Skip to main content

Accentuating Tumor Immunity Through Costimulation

A Detailed Analysis of OX40 Engagement and CTLA-4 Blockade

  • Chapter
Cancer Immunotherapy at the Crossroads

Abstract

T cells recognize foreign- and/or self-antigens through the T-cell receptor (TCR) interaction with a peptide in the context of “self” major histocompatibility complex (MHC) molecules. However, the TCR : MHC interaction is insufficient to trigger productive activation of T cells. It is now widely recognized that a second signal known as costimulation is required for the productive activation of antigen (Ag)-specific T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubey C, Croft M, Swain SL. Costimulatory requirements of naive CD4+ T cells. ICAM-1 or B7–1 can costimulate naive CD4 T cell activation but both are required for optimum response. Jlmmunol 1995; 155: 45–57.

    CAS  Google Scholar 

  2. Chambers CA, Krummel MF, Boitel B, et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev 1996; 153: 27–46.

    Article  PubMed  CAS  Google Scholar 

  3. Krumme! MF, Allison JR. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995; 182: 459–466.

    Article  Google Scholar 

  4. Walunas T, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996; 183: 2541–2550.

    Article  PubMed  CAS  Google Scholar 

  5. Watts TH, DeBenedette MA. T cell co-stimulatory molecules other than CD28. Curr Opin Immunol 1999; 11: 286–293.

    Article  PubMed  CAS  Google Scholar 

  6. Weinberg AD, Vella AT, Croft M. OX-40: life beyond the effector T cell stage. Semin Immunol 1998; 10: 471–480.

    Article  PubMed  CAS  Google Scholar 

  7. Freedman AS, Freeman G, Horowitz JC, Daley J, Nadler LM. B7, a B-cell-restricted antigen that identifies preactivated B cells. Jlmmunol 1987; 139: 3260–3267.

    CAS  Google Scholar 

  8. Freeman GJ, Borriello F, Hodes RJ, et al. Murine B7–2, an alternative CTLA-4 counter-receptor that costimulates T cell proliferation and interleukin-2 production. J Exp Med 1993; 178: 2185–2192.

    Article  PubMed  CAS  Google Scholar 

  9. Freeman GJ, Borriello F, Hodes RJ, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993; 262: 907–909.

    Article  PubMed  CAS  Google Scholar 

  10. Baskar S, Ostrand-Rosenberg S, Nabavi N, Nadler LM, Freeman GJ, Glimcher LH. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex II molecules. Proc Nati Acad Sci USA 1993; 90: 5687–5690.

    Article  CAS  Google Scholar 

  11. Chen L, Ashe S, Brady WA, et al. Costimulation of anti-tumor immunity by the B7 counterrecptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  12. Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 1994; 179: 523–532.

    Article  PubMed  CAS  Google Scholar 

  13. Townsend S, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259: 368–370.

    Article  PubMed  CAS  Google Scholar 

  14. Townsend SE, Su FW, Atherton JM, Allison JP. Specificity and longevity of anti-tumor immune responses induced by B7-transfected tumors. Cancer Res 1994; 54: 6477–6483.

    PubMed  CAS  Google Scholar 

  15. Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 1976; 143: 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  16. Bevan MJ. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. Jlmmunol 1976; 1 17: 2233–2238.

    Google Scholar 

  17. Carbone FR, Kurts C, Bennett SR, Miller JF, Heath WR. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol Today 1998; 19: 368–373.

    Article  PubMed  CAS  Google Scholar 

  18. Huang AYC, Golumbek P, Ahmadzedeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone-marrow derived cells in presenting MHC Class I-restricted tumor antigens. Science 1994; 264: 961–965.

    Article  PubMed  CAS  Google Scholar 

  19. Jeannin P, Renno T, Goetsch L, et al. Omp A targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway. Nat Immunol 2000; 1: 502–509.

    Article  PubMed  CAS  Google Scholar 

  20. Runyon K, Lee K, Zuberek K, Collins M, Leonard JP, Dunussi-Joannopoulos K. The combination of chemotherapy and systemic immunotherapy with soluble B7-immunoglobulin G leads to cure of murine leukemia and lymphoma and demonstration of tumor-specific memory responses. Blood 2001; 97: 2420–2426.

    Article  PubMed  CAS  Google Scholar 

  21. Sturmhoefel K, Lee K, Gray GS, et al. Potent activity of soluble B7-IgG fusion proteins in therapy of established tumors and as vaccine adjuvant. Cancer Res 1999; 59: 4964–4972.

    PubMed  CAS  Google Scholar 

  22. Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 1999; 1 1: 423–432.

    Google Scholar 

  23. Yoshinaga SK, Whoriskey JS, Khare SD, et al. T-cell co-stimulation through B7RP- I and ICOS. Nature 1999; 402: 827–832.

    Article  PubMed  CAS  Google Scholar 

  24. Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999; 397: 263–266.

    Article  PubMed  CAS  Google Scholar 

  25. Coyle AJ, Lehar S, Lloyd C, et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 2000; 13: 95–105.

    Article  PubMed  CAS  Google Scholar 

  26. McAdam Ai, Chang TT, Lumelsky AE, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 2000; 165: 5035–5040.

    PubMed  Google Scholar 

  27. Wallin JJ, Liang L, Bakardjiev A, Sha WC. Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J Immunol 2001; 167: 132–139.

    PubMed  CAS  Google Scholar 

  28. Liu X, Bai XF, Wen J, et al. B7H costimulates clonal expansion of, and cognate destruction of tumor cells by, CD8(+) T lymphocytes in vivo. J Exp Med 2001; 194: 1339–1348.

    Article  PubMed  CAS  Google Scholar 

  29. Pauly S, Broil K, Wittmann M, Giegerich G, Schwarz H. CDI37 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J Leukoc Biol 2002; 72: 35–42.

    PubMed  CAS  Google Scholar 

  30. Broil K, Richter G, Pauly S, Hofstaedter F, Schwarz H. CD 137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol 2001; 115: 543–549.

    Article  Google Scholar 

  31. Wilcox RA, Tamada K, Strome SE, Chen L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 2002; 169: 4230–4236.

    PubMed  CAS  Google Scholar 

  32. Takahashi C, Mittler RS, Vella AT. Cutting edge: 4–1 BB is a bona fide CD8 T cell survival signal. J Immunol 1999; 162: 5037–5040.

    PubMed  CAS  Google Scholar 

  33. DeBenedette MA, Chu NR, Pollok KE, et al. Role of 4–1BB ligand in costimulation of T lymphocyte growth and its upregulation on M 12 B lymphomas by cAMP. J Exp Med 1995; 181: 985–992.

    Article  Google Scholar 

  34. Hurtado JC, Kim SH, Pollok KE, Lee ZH, Kwon BS. Potential role of 4–1 BB in T cell activation. Comparison with the costimulatory molecule CD28. J Immunol 1995; 155: 3360–3367.

    PubMed  CAS  Google Scholar 

  35. Alderson MR, Smith CA, Tough TW, et al. Molecular and biological characterization of human 4–1 BB and its ligand. Eur J Immunol 1994; 24: 2219–2227.

    Article  PubMed  CAS  Google Scholar 

  36. Wen T, Bukczynski J, Watts TH. 4–1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 2002; 168: 4897–4906.

    PubMed  CAS  Google Scholar 

  37. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nat Med 1997; 3: 682–685.

    Article  PubMed  CAS  Google Scholar 

  38. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L. NK1.1 cells express 4–1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti4-IBB monoclonal antibodies. Cell Immunol 1998;190:167–172

    Google Scholar 

  39. Guinn BA, DeBenedette MA, Watts TH, Berinstein NL. 4–1BBL cooperates with B7–1 and B7–2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J Immunol 1999; 162: 5003–5010.

    PubMed  CAS  Google Scholar 

  40. Hintzen RQ, de Jong R, Lens SM, Brouwer M, Baars P, van Lier RA. Regulation of CD27 expression on subsets of mature T-lymphocytes. J Immunol 1993; 151: 2426–2435.

    PubMed  CAS  Google Scholar 

  41. Gravestein LA, Nieland JD, Kruisbeek AM, Borst J. Novel mAbs reveal potent co-stimulatory activity of murine CD27. Int Immunol 1995; 7: 551–557.

    Article  PubMed  CAS  Google Scholar 

  42. Hintzen RQ, Lens SM, Lammers K, Kuiper H, Beckmann MP, van Lier RA. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol 1995; 154: 2612–2623.

    PubMed  CAS  Google Scholar 

  43. Kobata T, Jacquot S, Kozlowski S, Agematsu K, Schlossman SF, Morimoto C. CD27–CD70 interactions regulate B-cell activation by T cells. Proc Natl Acad Sci USA 1995;92: 11, 249–11, 253.

    Google Scholar 

  44. Yang FC, Agematsu K, Nakazawa T, et al. CD27/CD70 interaction directly induces natural killer cell killing activity. Immunology 1996: 88: 289–293.

    Article  PubMed  CAS  Google Scholar 

  45. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 2000; 1: 433–440.

    Article  PubMed  CAS  Google Scholar 

  46. Hintzen RQ, Lens SM, Beckmann MP, Goodwin RG, Lynch D, van Lier RAW. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol 1994; 152: 1762–1773.

    PubMed  CAS  Google Scholar 

  47. Lens SM, Tesselaar K, van Oers MH, van Lier RA. Control of lymphocyte function through CD27–CD70 interactions. Semin Immunol 1998; 10: 491–499.

    Article  PubMed  CAS  Google Scholar 

  48. Oshima H, Nakano H, Nohara C, et al. Characterization of murine CD70 by molecular cloning and mAb. Int Immunol 1998; 10: 517–526.

    Article  PubMed  CAS  Google Scholar 

  49. Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002; 3: 83–90.

    Article  PubMed  CAS  Google Scholar 

  50. Lorenz MG, Kantor JA, Schlom J, Hodge JW. Anti-tumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). Hum Gene Ther 1999; 10: 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  51. Baum PR, Gayle RB, 3rd, Ramsdell F, et al. Molecular characterization of murine and human 0X40/0X40 ligand systems: identification of a human 0X40 ligand as the HTLV-1regulated protein gp34. EMBO J 1994; 13: 3992–4001.

    Google Scholar 

  52. Paterson DJ, Jefferies WA, Green JR, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 1987; 24: 1281–1290.

    Article  PubMed  CAS  Google Scholar 

  53. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of 0X40 ligand on human dendritic cells. Jlmmunol 1997; 159: 3838–3848.

    CAS  Google Scholar 

  54. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of 0X40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995; 2: 507–521.

    Article  PubMed  CAS  Google Scholar 

  55. Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyeliti s. J Immunol 1999; 162: 1818–1826.

    PubMed  CAS  Google Scholar 

  56. Imura A, Hori T, Imada K, et al. The human 0X40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 1996; 183: 2185–2195.

    Article  PubMed  CAS  Google Scholar 

  57. Kunitomi A, Hori T, Imura A, Uchiyama T. Vascular endothelial cells provide T cells with costimulatory signals via the 0X40/gp34 system. J Leukoc Biol 2000; 68: 111–118.

    PubMed  CAS  Google Scholar 

  58. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998; 161: 6510–6517.

    PubMed  CAS  Google Scholar 

  59. Weinberg AD, Wallin JJ, Jones RE, et al. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of Thl lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune enciphalomyelitis. J Immunol 1994; 152: 4712–4721.

    PubMed  CAS  Google Scholar 

  60. Weinberg AD. 0X40: targeted immunotherapy-implications for tempering autoimmunity and enhancing vaccines. Trends in Immunology 2002;23:102–109.

    Google Scholar 

  61. Buenafe AC, Weinberg AD, Culbertson NE, Vandenbark AA, Offner H. V beta CDR3 motifs associated with BP recognition are enriched in OX-40+ spinal cord T cells of Lewis rats with EAE. JNeurosci Res 1996; 44: 562–567.

    Article  CAS  Google Scholar 

  62. Weinberg AD, Bourdette DN, Sullivan TJ, et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 1996; 2: 183–189.

    Article  PubMed  CAS  Google Scholar 

  63. Weinberg AD, Rivera MM, Prell R, et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 2000; 164: 2160–2169.

    PubMed  CAS  Google Scholar 

  64. Ramstad T, Lawnicki L, Vetto J, Weinberg A. Immunohistochemical analysis of primary breast tumors and tumor-draining lymph nodes by means of the T-cell costimulatory molecule OX-40. Am J Surg 2000; 179: 400–406.

    Article  PubMed  CAS  Google Scholar 

  65. Vetto JT, Lum S, Morris A, et al. Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. Am J Surg 1997; 174: 258–265.

    Article  PubMed  CAS  Google Scholar 

  66. Kaleeba JA, Offner H, Vandenbark AA, Lublinski A, Weinberg AD. The OX-40 receptor provides a potent co-stimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4+ T cells. Mt Immunol 1998; 10: 453–461.

    CAS  Google Scholar 

  67. Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD. Engagement of 0X40 enhances antigen-specific CD4(+) T cell mobilization/memory development and humoral immunity: comparison of alpha0X-40 with alphaCTLA-4. J Immunol 2001; 167: 6804–6811.

    PubMed  CAS  Google Scholar 

  68. Brocker T, Gulbranson-Judge A, Flynn S, Riedinger M, Raykundalia C, Lane P. CD4 T cell traffic control: in vivo evidence that ligation of 0X40 on CD4 T cells by 0X40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol 1999; 29: 1610–1616.

    Article  PubMed  CAS  Google Scholar 

  69. Murata K, Nose M, Ndhlovu LC, Sato T, Sugamura K, Ishii N. Constitutive 0X40/0X40 ligand interaction induces autoimmune-like diseases. J Immunol 2002; 169: 4628–4636.

    PubMed  CAS  Google Scholar 

  70. Bansal-Pakala P, Gebre-Hiwot Jember A, Croft M. Signaling through 0X40 (CD 134) breaks peripheral T-cell tolerance. Nat Med 2001; 7: 907–912.

    Article  PubMed  CAS  Google Scholar 

  71. Gramaglia 1, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M. The 0X40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 2000; 165: 3043–3050.

    PubMed  Google Scholar 

  72. Maxwell JR, Weinberg A, Prell RA, Vella AT. Danger and 0X40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 2000; 164: 107–112.

    PubMed  CAS  Google Scholar 

  73. Wang HC, Klein JR. Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by 0X40 (CD 134) expression: effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 2001; 167: 6717–6723.

    PubMed  CAS  Google Scholar 

  74. Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994; 1: 327–339.

    Article  PubMed  CAS  Google Scholar 

  75. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992; 356: 607–609.

    Article  PubMed  CAS  Google Scholar 

  76. Croft M, Joseph SB, Miner KT. Partial activation of naive CD4 T cells and tolerance induction in response to peptide presented by resting B cells. J Immunol 1997; 159: 3257–3265.

    PubMed  CAS  Google Scholar 

  77. Sotomayor EM, Borrello I, Tubb E, et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 1999; 5: 780–787.

    Article  PubMed  CAS  Google Scholar 

  78. Staveley-O’Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 1998; 95: 1178–1183.

    Article  PubMed  Google Scholar 

  79. Hu HM, Winter H, Urba WJ, Fox BA. Divergent roles for CD4+ T cells in the priming and effector/memory phases of adoptive immunotherapy. J Immunol 2000; 165: 4246–4253.

    PubMed  CAS  Google Scholar 

  80. Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 2000; 60: 5514–5521.

    PubMed  CAS  Google Scholar 

  81. Kjaergaard J, Peng L, Cohen PA, Drazba JA, Weinberg AD, Shu S. Augmentation vs. Inhibition: Effects of conjunctional OX40R mAb and IL-2 treatment on adoptive immunotherapy of advanced tumor. J Immunol 2001; 167: 6669.

    PubMed  CAS  Google Scholar 

  82. Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol 1991; 9: 694–704.

    PubMed  CAS  Google Scholar 

  83. Hurwitz AA, Yu TF, Leach DR, Allison JP. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 1998;95:10, 067–10, 071.

    Google Scholar 

  84. Hurwitz AA, Foster BA, Kwon ED, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 2000; 60: 2444–2448.

    PubMed  CAS  Google Scholar 

  85. Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997; 94: 8099–8103.

    Article  PubMed  CAS  Google Scholar 

  86. Linsley PS, Greene JL, Tan P, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. JExp Med 1992; 176: 1595–1604.

    Article  CAS  Google Scholar 

  87. Gribben JG, Freeman GJ, Boussiotis VA, et al. CTLA4 mediates antigen-specific apoptosis of human T cells. Proc Natl Acad Sci USA 1995; 92: 811–815.

    Article  PubMed  CAS  Google Scholar 

  88. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183: 2533–2540.

    Article  PubMed  CAS  Google Scholar 

  89. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996; 183: 2541–2550.

    Article  PubMed  CAS  Google Scholar 

  90. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1: 405–413.

    Article  PubMed  CAS  Google Scholar 

  91. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–594.

    Article  PubMed  CAS  Google Scholar 

  92. Egen JG, Allison JR Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002; 16: 23–35.

    Article  PubMed  CAS  Google Scholar 

  93. Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden MG, Thompson CB. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J Immunol 1997; 159: 144–151.

    PubMed  CAS  Google Scholar 

  94. Zhang Y, Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA 1997; 94: 9273–9278.

    Article  PubMed  CAS  Google Scholar 

  95. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 1996; 4: 535–543.

    Article  PubMed  CAS  Google Scholar 

  96. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994; 1: 793–801.

    Article  PubMed  CAS  Google Scholar 

  97. Chambers CA, Cado D, Truong T, Allison JP. Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci USA 1997; 94: 9296–9301.

    Article  PubMed  CAS  Google Scholar 

  98. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995; 270: 985–988.

    Article  PubMed  CAS  Google Scholar 

  99. Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999; 163: 1128–1131.

    PubMed  CAS  Google Scholar 

  100. Chambers CA, Kuhns MS, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc Natl Acad Sci USA 1999; 96: 8603–8608.

    Article  PubMed  CAS  Google Scholar 

  101. Chambers CA, Sullivan TJ, Truong T, Allison JP. Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur J Immunol 1998; 28: 3137–3143.

    Article  PubMed  CAS  Google Scholar 

  102. Murphy ML, Cotterell SE, Gorak PM, Engwerda CR, Kaye PM. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J Immunol 1998; 161: 4153–4160.

    PubMed  CAS  Google Scholar 

  103. Kirman J, McCoy K, Hook S, et al. CTLA-4 blockade enhances the immune response induced by mycobacterial infection but does not lead to increased protection. Infect Immun 1999; 67: 3786–3792.

    PubMed  CAS  Google Scholar 

  104. Riley JL, Schlienger K, Blair Pi, et al. Modulation of susceptibility to HIV-1 infection by the cytotoxic T lymphocyte antigen 4 costimulatory molecule. J Exp Med 2000; 191: 1987–1997.

    Article  PubMed  CAS  Google Scholar 

  105. McGaha T, Murphy JW. CTLA-4 down-regulates the protective anticryptococcal cell-mediated immune response. Infect Immun 2000; 68: 4624–4630.

    Article  PubMed  CAS  Google Scholar 

  106. Luhder F, Hoglund P, Allison JP, Benoist C, Mathis D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J Exp Med 1998; 187: 427–432.

    Article  PubMed  CAS  Google Scholar 

  107. Piganelli JD, Poulin M, Martin T, Allison JP, Haskins K. Cytotoxic T lymphocyte antigen 4 (CD152) regulates self-reactive T cells in BALB/c but not in the autoimmune NOD mouse. JAutoimmun 2000; 14: 123–131.

    Article  CAS  Google Scholar 

  108. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12: 431–440.

    Article  PubMed  CAS  Google Scholar 

  109. Hurwitz AA, Sullivan TJ, Krummel MF, Sobel RA, Allison JP. Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experiemntal allergic encephalomyelitis. JNeuroimmunol 1997; 73: 57–62.

    Article  Google Scholar 

  110. Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci USA 2002; 99: 3013–3017.

    Article  PubMed  CAS  Google Scholar 

  111. Karandikar NJ, Vanderlugt CL, Walunas TL, Miler SD, J.A. B. CTLA-4: A negative regulator of autoimmune disease. J Exp Med 1996; 184: 783–788.

    Article  PubMed  CAS  Google Scholar 

  112. Perrin PJ, Maldonado JH, Davis TA, June CH, Racke MK. CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J Immunol 1996; 157: 1333–1336.

    PubMed  CAS  Google Scholar 

  113. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6: 411–417.

    Article  PubMed  CAS  Google Scholar 

  114. Ratts RB, Arredondo LR, Bittner P, Perrin PJ, Lovett-Racke AE, Racke MK. The role of CTLA-4 in tolerance induction and antigen administration cell differentiation in experimental autoimmune encephalomyelitis: i.v. antigen administration. Int Immunol 1999; 11: 1889–1896.

    Article  PubMed  CAS  Google Scholar 

  115. Samoilova EB, Horton JL, Zhang H, Khoury SJ, Weiner HL, Chen Y. CTLA-4 is required for the induction of high dose oral tolerance. Int Immunol 1998; 10: 491–498.

    Article  PubMed  CAS  Google Scholar 

  116. Sotomayor EM, Borrello 1, Tubb E, Allison JP, Levitsky HI. In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci USA 1999;96:11,476–11,481.

    Google Scholar 

  117. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell-and IL-2-dependent mechanism. Immunity 1999; 11: 483–493.

    Article  PubMed  CAS  Google Scholar 

  118. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    Article  PubMed  CAS  Google Scholar 

  119. Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997; 94: 8099–8103.

    Article  PubMed  CAS  Google Scholar 

  120. Yang YF, Zou JP, Mu J, et al. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 1997;57:4036–4041

    Google Scholar 

  121. Kwon ED, Foster BA, Hurwitz AA, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 1999;96:15, 074–15, 079.

    Google Scholar 

  122. van Elsas A, Sutmuller RP, Hurwitz AA, et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 2001; 194: 481–489.

    Article  PubMed  Google Scholar 

  123. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999; 190: 355–366.

    Google Scholar 

  124. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  PubMed  CAS  Google Scholar 

  125. Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 1996; 19: 81–84.

    Article  PubMed  CAS  Google Scholar 

  126. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.

    Article  PubMed  CAS  Google Scholar 

  127. Ito D, Ogasawara K, Iwabuchi K, Inuyama Y, Onoe K. Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and antiCTLA-4 mAb. Jlmmunol 2000; 164: 1230–1235.

    CAS  Google Scholar 

  128. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 1998; 58: 5301–5304.

    PubMed  CAS  Google Scholar 

  129. Sojka DK, Donepudi M, Bluestone JA, Mokyr MB. Melphalan and other anticancer modalities Up-regulate B7–1 gene expression in tumor cells. J Immunol 2000; 164: 6230–6236.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Weinberg, A.D., Evans, D.E., Hurwitz, A.A. (2004). Accentuating Tumor Immunity Through Costimulation. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics