Skip to main content

Altered Signaling in T Lymphocytes of Patients With Cancer

A Biomarker of Prognosis?

  • Chapter
  • 118 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

The role of the host immune system in cancer development and progression has been debated for most of the last century. On the one hand, the concept of immune surveillance advanced the notion that the immune system protected the host from insults by infectious agents and played a significant role in elimination of abnormal cells. On the other hand, evidence indicating that cancer developed and progressed in subjects with a normally functioning immune system argued against immune-mediated control of cancer progression. Early experiments with transplantable tumors in syngeneic mice showed that it was possible to successfully immunize animals against tumors and that immune protection was mediated by lymphocytes (1,2). Later on, it became clear that transfer of T lymphocytes, antibodies, or cytokines to tumor-bearing hosts was often successful in the control of tumor growth in animals (3,4), but frequently failed in man (5). By then, the field of tumor immunology had evolved, and principles of tumor immunity had been established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foley, EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 1953; 13: 835–841.

    PubMed  CAS  Google Scholar 

  2. Prehn, RT, Main 3M. Immunity to methyicholanthrene-induced sarcomas. JNat Cancer Inst 1957; 18: 769–775.

    CAS  Google Scholar 

  3. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233: 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  4. Yoshizawa H, Chang AE, Shu S. Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 1991; 147: 729–737.

    PubMed  CAS  Google Scholar 

  5. Rosenberg SA. Progress in human immunology and immunotherapy. Nature 2001; 411: 380–384.

    Article  PubMed  CAS  Google Scholar 

  6. Lee KH, Wang E, Nielsen MB, et al. Increased vaccine-specific T-cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163: 6292–6300.

    PubMed  CAS  Google Scholar 

  7. Parmiani G, Castelli C, Dalerba P, Mortarini R, et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? JNCI 2002; 94: 805–818.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman TK, Donnenberg AD, Finkelstein SD, Donnenberg VS, Friebe-Hoffman F, Myers EN, et al. Frequencies of tetramer+ T cells specific for the wild-type sequence p53264–272 peptide in the circulations of patients with head and neck cancer. Cancer Res 2002; 62: 3521–3529.

    Google Scholar 

  9. Letsch A, Keilholz U, Schadendorf D, et al. High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma. Int J Cancer 2000; 87: 659–664.

    Article  PubMed  CAS  Google Scholar 

  10. Whiteside TL (1993) Tumor-Infiltrating Lymphocytes in Human Solid Tumors. R.G. Landes, Austin, TX.

    Google Scholar 

  11. Whiteside TL, Parmiani G. Tumor-infiltrating lymphocytes: their phenotype, function and clinical use. Cancer Immunol Immunother 1994; 39: 15–21.

    Article  PubMed  CAS  Google Scholar 

  12. Whiteside, TL, Rabinowich H. The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 1998; 46: 175–184.

    Article  PubMed  CAS  Google Scholar 

  13. Uzzo RG, Clark PE, Rayman P, et al. Alterations in NFKB activation in T lymphocytes of patients with renal cell carcinoma. JNCI 1999; 91: 718–721.

    Article  PubMed  CAS  Google Scholar 

  14. Gastman BR, Atarashi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck and it promotes apoptosis of T lymphocytes. Cancer Res 1999; 59: 5356–5364.

    PubMed  CAS  Google Scholar 

  15. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 2002; 8: 3137–3145.

    PubMed  Google Scholar 

  16. O’Connell J, O’Sullivan GD, Collins, JK, et al. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184: 1075–1082.

    Article  PubMed  Google Scholar 

  17. Hoffmann TK, Dworacki G, Meidenbauer N, Gooding W, Johnson JT, Whiteside TL. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 2002; 8: 2553–2562.

    PubMed  Google Scholar 

  18. Whiteside TL. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy. Vaccine 2002; 20: A46 - A51.

    Article  PubMed  CAS  Google Scholar 

  19. Kuss I, Ferris RL, Gooding W, Whiteside TL. Lymphocyte subsets in patients with head and neck cancer. Submitted, 2003.

    Google Scholar 

  20. Hellerstein M, Hanley MB, Cesar D, Siler S, et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV 1-infected humans. Nat Med 1999; 5: 83–89.

    Article  PubMed  CAS  Google Scholar 

  21. Kersh EN, Shaw AS, Allen PM. Fidelity of T cell activation through multistep T cell receptor phosphorylation. Science 1998; 281: 572–575.

    Article  PubMed  CAS  Google Scholar 

  22. Valitutti S, Muller S, Salio M, Lanzavecchia A. Degradation of T cell receptor (TCR)CD3- complexes after antigenic stimulation. J Exp Med 1997; 185: 1859–1864.

    Article  PubMed  CAS  Google Scholar 

  23. Stefanova I, Saville MW, Peters C, Cleghorn FR, Schwartz D, Venzon DF, et al. HIV infection-induced posttranslational modification of T cell signaling molecules associated with disease progression. J Clin Investig 1996; 98: 1290–1297.

    Article  PubMed  CAS  Google Scholar 

  24. Zea AH, Ochoa MT, Ghosh P, Longo DL, Alvord WG, Valderrama L, et al. Changes in expression of signal transduction proteins in T lymphocytes of patients with leprosy. Infect Immun 1998; 66: 499–504.

    PubMed  CAS  Google Scholar 

  25. Liossis SN, Ding XZ, Dennis GJ, Tsokos GC. Altered pattern of TCR/CD3-mediated protein-tyrosylphosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J Clin Investig 1998; 101: 1448–1457.

    Article  PubMed  CAS  Google Scholar 

  26. Loeffler CM, Smyth MJ, Longo DL, Kopp WC, Harvery LK, Tribble HR, et al. Immunoregulation in cancer-bearing hosts. Down-regulation of gene expression and cytotoxic function in CD8+ T cells. J Immunol 1992; 149: 949–956.

    PubMed  CAS  Google Scholar 

  27. Mizogushi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC. Alteration in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 1992; 258: 1975–1978.

    Google Scholar 

  28. Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res 1996; 2: 161–173.

    PubMed  CAS  Google Scholar 

  29. Finke JH, Zea AH, Stanley J, Longo DL, Mizoguchi H, Tubbs RR, et al. Loss of T-cell receptor chain and p56lckk in T-cells infiltrating human renal cell carcinoma. Cancer Res 1993; 53: 5613–5616.

    PubMed  CAS  Google Scholar 

  30. Nakagomi H, Petersson M, Magnusson I, Juhlin C, Matsuda M, Mellstedt H, et al. Decreased expression of the signal-transducing ζ chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res 1993; 53: 5610–5612.

    PubMed  CAS  Google Scholar 

  31. Matsuda M, Petersson M, Lenke R, Taupin J-L, Magnusson I, Mellstedt H, et al. Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer 1995; 61: 765–772.

    Article  PubMed  CAS  Google Scholar 

  32. Healy CG, Simons JW, Carducci MA, DeWeese TL, Bartkowski M, Tong KP, et al. Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer. Cytometry 1998; 32: 109–119.

    Article  PubMed  CAS  Google Scholar 

  33. Levey DL, Srivastava PK. T cells from late tumor-bearing mice express normal levels of p56lck, p59fYn, ZAP-70, and CD3ζ despite suppressed cytolytic activity. J Exp Med 1995; 182: 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  34. Aoe T, Okamoto Y, Saito T. Activated macrophages induce structural abnormalities of the T cell receptor-CD3 complex. J Exp Med 1995; 181: 1881–1886.

    Article  PubMed  CAS  Google Scholar 

  35. Zea AH, Brendan CD, Longo DL, Alvord WG, Strobl SL, Mizoguchi H, et al. Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res 1995; 1: 1327–1335.

    PubMed  CAS  Google Scholar 

  36. Kuss I, Saito T, Johnson JT, Whiteside TL. Clinical significance of decreased Ç chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res 1999; 5: 329–334.

    PubMed  CAS  Google Scholar 

  37. Rabinowich H, Reichert TE, Kashii Y, Bell MC, Whiteside TL. Lymphocyte apoptosis induced by Fas ligand-expressing ovarian carcinoma cells: implications for altered expression of TcR in tumor-associated lymphocytes. J Clin Investig 1988; 101: 2579–2588.

    Article  Google Scholar 

  38. Whiteside TL. Signaling defects in T lymphocytes of patients with malignancy. Symposiumin-writing. Cancer Immunol Immunother 1999; 48: 346–352.

    Article  PubMed  CAS  Google Scholar 

  39. Reichert TE, Rabinowich H, Johnson JT, Whiteside TL. Immune cells in the tumor microenvironment: mechanisms responsible for signaling and functional defects. J Immunother 1998; 21: 295–306.

    Article  PubMed  CAS  Google Scholar 

  40. Rabinowich H, Suminami Y, Reichert TE, Crowley-Nowick P, Bell M, Edwards R. et al. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. Int J Cancer 1996; 68: 276–284.

    Article  PubMed  CAS  Google Scholar 

  41. Asselin-Paturel C, Echchakin H, Carayol G, Gay F, Opolon P, Grunenwald D, et al. Quantitative analysis of Thl, Th2 and TGF-13 1 cytokine expression in tumor, TIL and PBL of non-small lung cancer patients. Int J Cancer 1998; 77: 7–12.

    Article  PubMed  CAS  Google Scholar 

  42. Taylor DD, Bender DP, el-Taylor GEI, Stanson J, Whiteside, TL. Modulation of TcR/CD3zeta chain expression by a circulating factor derived from ovarian cancer patients. Br J Cancer 2001; 84: 1624–1629.

    Article  PubMed  CAS  Google Scholar 

  43. Dworacki G, Meidenbauer N, Kuss I, Hoffmann TK, Gooding MS, Lotze M, et al. Decrease chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patient with melanoma. Clin Cancer Res 2001; 7: 947–957.

    Google Scholar 

  44. Krishnan S, Warke VG, Nambiar MP, Wong HK, Tsokos GC, Farber DL. Generation and biochemical analysis of human effector CD4 T cells: alterations in tyrosine phosphorylation and loss of CD3 expression. Blood 2001; 15: 3851–3859.

    Article  Google Scholar 

  45. Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, et al. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signaltransducing ζ molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytoxicity. Eur J Immunol 1996; 26: 1308–1313.

    Article  PubMed  CAS  Google Scholar 

  46. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 2001; 61: 4756–4760.

    PubMed  CAS  Google Scholar 

  47. Taheri F, Ochoa JB, Faghiri Z, Culotta K, Park HJ, Lan MS, et al. L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin Cancer Res 2001; 7: 958s - 965s.

    PubMed  CAS  Google Scholar 

  48. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 2002;277: 21, 123–21, 129.

    Google Scholar 

  49. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689–695.

    PubMed  CAS  Google Scholar 

  50. Whiteside TL. Tumor-induced death of immune cells: its mechanisms and consequences. Sem Cancer Biol 2002; 12: 43–50.

    Article  CAS  Google Scholar 

  51. Atarashi Y, Kanaya H, Whiteside TL. A modified JAM assay detects apoptosis induced in activated lymphocytes by FasL+ human adherent tumor cells. J Immunol Methods 1999; 233: 179–182.

    Google Scholar 

  52. Gastman BR, Johnson DE, Whiteside TL, Rabinowich J. Caspase-mediated degradation of TcR-ζ chain. Cancer Res. 1999; 59: 1422–1427.

    PubMed  CAS  Google Scholar 

  53. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of TcRICD3-Ç by FasL-containing membrane vesicles shed from ovarian tumors. Submitted, 2002.

    Google Scholar 

  54. Andreola G, Rivoltini L, Castelli C, Huber V, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002; 195: 1303–1316.

    Article  PubMed  CAS  Google Scholar 

  55. Schaeffer TM, Bell I, Fallert BA, Reinhart TA. The T-cell receptor ζ contains two homologous domains with which similar immunodeficiency virus Nef interacts and mediates down-modulation. J Virol 2000; 74: 3273–3283.

    Article  Google Scholar 

  56. Reichert TE, Day R, Wagner EM, Whiteside TL. Absent of low expression of the ζ chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res 1998; 58: 5344–5347.

    PubMed  CAS  Google Scholar 

  57. Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL. The number of intratumoral dendritic cells and Ç-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 2000; 91: 2136–2147.

    Article  Google Scholar 

  58. Cardi G, Heaney JA, Schned AR, Phillips DM, Branda MT, Ernstoff MS. T-cell receptor -chain expression on tumor-infiltrating lymphocytes from renal cell carcinoma. Cancer Res 1997; 57: 3517–3519.

    PubMed  CAS  Google Scholar 

  59. Kono K, Ressing ME, Brandt RMP, Melief CJM, Potkul RK, Andersson B, et al. Decreased expression of signal-transducing Ç chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 1996; 2: 1825–1828.

    PubMed  CAS  Google Scholar 

  60. Meidenbauer N, Gooding W, Spliter L, Harris D, Whiteside TL. Recovery of Ç chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer. Br J Cancer 2002; 86: 168–178.

    Article  PubMed  CAS  Google Scholar 

  61. Kuss I, Donnenberg A, Gooding W, Whiteside TL. Effector CD8+CD45RO-CD27- T cells have signaling defects in patients with head and neck cancer. BrJ Cancer 2003; 88: 223–230.

    Article  CAS  Google Scholar 

  62. Rabinowich H, Gooding W, Edwards R, Whiteside TL. Expression of ζ in T cells prior to IL-2 therapy as a predictor of response and survival in patients with ovarian carcinoma. Cancer Biother Radiopharm 2002; 17: 631–640.

    Article  PubMed  Google Scholar 

  63. Rabinowich H, Banks M, Reichert TE, Logan TF, Kirkwood JM, Whiteside TL. Expression and activity of signaling molecules in T lymphocytes obtained from patients with metastatic melanoma before and after interleukin 2 therapy. Clin Cancer Res 1996; 2: 1263–1272.

    PubMed  CAS  Google Scholar 

  64. Whiteside TL, Gooding W, Elder E, Stover L, Glaspy J, McMasters K, et al. Immunomodulatory effects of combination therapy with histamine dihydrochloride and interleukin-2 during a phase II study in stage IV melanoma. Abstract. 17th Annual Scientific Meeting of the Society for Biological Therapy, La Jolla, CA, November, 2002.

    Google Scholar 

  65. Bukowski RM, Rayman P, Uzzo R, Bloom T, Sandstrom K, Peereboom D, et al. Signal transduction abnormalities in T lymphocytes from patients with advanced renal carcinoma: clinical relevance and effects of cytokine therapy. Clin Cancer Res 1998; 4: 2337–2347.

    PubMed  CAS  Google Scholar 

  66. Gratama JW, Zea AH, Bolhuis RL, Ochoa AC. Restoration of expression of signal-transduction molecules in lymphocytes from patients with metastatic renal cell cancer after combination immunotherapy. Cancer Immunol Immunother 1999; 48: 263–269.

    Article  PubMed  CAS  Google Scholar 

  67. Tartour E, Latour S, Mathiot C, Thiounn N, Mosser V, Joyeux I, et al. Variable expression of CD3-Ç chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. Int J Cancer 1995; 63: 505–212.

    Article  Google Scholar 

  68. Farace F, Angevin E, Vanderplancke J, Escudier B, Triebel F. The decreased expression of CD3 ζ chains in cancer patients is not reversed by IL-2 administration. Int J Cancer 1994; 59: 752–755.

    Article  PubMed  CAS  Google Scholar 

  69. Meidenbauer N, Harris DT, Spitler LE, Whiteside TL. Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. The Prostate 2002; 43: 88–100.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Whiteside, T.L. (2004). Altered Signaling in T Lymphocytes of Patients With Cancer. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics