Skip to main content

Fluoride and Bone Health

  • Chapter
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The halogen fluorine is ubiquitous in nature, counted among the 15 more abundant elements on the earth’s surface. Accordingly, it is commonly found in soils, water, plants, and animal tissues (1). The ionic form of fluorine, fluoride, is the most electronegative of the elements of the periodic system. It combines reversibly with hydrogen to form the very aggressive acid “hydrogen fluoride” (HF). Because of its high affinity for calcium, fluoride is attracted by calcified tissues, i.e., bone and teeth (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Navia JM, Aponte-Merced L, Punyasingh K. Fluoride metabolism in humans. In: Prasad AS, ed. Current Topics in Nutrition and Disease. Vol. 18. Lisbon, 1988, pp. 229–250.

    Google Scholar 

  2. Mertz W. The essential trace elements. Science 1981; 213:1332–1338.

    Article  PubMed  CAS  Google Scholar 

  3. Flemming Moller P, Gudjonsson SV. Massive fluorosis of bones and ligaments. Acta Radiol 1932; 13:267–294.

    Google Scholar 

  4. Roholm K. Fluorine Intoxication. A Clinical Hygienic Study with a Review of the Literature and Some Experimental Investigations. Lewis, London, 1937.

    Google Scholar 

  5. Shortt HE, McRobert GR, Barnard TW, Nayar ASM. Endemic fluorosis in the Madras Presidency. Indian J Med Res 1937; 25:553–554.

    CAS  Google Scholar 

  6. Heaney RL. Fluoride and osteoporosis. Ann Intern Med 1994; 120:689–690.

    PubMed  CAS  Google Scholar 

  7. Ringe JD, Meunier PJ. What is the future for fluoride in the treatment of osteoporosis? Osteopor Int 1995; 5:71–74.

    Article  CAS  Google Scholar 

  8. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D and Fluoride. National Academy Press, Washington, DC, 1997.

    Google Scholar 

  9. Guy WS. Inorganic and organic fluorine in human blood. In: Johansen E, Taves DR, Olsen TO, eds. Continuing Evaluation of the Use of Fluorides. AAAS Selected Symposium. Westview, Boulder, CO, 1979.

    Google Scholar 

  10. Müller P, Schmid K, Warneke G, Setnikar I. Sodium fluoride-induced gastric mucosal lesions: comparison with sodium monofluorophosphate. Z Gastroenterol 1992; 30:252–254.

    PubMed  Google Scholar 

  11. Husdan H, Vogl R, Oreopoulos D, Gryfe C, Rapoport A. Serum ionic fluoride: normal range and relationship to age and sex. Clin Chem 1976; 22:1884–1888.

    PubMed  CAS  Google Scholar 

  12. Ekstrand J, Ehrnebo M, Boreus LO. Fluoride bioavailability after intravenous and oral administration: importance of renal clearance and urine flow. Clin Pharmacol Therapeut 1978; 23:329–337.

    CAS  Google Scholar 

  13. Schiffl H, Binswanger U. Renal handling of fluoride in healthy man. Renal Physiol 1982; 5:192–196.

    PubMed  CAS  Google Scholar 

  14. Ekstrand J, Fomon SJ, Ziegler EE, Nelson SE. Fluoride pharmacokinetics in infancy. Pediatr Res 1994; 35:157–163.

    Article  PubMed  CAS  Google Scholar 

  15. Pang DT, Philips CL, Bawden JW. Fluoride intake from beverage consumption in a sample of North Carolina children. J Dent Res 1992; 71:1382–1388.

    Article  PubMed  CAS  Google Scholar 

  16. Singer L, Ophaug RH, Harland BE Dietary fluoride intake of 15–19-year-old male adults residing in the United States. J Dent Res 1985; 64:1302–1305.

    Article  PubMed  CAS  Google Scholar 

  17. Taves DR. Dietary intake of fluoride ashed (total intake) v. unashed (inorganic fluoride) analy sis of individual foods. Br J Nutr 1983; 49:295–301.

    Article  PubMed  CAS  Google Scholar 

  18. Bruun C, Thylstrup A. Dentifrice usage among Danish children. J Dent Res 1988; 71:1114–1117.

    Google Scholar 

  19. Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone forming cells. Science 1983; 222:330–332.

    Article  PubMed  CAS  Google Scholar 

  20. Briancon D, Meunier PJ. Treatment of osteoporosis with fluoride, calcium, and vitamin D. Orthoped Clin N Am 1981; 12:629–668.

    CAS  Google Scholar 

  21. Bellows CG, Heersche JNM, Aubin JE. The effects of fluoride on osteoblast progenitors in vitro. J Bone Miner Res 1990; 5:S101–S105.

    Article  Google Scholar 

  22. Marie PJ, de Vemejoul MC, Lomri A. Fluoride induced stimulation of bone formation is associated with increased DNA synthesis by osteoblastic cells in vitro. J Bone Miner Res 1990; 5:S140.

    Google Scholar 

  23. Khokher MA, Dandona P. Fluoride stimulates 3H-thymidine incorporation and alkaline phosphatase production by human osteoblasts. Metabolism 1990; 39:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  24. Grynpas MD, Cheng PT. Fluoride reduces the rate of dissolution of bone. Bone Miner 1988; 5:1–9.

    Article  PubMed  CAS  Google Scholar 

  25. Libanati C, Lau KHW, Baylink D. Fluoride therapy for osteoporosis. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Academic, New York, 1996.

    Google Scholar 

  26. Lau K, Baylink DJ. Molecular mechanism of action of fluoride on bone cells. J Bone Miner Res 1998; 13:1660–1667.

    Article  PubMed  CAS  Google Scholar 

  27. Caverzasio J, Imai T, Amman P, Burgener D, Bonjour JP. Aluminium potentiates the effect of fluoride on tyrosine phosphorylation and osteoblast replication in vitro and bone mass in vivo. J Bone Miner Res 1996; 11:46–55.

    Article  PubMed  CAS  Google Scholar 

  28. Position of the American Dietetic Association: the impact of fluoride on health. J Am Dietet Assoc 2001; 101:126–132.

    Google Scholar 

  29. Tatevossian A. Fluoride in dental plaque and its effects. J Dent Res 1990; 69:645–652.

    PubMed  CAS  Google Scholar 

  30. Marquis RE. Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol 1995; 41:955–964.

    Article  PubMed  CAS  Google Scholar 

  31. Guo MK, Nopakun JN, Messer HH, Ophaug R, Singer L. Retention of skeletal fluoride during bone turnover in rats. J Nutr 1988; 118:362–366.

    PubMed  CAS  Google Scholar 

  32. Eble D, Deaton TG, Wilson FC, Bawden JW. Fluoride concentrations in human and rat bone. J Public Health Dent 1992; 52:288–292.

    Article  PubMed  CAS  Google Scholar 

  33. Sehgal S, Kawatra A. Trace elements in health and disease. J Intern Med India 1999; 2:204–211.

    Google Scholar 

  34. Bunker VW. The role of nutrition in osteoporosis. Br J Biomed Sci 1994; 51:228–240.

    PubMed  CAS  Google Scholar 

  35. Ripa LW. A half-century of community water fluoridation in the United States: review and commentary. J Public Health Dent 1993; 53:17–44.

    Article  PubMed  CAS  Google Scholar 

  36. Boillat MA, Baud CA, Lagier R, Donath A, Dettwiler W, Courvoisier B. Fluorose industrielle. Schweiz Med Wschr 1976; 106:1842–1844.

    PubMed  CAS  Google Scholar 

  37. Rich C, Ensinck J. Effect of sodium fluoride on calcium metabolism of human beings. Nature 1961; 191:184–185.

    Article  PubMed  CAS  Google Scholar 

  38. Grennan DM, Palmer DG, Maltthus RS, Metangi MF, de Silva RTD. Iatrogenic fluorosis. Austral N Z J Med 1978; 8:528–531.

    Article  CAS  Google Scholar 

  39. Siddiqui AH. Fluorosis in Nalgonda district, Hyderabad-Deccan. Br Med J 1955; ii:1408–1411.

    Article  Google Scholar 

  40. Winston AE, Bhaskar SN. Caries prevention in the 21st century. J Am Dent Assoc 1998; 129:579–587.

    Google Scholar 

  41. McDonagh MS, Whiting PF, Wilson PM, et al. Systemic review of water fluoridation. Br Med J 2000; 321:855–859.

    Article  CAS  Google Scholar 

  42. Ringe JD. Stimulators of bone formation for the treatment of osteoporosis. In: Meunier PJ, ed. Osteoporosis: Diagnosis and Management. Martin Dunitz, London, 1997, pp. 131–148.

    Google Scholar 

  43. Ringe JD. What is proven about hip fracture rate and fluoride treatment? Osteologie 1998; 7:151–156.

    Google Scholar 

  44. Leone NC, Stevenson CA, Hilbish TF, Sosman MC. A roentgenologic study of a human population exposed to high fluoride domestic water. Am J Roentgenol 1955; 74:874–878.

    CAS  Google Scholar 

  45. Bernstein DS, Sadowsky N, Hegsted DM, Guri CD, Stare FJ. Prevalence of osteoporosis in high and low fluoride areas in North Dakota. JAMA 1996; 198:499–504.

    Article  Google Scholar 

  46. Jacobsen SJ, O’Fallon WM, Melton LJ III. Hip fracture incidence before and after fluoridation of the public water supply: Rochester, Minnesota 1950–1969. Am J Public Health 1993; 83:743–745.

    Article  PubMed  CAS  Google Scholar 

  47. Danielson C, Lyon JL, Egger M, Goodenough G. Hip fractures and fluoridation in Utah’s elderly population. JAMA 1992; 268:746–748.

    Article  PubMed  CAS  Google Scholar 

  48. Madans J, Kleinman JC, Cornoni-Huntley J. The relationsship between hip fracture and water fluoridation: an analysis of national data. Am J Public Health 1983; 73:296–298.

    Article  PubMed  CAS  Google Scholar 

  49. Cooper C, Wickham C, Lacey RF, Barker DJP. Water fluoride concentration and fracture of the proximal femur. J Epidemiol Community Health 1990; 44:17–19.

    Article  PubMed  CAS  Google Scholar 

  50. Simonen O, Laitinen O. Does fluoridation of drinking water prevent bone fragility and osteoporosis? Lancet 1985; 2:432–433.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobsen SJ, Goldberg J, Miles TP. Regional variation on hip fracture: U.S. white women aged 65 years and older. JAMA 1990; 264:500–502.

    Article  PubMed  CAS  Google Scholar 

  52. Turner CH, Akhter MR, Heaney RP. The effects of fluoridated water on bone strength. J Orthoped Res 1992; 10:581–587.

    Article  CAS  Google Scholar 

  53. Lehmann R, Wapniarz M, Hofmann B, Pieper B, Haubitz I, Allolio B. Drinking water fluoridation: bone mineral density and hip fracture incidence. Bone 1998; 22:273–278.

    Article  PubMed  CAS  Google Scholar 

  54. Allolio B, Lehmann R. Drinking water fluoridation and bone. Exp Clin Endocrinol Diabetes 1999; 107:12–20.

    Article  PubMed  CAS  Google Scholar 

  55. Phipps KR, Orwoll ES, Mason JD, Cauley JA. Community water fluoridation, bone mineral density, and fractures: prospective study of effects in older women. Br Med J 2000; 321:860–864.

    Article  CAS  Google Scholar 

  56. Li Y, Liang C, Slemenda CW, et al. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J Bone Miner Res 2001; 16:932–939.

    Article  PubMed  CAS  Google Scholar 

  57. Kleerekoper M, Mendlovic B. Sodium fluoride therapy of postmenopausal osteoporosis. Endocrine Rev 1993; 14:312–323.

    CAS  Google Scholar 

  58. Pouilles JM, Tremollieres F, Causse E, Louvet JP, Ribot C. Fluoride therapy in postmenopausal osteopenic women: effect on vertebral and femoral bone density and prediction of bone response. Osteopor Int 1991; 1:103–109.

    Article  CAS  Google Scholar 

  59. Affinito P, Di Carlo C, Primizia M, Petrillo G. A new fluoride preparation for the prevention of postmenopausal osteoporosis: calcium monofluorophosphate. Gynecol Endocrinol 1993; 7:201–205.

    Article  PubMed  CAS  Google Scholar 

  60. Sebert JL, Richard P, Mennecier P, Bisset J. Monofluorophosphate increases lumbar bone density in patients with low bone mass but no vertebral fractures. A double-blind randomized study. Osteopror Int 1995; 5:108–114.

    Article  CAS  Google Scholar 

  61. Gambacciani M, Spinetti A, Cappagli B, et al. Effects of low-dose monofluorophosphate and transdermal oestradiol on postmenopausal vertebral bone loss. Eur Menopause J 1995; 2:16–20.

    Google Scholar 

  62. Alexandersen P, Riis BJ, Christiansen C. Monofluorophosphate combined with hormone replacement therapy induces a synergistic effect on bone mass by dissociating bone formation and resorption in postmenopausal women: a randomized study. J Clin Endocriol Metab 1999; 84:3013–3020.

    Article  CAS  Google Scholar 

  63. Ringe JD, Setnikar I. Monofluorophosphate combined with hormone replacement therapy ion postmenopausal osteoporosis. An open-label pilot efficacy and safety study. Rheumatol Int 2002; 22:27–32.

    Article  PubMed  CAS  Google Scholar 

  64. Ringe JD, Kruse HP, Kuhlencordt F. Long-term treatment of primary osteoporosis by sodium fluoride. In: Courvoisier B, Donath A, Baud CA, eds. Fluoride and Bone. Hans Huber, Bern, Switzerland, 1978, pp. 228–232.

    Google Scholar 

  65. Eriksen EF, Hodgson SF, Riggs BL. Treatment of osteoporosis with sodium fluoride. In: Riggs BL, Melton LJ III, eds. Osteoporosis: Etiology, Diagnosis and Management. Raven, New York, 1988, pp. 415–432.

    Google Scholar 

  66. Ringe JD. Fluoride in osteoporosis. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of Bone Biology. 2nd ed. Academic, San Diego, CA, 2002, pp. 1387–1399.

    Chapter  Google Scholar 

  67. Mamelle N, Dusan R, Martin JL, et al. Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet 1988; 2:361–365.

    Article  PubMed  CAS  Google Scholar 

  68. Riggs BL, Hodgson SF, O’Fallow WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322:802–809.

    Article  PubMed  CAS  Google Scholar 

  69. Kleerekoper M, Peterson EL, Nelson DA, et al. A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteopor Int 1991; 1:155–161.

    Article  CAS  Google Scholar 

  70. Riggs BL, O’Fallon WM, Lane A, et al. Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis. J Bone Miner Res 1994; 9:265–275.

    Article  PubMed  CAS  Google Scholar 

  71. Grynpas MD. Fluoride effects on bone crysdtals. J Bone Miner Res 1990; suppl 1:S169–S175.

    Google Scholar 

  72. Ilich JZ, Kerstetter JE. Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 2000; 19:715–737.

    PubMed  CAS  Google Scholar 

  73. Pak CYC, Sakhaee K, Piziak V, et al. Slow-release sodium fluoride in the management of postmenopausal osteoporosis. A Randomized controlled trial. Ann Intern Med 1994; 120:625–632.

    PubMed  CAS  Google Scholar 

  74. Fanerons J, Rodriguez de la Sema A, Guanabens N, et al. Sodium fluoride treatment is a major protector against vertebral and nonvertebral fractures when compared with other common treatments of osteoporosis: a longitudinal, observtaional study. Calcif Tissue Int 1997; 60:250–254.

    Article  Google Scholar 

  75. Reginster JY, Meurmans L, Zegels B, et al. The effect of sodium monofluorophosphate plus calcium on vertebral fracture rate in postmenopausal women with moderate osteoporosis. A randomized, controlled trial. Ann Intern Med 1998; 129:1–8.

    PubMed  CAS  Google Scholar 

  76. Meunier PJ, Sebert J-L, Reginster JY, et al., and the FAVOStudy group. Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteopor Int 1998; 8:4–12.

    Article  CAS  Google Scholar 

  77. Ringe JD, Kipshoven C, Cöster A, Umbach R. Therapy of established postmenopausal osteoporosis with monofluorophosphate plus calcium: dose-related effects on bone density and fracture rate. Osteopor Int 1999; 9:171–178.

    Article  CAS  Google Scholar 

  78. Schnitzler CM, Wing JR, Raal FJ, et al. Fewer bone histomorphometric abnormalities with intermittent than with continuous slow-release sodium fluoride therapy. Osteopor Int 1997; 7:376–389.

    Article  CAS  Google Scholar 

  79. Ringe JD, Dorst A, Kipshoven C, Rovati LC, Setnikar I. Avoidance of vertebral fractures in men with idiopathic osteoporosis by a three year therapy with calcium and low-dose intermittent monofluorophosphate. Osteopor Int 1998; 8:47–52.

    Article  CAS  Google Scholar 

  80. Meys E, Terraux-Duvert F, Beaume-Six T, Dureau G, Meunier PJ. Bone loss after cardiac transplantation: effects of calcium, calcidiol and monofluorophosphate. Osteopor Int 1993; 3:1–8.

    Article  Google Scholar 

  81. Rizzoli R, Chevalley Th, Slosman DO, Bonjour JP. Sodium monofluoro-phosphate increases vertebral bone mineral density in patients with corticoid-induced osteoporosis. Osteopor Int 1995; 5:39–46.

    Article  CAS  Google Scholar 

  82. Guaydier-Souquieres G, Kotzki PO, Sabatier JP, Basse-Cathalinat B, Loeb G. In corticosteroidtreated respiratory diseases monofluorophosphate increases lumbar bone density: a doublemasked randomized study. Osteopor Int 1996; 6:171–177.

    Article  CAS  Google Scholar 

  83. Lippuner K, Haller B, Casz JP, Montandon A, Jaeger P. Effect of disodium monofluorophosphate, calcium and vitamin D supplementation on bone mineral density in patients chronically treated with glucocorticosteroids: a prospective, randomized, double-blind study. Miner Electrolyte Metab 1996; 22:207–213.

    PubMed  CAS  Google Scholar 

  84. Haguenauer D, Welch V, Shea B, Tugwell P, Adachi JD, Wells G. Fluoride for the treamentof postmenopausal osteoporosis. Osteopor Int 2000; 11:727–738.

    Article  CAS  Google Scholar 

  85. Ringe JD, Rovati LC. Treatment of osteoporosis in men with fluoride alone or in combination with bisphosphonates. Calcif Tissue Int 2001; 69:252–255.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ringe, J.D. (2004). Fluoride and Bone Health. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics