survival of rat liver allografts transfected with Fas ligand-expressing plasmid. Transplantation 1998; 66: 1416–1423.

    Article  PubMed  CAS  Google Scholar 

  29. Swenson KM, Ke B, Wang T, Markowitz JS, Maggard MA, Spear GS, et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation 1998; 65: 155–160.

    Article  PubMed  CAS  Google Scholar 

  30. Schmid RA, Stammberger U, Hillinger S, Gaspert A, Boasquevisque CH, Malipiero U, et al. Fas ligand gene transfer combined with low dose cyclosporine A reduces acute lung allograft rejection. Transpl Int 2000; 13: S324 - S328.

    PubMed  Google Scholar 

  31. Tourneur L, Malassagne B, Batteux F, Fabre M, Mistou S, Lallemand E, et al. Transgenic expression of CD95 ligand on thyroid follicular cells confers immune privilege upon thyroid allografts. J Immunol 2001; 167: 1338–1346.

    PubMed  CAS  Google Scholar 

  32. Green DR, Bissonnette RP, Glynn JM, Shi Y. Activation-induced apoptosis in lymphoid systems. Semin Immunol 1992; 4: 379–388.

    PubMed  CAS  Google Scholar 

  33. Kabelitz D, Pohl T, Pechhold K. Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Immunol Today 1993; 14: 338–339.

    Article  PubMed  CAS  Google Scholar 

  34. Janssen O, Sanzenbacher R, Kabelitz D. Regulation of activation-induced cell death of mature T-lymphocyte populations. Cell Tissue Res 2000; 301: 85–99.

    Article  PubMed  CAS  Google Scholar 

  35. Martinez-Lorenzo MJ, Alava MA, Gamen S, Kim KJ, Chuntharapai A, Pineiro A, et al. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 1998; 28: 2714–2725.

    Article  PubMed  CAS  Google Scholar 

  36. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995; 377: 348–351.

    Article  PubMed  CAS  Google Scholar 

  37. Budd RC. Activation-induced cell death. Curr Opin Immunol 2001; 13: 356–362.

    Article  PubMed  CAS  Google Scholar 

  38. Russell JH. Activation-induced death of mature T cells in the regulation of immune responses. Curr Opin Immunol 1995; 7: 382–388.

    Article  PubMed  CAS  Google Scholar 

  39. Singer GG, Abbas AK. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1994; 1: 365–371.

    Article  PubMed  CAS  Google Scholar 

  40. Sidman CL, Marshall JD, Von Boehmer H. Transgenic T cell receptor interactions in the lymphoproliferative and autoimmune syndromes of 1pr and gld mutant mice. Eur J Immunol 1992; 22: 499–504.

    Article  PubMed  CAS  Google Scholar 

  41. Mollereau B, Deckert M, Deas O, Rieux-Laucat F, Hirsch F, Bernard A, et al. CD2-induced apoptosis in activated human peripheral T cells: a Fas-independent pathway that requires early protein tyrosine phosphorylation. J Immunol 1996; 156: 3184–3190.

    PubMed  CAS  Google Scholar 

  42. Wesselborg S, Janssen O, Kabelitz D. Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. J Immunol 1993; 150: 4338–4345.

    PubMed  CAS  Google Scholar 

  43. Combadiere B, Freedman M, Chen L, Shores EW, Love P, Lenardo MJ. Qualitative and quantitative contributions of the T cell receptor zeta chain to mature T cell apoptosis. JExp Med 1996; 183: 2109–2117.

    Article  CAS  Google Scholar 

  44. Oberg HH, Lengl-Janssen B, Kabelitz D, Janssen O. Activation-induced T cell death: resistance or susceptibility correlate with cell surface fas ligand expression and T helper phenotype. Cell Immunol 1997; 181: 93–100.

    Article  PubMed  CAS  Google Scholar 

  45. Lenardo MJ. Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 1991; 353: 858–861.

    Article  PubMed  CAS  Google Scholar 

  46. Van Parijs L, Refaeli Y, Lord JD, Nelson BH, Abbas AK, Baltimore D. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 1999; 11: 281–288.

    Article  PubMed  Google Scholar 

  47. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998; 8: 615–623.

    Article  PubMed  CAS  Google Scholar 

  48. Collette Y, Benziane A, Razanajaona D, Olive D. Distinct regulation of T-cell death by CD28 depending on both its aggregation and T-cell receptor triggering: a role for Fas-FasL. Blood 1998; 92: 1350–1363.

    PubMed  CAS  Google Scholar 

  49. Radvanyi LG, Shi Y, Vaziri H, Sharma A, Dhala R, Mills GB, et al. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol 1996; 156: 1788–1798.

    PubMed  CAS  Google Scholar 

  50. Ramsdell F, Seaman MS, Miller RE, Picha KS, Kennedy MK, Lynch DH. Differential ability of Thl and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int Immunol 1994; 6: 1545–1553.

    Article  PubMed  CAS  Google Scholar 

  51. Sato T, Irie S, Kitada S, Reed JC. FAP- 1: a protein tyrosine phosphatase that associates with Fas. Science 1995; 268: 411–415.

    Article  PubMed  CAS  Google Scholar 

  52. Varadhachary AS, Perdow SN, Hu C, Ramanarayanan M, Salgame P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc Natl Acad Sci USA 1997; 94: 5778–5783.

    Article  PubMed  CAS  Google Scholar 

  53. Radoja S, Saio M, Frey AB. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol 2001; 166: 6074–6083.

    PubMed  CAS  Google Scholar 

  54. Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J Immunol 1999; 162: 3273–3279.

    PubMed  CAS  Google Scholar 

  55. Restifo NP. Not so Fas: re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med 2000; 6: 493–495.

    Article  PubMed  CAS  Google Scholar 

  56. Chappell DB, Restifo NP. T cell-tumor cell: a fatal interaction? Cancer Immunol Immunother 1998; 47: 65–71.

    Article  PubMed  CAS  Google Scholar 

  57. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184: 1075–1082.

    Article  PubMed  Google Scholar 

  58. O’Connell J, Bennett MW, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: cancer as a site of immune privilege. Immunol Today 1999; 20: 46–52.

    Article  PubMed  Google Scholar 

  59. Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 1997; 94: 6420–6425.

    Article  PubMed  CAS  Google Scholar 

  60. Gastman BR, Atarshi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 1999; 59: 5356–5364.

    PubMed  CAS  Google Scholar 

  61. Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, Whiteside TL. Lymphocyte apoptosis induced by Fas ligand-expressing ovarian carcinoma cells. Implications for altered expression of T cell receptor in tumor-associated lymphocytes. J Clin Investig 1998; 101: 2579–2588.

    Article  PubMed  CAS  Google Scholar 

  62. Bennett MW, O’Connell J, O’Sullivan GC, Brady C, Roche D, Collins JK, et al. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 1998; 160: 5669–5675.

    PubMed  CAS  Google Scholar 

  63. Koyama S, Koike N, Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol 2001; 127: 20–26.

    Article  PubMed  CAS  Google Scholar 

  64. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat Med 1996; 2: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  65. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, et al. Human lung carcinomas express Fas ligand. Cancer Res 1997; 57: 1007–1012.

    PubMed  CAS  Google Scholar 

  66. Gratas C, Tohma Y, Van Meir EG, Klein M, Tenan M, Ishii N, et al. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol 1997; 7: 863–869.

    Article  PubMed  CAS  Google Scholar 

  67. Shibakita M, Tachibana M, Dhar DK, Kotoh T, Kinugasa S, Kubota H, et al. Prognostic significance of Fas and Fas ligand expressions in human esophageal cancer. Clin Cancer Res 1999; 5: 2464–2469.

    PubMed  CAS  Google Scholar 

  68. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  69. Zietz C, Rumpler U, Sturzl M, Lohrs U. Inverse relation of Fas-ligand and tumor-infiltrating lymphocytes in angiosarcoma: indications of apoptotic tumor counterattack. Am J Pathol 2001; 159: 963–970.

    Article  PubMed  CAS  Google Scholar 

  70. Okada K, Komuta K, Hashimoto S, Matsuzaki S, Kanematsu T, Koji T. Frequency of apoptosis of tumor-infiltrating lymphocytes induced by fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res 2000; 6: 3560–3564.

    PubMed  CAS  Google Scholar 

  71. Nishimatsu H, Takeuchi T, Ueki T, Kajiwara T, Moriyama N, Ishida T, et al. CD95 ligand expression enhances growth of murine renal cell carcinoma in vivo. Cancer Immunol Immunother 1999; 48: 56–61.

    Article  PubMed  CAS  Google Scholar 

  72. Khar A, Varalakshmi C, Pardhasaradhi BV, Mubarak Ali A, Kumari AL. Depletion of the natural killer cell population in the peritoneum by AK- 5 tumor cells overexpressing fas-ligand: a mechanism of immune evasion. Cell Immunol 1998; 189: 85–91.

    Article  PubMed  CAS  Google Scholar 

  73. Arai H, Chan SY, Bishop DK, Nabel GJ. Inhibition of the alloantibody response by CD95 ligand. Nat Med 1997; 3: 843–848.

    Article  PubMed  CAS  Google Scholar 

  74. Smith D, Sieg S, Kaplan D. Technical note: Aberrant detection of cell surface Fas ligand with anti-peptide antibodies. Jlmmunol 1998; 160: 4159–4160.

    CAS  Google Scholar 

  75. Strater J, Walczak H, Hasel C, Melzner I, Leithauser F, Moller P. CD95 ligand (CD95L) immunohistochemistry: a critical study on 12 antibodies. Cell Death Differ 2001; 8: 273–278.

    Article  PubMed  CAS  Google Scholar 

  76. Fiedler P, Schaetzlein C, Eibel H. Technical comment: Constitutive expression of FasL in thyrocytes. Science 1998;279:2015 online.

    Google Scholar 

  77. Stokes T, Rymaszewski M, Arscott P, Wang SH, Bretz JD, Barton J, Technical comment: constitutive expression of FasL in thyrocytes. Science 1998;279:2015 online.

    Google Scholar 

  78. Behrens CK, Igney FH, Arnold B, Moller P, Krammer PH. CD95 ligand-expressing tumors are rejected in anti-tumor TCR transgenic perform knockout mice. J Immunol 2001; 166: 3240–3247.

    PubMed  CAS  Google Scholar 

  79. Seino K, Kayagaki N, Fukao K, Okumura K, Yagita H. Rejection of Fas ligand-expressing grafts. Transplant Proc 1997; 29: 1092–1093.

    Article  PubMed  CAS  Google Scholar 

  80. Seino K, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nat Med 1997; 3: 165–170.

    Article  PubMed  CAS  Google Scholar 

  81. Shimizu M, Fontana A, Takeda Y, Yagita H, Yoshimoto T, Matsuzawa A. Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells. J Immunol 1999; 162: 7350–7357.

    PubMed  CAS  Google Scholar 

  82. Okamoto S, Takamizawa S, Bishop W, Wen J, Kimura K, Sandler A. Overexpression of Fas ligand does not confer immune privilege to a pancreatic beta tumor cell line (betaTC-3). J Surg Res 1999; 84: 77–81.

    Article  PubMed  CAS  Google Scholar 

  83. Yagita H, Seino K, Kayagaki N, Okumura K. CD95 ligand in graft rejection. Nature 1996; 379: 682.

    Article  PubMed  CAS  Google Scholar 

  84. Seino K, Iwabuchi K, Kayagaki N, Miyata R, Nagaoka I, Matsuzawa A, et al. Chemotactic activity of soluble Fas ligand against phagocytes. J Immunol 1998; 161: 4484–4488.

    PubMed  CAS  Google Scholar 

  85. Ottonello L, Tortolina G, Amelotti M, Dallegri F. Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol 1999; 162: 3601–3606.

    PubMed  CAS  Google Scholar 

  86. Hohlbaum AM, Moe S, Marshak-Rothstein A. Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 2000; 191: 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  87. Shudo K, Kinoshita K, Imamura R, Fan H, Hasumoto K, Tanaka M, et al. The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. Eur J Immunol 2001; 31: 2504–2511.

    Article  PubMed  CAS  Google Scholar 

  88. Miwa K, Asano M, Horai R, IwakuraY, Nagata S, Suda T. Caspase 1-independent IL-1 beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 1998; 4: 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  89. Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors.J Immunol 2001; 167: 6217–6224.

    PubMed  CAS  Google Scholar 

  90. Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1 beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192: 1661–1668.

    Article  PubMed  CAS  Google Scholar 

  91. Kang SM, Braat D, Schneider DB, O’Rourke RW, Lin Z, Ascher NL, et al. A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation 2000; 69: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  92. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768–774.

    Article  PubMed  CAS  Google Scholar 

  93. Akita K, Ohtsuki T, Nukada Y, Tanimoto T, Namba M, Okura T, Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. J Biol Chem 1997;272:26, 595–26, 603.

    Google Scholar 

  94. Zhang Y, Center DM, Wu DM, Cruikshank WW, Yuan J, Andrews DW, Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem 1998; 273: 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  95. Ehl S, Hoffmann-Rohrer U, Nagata S, Hengartner H, Zinkernagel R. Different susceptibility of cytotoxic T cells to CD95 (Fas/Apo-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol 1996;] 56: 2357–2360.

    Google Scholar 

  96. Janssen O, Stocker A, Sanzenbacher R, Oberg HH, Siddiqi MA, Kabelitz D. Differential regulation of activation-induced cell death in individual human T cell clones. Int Arch Allergy Immunol 2000; 121: 183–193.

    Article  PubMed  CAS  Google Scholar 

  97. Giovarelli M, Musiani P, Garotta G, Ebner R, Di Carlo E, Kim Y, et al. A “stealth effect”: adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. J Immunol 1999; 163: 4886–4893.

    PubMed  CAS  Google Scholar 

  98. Koyama S, Koike N, Adachi S. Expression of TNF-related apoptosis-inducing ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: a possible mechanism of immune evasion of the tumor. J Cancer Res Clin Oncol 2002; 128: 73–79.

    Article  PubMed  CAS  Google Scholar 

  99. Mogil RJ, Radvanyi L, Gonzalez-Quintial R, Miller R, Mills G, Theofilopoulos AN, et al. Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. Int Immunol 1995; 7: 1451–1458.

    Article  PubMed  CAS  Google Scholar 

  100. Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubi A, Echeverri F, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373: 441–444.

    Article  PubMed  CAS  Google Scholar 

  101. Sytwu HK, Liblau RS, McDevitt HO. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 1996; 5: 17–30.

    Article  PubMed  CAS  Google Scholar 

  102. Bonfoco E, Stuart PM, Brunner T, Lin T, Griffith TS, Gao Y, et al. Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 1998; 9: 711–720.

    Article  PubMed  CAS  Google Scholar 

  103. Pinkoski MI, Droin NM, Green DR. TNF-a upregulates non-lymphoid Fas-ligand following superantigen-induced peripheral lymphocyte activation. J Biol Chem 2002;277: 42, 380–42, 385.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rabinowich, H., Gastman, B.R. (2004). The Role of Receptor-Mediated Apoptosis in T-Cell Dysfunction. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics