Skip to main content

Lung Cancer and Immune Dysfunction

  • Chapter
Cancer Immunotherapy at the Crossroads

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Lung cancer accounts for more than 28% of all cancer deaths each year, and is the leading cause of cancer-related mortality in the United States (1). Despite focused research in conventional therapies, the 5-year survival rate remains at 14%, and has improved only minimally in the past 25 years. Newly discovered molecular mechanisms in the pathogenesis of lung cancer provide novel opportunities for targeted therapies of non-small-cell lung cancer (NSCLC) (2,3). Immune-based targeted therapies have focused on the elicitation of specific tumor antigen-directed responses. Although various methods of immune stimulation have been attempted for the treatment of lung cancer, none have proven to be reliably effective (4). In contrast, immune-based therapies have proven more successful in melanoma and renal cell carcinoma (RCC) (5,6),leading to the misconception that thoracic malignancies are nonimmunogenic and are not amenable to immunologic interventions. However, protective immunity is now known to be generated against non-immunogenic murine tumors (7,8). These studies suggest that a tumor’s apparent lack of immunogenicity indicates a failure to elicit an effective host response rather than a lack of tumor antigen (TA) expression (9,10). Accordingly, a new paradigm has emerged that focuses on generating antitumor responses by therapeutic vaccination (11,12). In this setting, vaccination refers to an intervention that unmasks TAs, leading to generation of specific host-immune responses against the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000.CA Cancer J Clin 2000;50:7–33.

    CAS  Google Scholar 

  2. Dy GK, Adjei AA. Novel targets for lung cancer therapy: part I. J Clin Oncol 2002; 20: 2881–2894.

    PubMed  CAS  Google Scholar 

  3. Dy GK, Adjei AA. Novel targets for lung cancer therapy: part Il. J Clin Oncol 2002; 20: 3016–3028.

    PubMed  CAS  Google Scholar 

  4. O’Reilly EM, Ilson DH, Saltz LB, Heelan R, Martin L, Kelsen DP. A phase II trial of interferon alpha-2a and carboplatin in patients with advanced malignant mesothelioma. Cancer Investig 1999; 17: 195–200.

    Google Scholar 

  5. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000; 6: 332–336.

    PubMed  CAS  Google Scholar 

  6. Thurner B, Haendle I, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    PubMed  CAS  Google Scholar 

  7. Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 1982; 79: 4718–4722.

    PubMed  Google Scholar 

  8. Boon T, Old L. Cancer tumor antigens. Curr Opin Immunol1997;9:681–683.

    Google Scholar 

  9. Boon T, Gajewski TF, Coulie PG. From defined human tumor antigens to effective immunization? Immunol Today 1995; 16: 334–336.

    PubMed  CAS  Google Scholar 

  10. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med 1996;183:725–729.

    Google Scholar 

  11. Pardoll D. Cancer vaccines. Nat Med 1998;4(5 Suppl): 525–53 I.

    Google Scholar 

  12. Dubinett SM, Miller PW, Sharma S, Batra RK. Gene therapy for lung cancer. Hematol Oncol Clin NAm1998;12:569–594.

    Google Scholar 

  13. Sogn JA. Tumor immunology: the glass is half full. Immunity1998;9:757–763.

    Google Scholar 

  14. Zeh HJ, 3rd, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 1999; 162: 989–994.

    PubMed  CAS  Google Scholar 

  15. Poplonski L, Vukusic B, Pawling J, et al. Tolerance is overcome in beef insulin-transgenic mice by activation of low-affinity autoreactive T cells. Eur J Immunol 1996; 26: 601–609.

    PubMed  CAS  Google Scholar 

  16. Huang M, Stolina M, Sharma S, et al. Non-small cell lung cancer cyclooxygenase-2dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 1998; 58: 1208–1216.

    PubMed  CAS  Google Scholar 

  17. Huang M, Sharma S, Mao JT, Dubinett SM. Non-small cell lung cancer-derived soluble mediators and prostaglandin EZ enhance peripheral blood lymphocyte IL-10 transcription and protein production. J Immunol 1996; 157: 5512–5520.

    PubMed  CAS  Google Scholar 

  18. Huang M, Wang J, Lee P, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res 1995; 55: 3847–3853.

    PubMed  CAS  Google Scholar 

  19. Neuner A, Schindel M, Wildenberg U, Muley T, Lahm H, Fischer JR. Cytokine secretion: clinical relevance of immunosuppression in non-small cell lung cancer. Lung Cancer 2001; 34: S79 - S82.

    PubMed  Google Scholar 

  20. Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production: role of tumor-derived IL-10, TGF-beta and prostaglandin E2. J Immunol 1994; 153: 1674–1686.

    PubMed  CAS  Google Scholar 

  21. Sharma S, Stolina M, Lin Y, et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 1999; 163: 5020–5028.

    PubMed  CAS  Google Scholar 

  22. Rohrer JW, Coggin JH, Jr. CD8 T cell clones inhibit antitumor T cell function by secreting IL-10. J Immunol 1995; 155: 5719–5727.

    PubMed  CAS  Google Scholar 

  23. O’Hara RJ, Greenman J, McDonald AW, et al. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res 1998; 4: 1943–1948.

    PubMed  Google Scholar 

  24. O’Hara RJ, Greenman J, Drew PJ, et al. Impaired interleukin-12 production is associated with a defective anti-tumor response in colorectal cancer. Dis Colon Rectum 1998; 41: 460–463.

    PubMed  Google Scholar 

  25. Asselin-Paturel C, Echchakir H, Carayol G, et al. Quantitative analysis of Thl, Th2 and TGF-bl cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. IntJ Cancer 1998; 77: 7–12.

    CAS  Google Scholar 

  26. Yamamura M, Modlin RL, Ohmen JD, Moy RL. Local expression of anti-inflammatory cytokines in cancer. J Clin Investig 1993; 91: 1005–1010.

    PubMed  CAS  Google Scholar 

  27. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, Ogarra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–3822.

    PubMed  CAS  Google Scholar 

  28. Mitra RS, Judge TA, Nestle FO, Turka LA, Nickoloff BJ. Psoriatic skin-derived dendritic cell function is inhibited by exogenous IL-10. J Immunol 1995; 154: 2668–2677.

    PubMed  CAS  Google Scholar 

  29. Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol 1992; 148: 1143–1148.

    PubMed  CAS  Google Scholar 

  30. de Waal-Malefyt R, Haanen J, Spits H, et al. Interleukin-10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T-cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class-II major histocompatibility complex expression. J Exp Med 1991; 174: 915–924.

    PubMed  Google Scholar 

  31. Mosmann T, Moore KW. The role of IL-10 in cross-regulation of TH1 and TH2 responses. Immunol Today 1991; 12: A49 - A53.

    PubMed  CAS  Google Scholar 

  32. Fiorentino DF, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Thl cells. J Immunol 1991; 146: 3444–3451.

    PubMed  CAS  Google Scholar 

  33. Kim J, Modlin RL, Moy RL, et al. IL-10 production in cutaneous basal and squamous cell carcinomas: A mechanism for evading the local T cell immune response. J Immunol 1995; 155: 2240–2247.

    PubMed  CAS  Google Scholar 

  34. Halak BK, Maguire HC, Jr., Lattime EC. Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res 1999; 59: 911–917.

    PubMed  CAS  Google Scholar 

  35. Hagenbaugh A, Sharma S, Dubinett S, et al. Altered immune responses in IL-10 transgenic mice. J Exp Med 1997; 185: 2101–2110.

    PubMed  CAS  Google Scholar 

  36. Hidalgo GE, Zhong L, Doherty DE, Hirschowitz EA. Plasma PGE-2 levels and altered cytokine profiles in adherent peripheral blood mononuclear cells in non-small cell lung cancer (NSCLC). Mol Cancer 2002; 1: 5–11.

    PubMed  Google Scholar 

  37. Hatanaka H, Abe Y, Kamiya T, et al. Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Ann Oncol 2000; 11: 815–819.

    PubMed  CAS  Google Scholar 

  38. De Vita F, Orditura M, Galizia G, et al. Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest 2000; 117: 365–373.

    PubMed  Google Scholar 

  39. Neuner A, Schindel M, Wildenberg U, Muley T, Lahm H, Fischer JR. Prognostic significance of cytokine modulation in non-small cell lung cancer. hit J Cancer 2002; 101: 287–292.

    CAS  Google Scholar 

  40. Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 2000; 164: 361–370.

    PubMed  CAS  Google Scholar 

  41. Hatanaka H, Abe Y, Naruke M, et al. Significant correlation between interleukin 10 expression and vascularization through angiopoietin/TIE2 networks in non-small cell lung cancer. Clin Cancer Res 2001; 7: 1287–1292.

    PubMed  CAS  Google Scholar 

  42. Birkeland SA, Storm HH, Lamm LU, et al. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 1995; 60: 183–189.

    PubMed  CAS  Google Scholar 

  43. Hecht SS. Chemoprevention by isothiocyanates. J Cell Biochem Suppl 1995: 195–209.

    Google Scholar 

  44. Herschman H. Review: Prostaglandin synthase 2. Biochim Biophys Acta 1996; 1299: 125–140.

    PubMed  Google Scholar 

  45. Herschman HR. Regulation of prostaglandin synthase-I and prostaglandin synthase-2. Cancer Metastasis Rev 1994; 13: 241–256.

    PubMed  CAS  Google Scholar 

  46. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Investig 2000; 105: 1589–1594.

    PubMed  CAS  Google Scholar 

  47. Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000; 89: 2637–2645.

    PubMed  CAS  Google Scholar 

  48. Yip–Schneider M, Miao W, Lin A, Barnard D, Tzivion G, Marshall M. Regulation of the Raf–1 kinase domain by phosphorylation and 14–3–3 association. Biochem J 2000; 351: 151 – 159.

    PubMed  CAS  Google Scholar 

  49. Sheng H, Shao J, Dixon DA, et al. Transforming growth factor-betal enhances Ha-rasinduced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem 2000; 275: 6628–6635.

    PubMed  CAS  Google Scholar 

  50. Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 2000; 164: 820–825.

    PubMed  CAS  Google Scholar 

  51. Shamma A, Yamamoto H, Doki Y, et al. Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clin Cancer Res 2000; 6: 1229–1238.

    PubMed  CAS  Google Scholar 

  52. Chan G, Boyle JO, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999; 59: 991–994.

    PubMed  CAS  Google Scholar 

  53. Dannenberg AJ, Zakim D. Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol 1999; 26: 499–504.

    PubMed  CAS  Google Scholar 

  54. Hida T, Kozaki K, Muramatsu H, et al. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000; 6: 2006–2011.

    PubMed  CAS  Google Scholar 

  55. Hida T, Yatabe Y, Achiwa H, et al. Increased expression of cycloxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998; 58: 3761–3764.

    PubMed  CAS  Google Scholar 

  56. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998; 58: 4997–5001.

    PubMed  CAS  Google Scholar 

  57. Hosomi Y, Yokose T, Hirose Y, et al. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung I In Process Citation]. Lung Cancer 2000; 30: 73–81.

    PubMed  CAS  Google Scholar 

  58. Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 1999; 5: 1001–1005.

    PubMed  CAS  Google Scholar 

  59. De Flora S, Cesarone CF, Balansky RM, Albini A, D’Agostini F, Bennicelli C, et al. Chemopreventive properties and mechanisms of N-Acetylcysteine. The experimental background. J Cell Biochem Suppl 1995; 22: 33–41.

    PubMed  Google Scholar 

  60. Van Zandwijk N, Dalesio O, Pastorino U, et al. EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. J Natl Cancer Inst 2000; 95: 977–986.

    Google Scholar 

  61. Goodman G. Prevention of lung cancer. Critical Reviews in Oncology/Hematology 2000; 33: 187–197.

    PubMed  CAS  Google Scholar 

  62. Li X, Liu J, Park J-K, et al. T cells from renal cell carcinoma patients exhibit an abnormal pattern of kB-specific DNA-binding activity: a preliminary report. Cancer Res 1994; 54: 5424–5429.

    PubMed  CAS  Google Scholar 

  63. Leahy K, Koki A, Masferrer J. Role of cyclooxygenases in angiogenesis. Curr Med Chem 2000; 7: 1163–1170.

    PubMed  CAS  Google Scholar 

  64. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000; 60: 1306–1311.

    PubMed  CAS  Google Scholar 

  65. Uefuji K, Ichikura T, Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clin Cancer Res 2000; 6: 135–138.

    PubMed  CAS  Google Scholar 

  66. Tsujii M, Kawano S, DuBois R. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997; 94: 3336–3340.

    PubMed  CAS  Google Scholar 

  67. Watkins DN, Lenzo JC, Segal A, Garlepp MJ, Thompson PJ. Expression and localization of cyclo-oxygenase isoforms in non-small cell lung cancer. Eur Respir J 1999; 14: 412–418.

    PubMed  CAS  Google Scholar 

  68. Ochiai M, Oguri T, Isobe T, Ishioka S, Yamakido M. Cyclooxygenase-2 (COX-2) mRNA expression levels in normal lung tissues and non-small cell lung cancers. Jpn J Cancer Res 1999; 90: 1338–1343.

    PubMed  CAS  Google Scholar 

  69. Dohadwala M, Luo J, Zhu L, et al. Non small cell lung cancer cylooxygenase-2-dependent invasion is mediated by CD44. JBiol Chem 2001;276:20, 809–20, 812.

    Google Scholar 

  70. Khuri F, Wu H, Lee J, et al. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 2001; 7: 861–867.

    PubMed  CAS  Google Scholar 

  71. Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 1994; 5: 138–146.

    PubMed  CAS  Google Scholar 

  72. Harris RE, Beebe-Donk J, Schuller HM. Chemoprevention of lung cancer by non-steroidal anti-inflammatory drugs among cigarette smokers. Oncol Rep 2002; 9: 693–695.

    PubMed  CAS  Google Scholar 

  73. Akhmedkhanov A, Toniolo P, Zeleniuch-Jacquotte A, Koenig KL, Shore RE. Aspirin and lung cancer in women. Br J Cancer 2002; 87: 49–53.

    PubMed  CAS  Google Scholar 

  74. Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–965.

    PubMed  CAS  Google Scholar 

  75. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    PubMed  CAS  Google Scholar 

  76. Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000; 6: 1755–1766.

    PubMed  CAS  Google Scholar 

  77. Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 1996 Nov;2(11):1267]. Nat Med 1996; 2: 1096–1103.

    PubMed  CAS  Google Scholar 

  78. Alavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunology1998;28:359–363.

    Google Scholar 

  79. Caux M, Montmain CG, Dieu MC, et al. Inhibition of the differentiation of dendritic cells from CD34 + progenitors by tumor cells: role of interleukin 6 and macrophage colony stimulating factor. Blood 1998; 92: 4778–4791.

    PubMed  Google Scholar 

  80. Sombroek CC, Stam AG, Masterson AJ, et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J hnmunol 2002; 168: 4333–4343.

    CAS  Google Scholar 

  81. Sharma S, Stolina M, Yang SC, et al. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. [In Press]. Clin Cancer Res 2003; 9: 961–968.

    PubMed  CAS  Google Scholar 

  82. Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Imrnunol 2001; 166: 678–689.

    CAS  Google Scholar 

  83. Sulitzeanu D. Immunosuppressive factors in human cancer. Adv Cancer Res 1993; 60: 247–267.

    PubMed  CAS  Google Scholar 

  84. Bladergroen BA, Meijer CJ, ten Berge RL, et al. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood 2002; 99: 232–237.

    PubMed  CAS  Google Scholar 

  85. Ng CS, Novick AC, Tannenbaum CS, Bukowski RM, Finke JH. Mechanisms of immune evasion by renal cell carcinoma: tumor-induced T-lymphocyte apoptosis and NFkappaB suppression. Urology 2002; 59: 9–14.

    PubMed  Google Scholar 

  86. Uzzo RG, Kolenko V, Froelich CJ, et al. The T cell death knell: immune-mediated tumor death in renal cell carcinoma. Clin Cancer Res 2001; 7: 3276–3281.

    PubMed  CAS  Google Scholar 

  87. Uzzo RG, Clark PE, Rayman P, et al. Alterations in NFkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Natl Cancer Inst 1999; 91: 718–721.

    PubMed  CAS  Google Scholar 

  88. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-a-induced apoptosis by NF-KB. Science 1996; 274: 787–789.

    PubMed  Google Scholar 

  89. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor I effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565–576.

    PubMed  CAS  Google Scholar 

  90. Goyal L. Cell death inhibition: keeping caspases in check. Cell 2001; 104: 805–808.

    PubMed  CAS  Google Scholar 

  91. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13: 239–252.

    PubMed  CAS  Google Scholar 

  92. Batra RK, Lin Y, Sharma S, et al. Non small cell lung cancer derived soluble mediators enhance apoptosis in activated T lymphocytes through an 1KB-Kinase dependent mechanism. Cancer Res 2003; 63: 642–646.

    PubMed  CAS  Google Scholar 

  93. Dye ES, North RJ. T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med 1981; 154: 1033–1042.

    PubMed  CAS  Google Scholar 

  94. Woo EY, Yeh H, Chu CS, et al. Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002; 168: 4272–4276.

    PubMed  CAS  Google Scholar 

  95. Shevach EM. Regulatory T cells in autoimmunity. Annu Rev Immune’ 2000; 18: 423–449.

    CAS  Google Scholar 

  96. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Imrnunol 2001; 2: 816–822.

    CAS  Google Scholar 

  97. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296.

    PubMed  CAS  Google Scholar 

  98. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    PubMed  CAS  Google Scholar 

  99. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194: 823–832.

    PubMed  CAS  Google Scholar 

  100. Redondo M, Concha A, Oldiviela R, et al. Expression of HLA class I and II antigens in bronchogenic carcinomas: its relationship to cellular DNA content and clinical-pathological parameters. Cancer Res 1991; 51: 4948–4954.

    PubMed  CAS  Google Scholar 

  101. Rouas-Freiss N, Khalil-Daher I, Riteau B, et al. The immunotolerance role of HLA-G. Semin Cancer Biol 1999; 9: 3–12.

    PubMed  CAS  Google Scholar 

  102. Carosella ED, Rouas-Freiss N, Paul P, Dausset J. HLA-G: a tolerance molecule from the major histocompatibility complex. Immunol Today 1999; 20: 60–62.

    PubMed  CAS  Google Scholar 

  103. Le Gal FA, Riteau B, Sedlik C, et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 1999; 11: 1351–1356.

    PubMed  Google Scholar 

  104. Allan DS, Colonna M, Lanier LL, et al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 1999; 189: 1149–1156.

    PubMed  CAS  Google Scholar 

  105. Mitsuishi Y, Miyazawa K, Sonoda A, Terasaki PI. Cellular function of soluble HLA-G., Twelfth Interantional Histocompatibility Worshop and Conference, Paris, 1997. Vol. 2. Medical and Scientific International Publishers.

    Google Scholar 

  106. Fournel S, Aguerre-Girr M, Hue X, et al. Cutting edge: soluble HLA-Gl triggers CD95/ CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 2000; 164: 6100–6104.

    PubMed  CAS  Google Scholar 

  107. Moreau P, Adrian-Cabestre F, Menier C, et al. IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol 1999; 11: 803–811.

    PubMed  CAS  Google Scholar 

  108. Urosevic M, Kurrer MO, Kamarashev J, et al. Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production. Am J Pathol 2001; 159: 817–824.

    PubMed  CAS  Google Scholar 

  109. Pangault C, Le Friec G, Caulet-Maugendre S, et al. Lung macrophages and dendritic cells express HLA-G molecules in pulmonary diseases. Hum Immunol 2002; 63: 83–90.

    PubMed  CAS  Google Scholar 

  110. Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993; 177: 265–272.

    PubMed  CAS  Google Scholar 

  111. Hiraki A, Kaneshige T, Kiura K, et al. Loss of HLA haplotype in lung cancer cell lines: implications for immunosurveillance of altered HLA class I/II phenotypes in lung cancer. Clin Cancer Res 1999; 5: 933–936.

    PubMed  CAS  Google Scholar 

  112. Kiertscher SM, Luo J, Dubinett SM, Roth MD. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 2000; 164: 1269–1276.

    PubMed  CAS  Google Scholar 

  113. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat Med 1995; 1: 1297–1302.

    PubMed  CAS  Google Scholar 

  114. Miller PW, Sharma S, Stolina M, et al. Dendritic cells augment granulocyte-macrophage colony-stimulating factor (GM-CSF)/herpes simplex virus thymidine kinase-mediated gene therapy of lung cancer. Cancer Gene Ther 1998; 5: 380–389.

    PubMed  CAS  Google Scholar 

  115. Toes R, van der Voort E, Schoenberger S, et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J Immunol 1998; 160: 4449–4456.

    PubMed  CAS  Google Scholar 

  116. Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 9482–9487.

    PubMed  CAS  Google Scholar 

  117. Miller PW, Sharma S, Stolina M, et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 2000; 11: 53–65.

    PubMed  CAS  Google Scholar 

  118. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxicT-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996; 66: 470–476.

    PubMed  CAS  Google Scholar 

  119. Bevan MJ. Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp Med 1995; 182: 639–641.

    PubMed  CAS  Google Scholar 

  120. Waldrop S, Pitcher C, Peterson D, Maino V, Picker L. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry. J Clin Investig 1997; 99: 1739–1750.

    PubMed  CAS  Google Scholar 

  121. Sharma S, Miller P, Stolina M, et al. Multi-component gene therapy vaccines for lung cancer: effective eradication of established murine tumors in vivo with interleukin 7/Herpes Simplex Thymidine Kinase-transduced autologous tumor and ex vivo-activated dendritic cells. Gene Therapy 1997; 4: 1361–1370.

    PubMed  CAS  Google Scholar 

  122. Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med1997;3:558–561.

    Google Scholar 

  123. Celluzzi C, Falo U. Cutting edge: physical interaction between dendritic cells and tumor cells result in an immunogen that induces protective and therapeutic tumor rejection. J Immunol 1998; 160: 3081–3085.

    PubMed  CAS  Google Scholar 

  124. Motohashi S, Kobayashi S, Ito T, et al. Preserved IFN-alpha production of circulating Valpha24 NKT cells in primary lung cancer patients. Int J Cancer 2002; 102: 159–165.

    PubMed  CAS  Google Scholar 

  125. Kawano T, Cui J, Koezuka Y, et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valphal4 NKT cells. Prot: Nall Acad Sci USA 1998; 95: 5690–5693.

    CAS  Google Scholar 

  126. Cui J, Shin T, Kawano T, et al. Requirement for VŒ14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278: 1623–1626.

    PubMed  CAS  Google Scholar 

  127. Grant EP, Degano M, Rosat JP, et al. Molecular recognition of lipid antigens by T cell receptors. JExp Med 1999; 189: 195–205.

    CAS  Google Scholar 

  128. Brossay L, Chioda M, Burdin N, et al. CD 1 d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998; 188: 1521–1528.

    PubMed  CAS  Google Scholar 

  129. Kawano T, Tanaka Y, Shimizu E, et al. A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int Immunol 1999; 11: 881–887.

    PubMed  CAS  Google Scholar 

  130. Spada FM, KoezukaY, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998; 188: 1529–1534.

    PubMed  CAS  Google Scholar 

  131. Morita M, Motoki K, Akimoto K, et al. Structure-activity relationship of alpha-galactosylceramides against B 16-bearing mice. J Med Chem 1995; 38: 2176–2187.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dubinett, S.M., Sharma, S., Huang, M., Mao, J.T., Batra, R.K. (2004). Lung Cancer and Immune Dysfunction. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics