Skip to main content

Protein Intake and Bone Health

  • Chapter
  • 412 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Deficiency in specific nutrients can play a major contributing role in the pathogenesis of osteoporosis and fragility fractures. In addition to calcium and vitamin D, several studies point to the existence of a tight connection between protein intake and bone metabolism. Protein intake below the recommended daily allowance could be particularly detrimental for both the acquisition of bone mass and its conservation throughout adult life. Various studies have found some relationship between the level of protein intake and either calcium—phosphate metabolism, bone mineral mass, or the risk of osteoporotic fracture (1–3). Nevertheless, long-term influence of dietary protein on bone mineral metabolism and skeletal mass has been difficult to document.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orwoll ES. The effects of dietary protein insufficiency and excess on skeletal health. Bone 1992; 13:343–350.

    Article  PubMed  CAS  Google Scholar 

  2. Bonjour JP, Schürch MA, Chevalley T, Ammann P, Rizzoli R. Protein intake, IGF-1 and osteoporosis. Osteoporos Int 1997; 7(suppl 3):536–542.

    Article  Google Scholar 

  3. Bonjour JP, Schürch MA, Rizzoli R. Nutritional aspects of hip fractures. Bone 1996; 18(suppl):S139–S144.

    Article  Google Scholar 

  4. Rizzoli R, Ammann P, Chevalley T, Bonjour J-P. Protein intake during childhood and adolescence and attainment of peak bone mass. In: Bonjour J-P, Tsang RC, eds. Nutrition and Bone Development. Lippincott-Raven, Philadelphia, 1999, pp. 231–243.

    Google Scholar 

  5. Naranjo WM, Yakar S, Sanchez-Gomez M, Perez AU, Setzer J, LeRoith D. Protein calorie restriction affects non hepatic IGF-1 production and the lymphoid system: studies using the liver-specific IGF-1 gene-deleted mouse model. Endocrinology 2002; 143:2233–2341.

    Article  PubMed  CAS  Google Scholar 

  6. Chevalley T, Rizzoli R, Manen D, Caverzasio J, Bonjour JP. Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells. Bone 1998; 23:103–109.

    Article  PubMed  CAS  Google Scholar 

  7. Clavien H, Theintz G, Rizzoli R, Bonjour JP. Does puberty alter dietary habits in adolescents living in a Western society? J Adolesc Health 1996; 19:68–75.

    Article  PubMed  CAS  Google Scholar 

  8. Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents; evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75:1060–1065.

    Article  PubMed  CAS  Google Scholar 

  9. Rizzoli R, Bonjour JP. Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int 1999; 9(suppl 2):517–523.

    Article  Google Scholar 

  10. Chevalley T, Ferrari S, Hans D, et al. Protein intake modulates the effet of calcium supplementation on bone mass gain in prepubertal boys. J Bone Miner Res 2002; 17(suppl 1):5172.

    Google Scholar 

  11. Hirota T, Nara M, Ohguri M, Manago E, Hirota K. Effect of diet and lifestyle on bone mass in Asian young women. Am J Clin Nutr 1992; 55:1168–1173.

    PubMed  CAS  Google Scholar 

  12. Cooper C, Atkinson EJ, Hensrud DD, et al. Dietary protein intake and bone mass in women. Calcif Tissue Int 1996; 58:320–325.

    PubMed  CAS  Google Scholar 

  13. Teegarden D, Lyle RM, McCabe GP, et al. Dietary calcium, protein, and phosphorus are related to bone mineral density and content in young women. Am J Clin Nutr 1998; 68:749–954.

    PubMed  CAS  Google Scholar 

  14. Grinspoon S, Thomas E, Pitts S, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med 2000; 133:790–794.

    PubMed  CAS  Google Scholar 

  15. Lucas AR, Melton LJ 3rd, Crowson CS, O’Fallon WM. Long-term fracture risk among women with anorexia nervosa: a population-based cohort study. Mayo Clin Proc 1999; 74:972–977.

    PubMed  CAS  Google Scholar 

  16. Herzog W, Deter HC, Fiehn W, Petzold E. Medical findings and predictors of long-term physical outcome in anorexia nervosa: a prospective, 12-year follow-up study. Psychol Med 1997; 27:269–279.

    Article  PubMed  CAS  Google Scholar 

  17. Ammann P, Bourrin S, Bonjour JP, Meyer JM, Rizzoli R. Protein undernutrition-induced bone loss is associated with decreased IGF-1 levels and estrogen deficiency. J Bone Miner Res 2000; 15:683–690.

    Article  PubMed  CAS  Google Scholar 

  18. Drinkwater BL, Nilson K, Chesnut CH III, Bremner WJ, Shainholtz S, Southworth MB. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311:277–281.

    Article  PubMed  CAS  Google Scholar 

  19. Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med 1985; 102:158–163.

    PubMed  CAS  Google Scholar 

  20. Warren MP, Perlroth NE. The effects of intense exercise on the female reproductive system. J Endocrinol 2001; 17:3–11.

    Article  Google Scholar 

  21. Gremion G, Rizzoli R, Slosman D, Theintz G, Bonjour J-P. Oligo-amenorrheic long-distance runners may lose more bone in spine than in femur. Med Sci Sports Exerc 2001; 33:15–21.

    PubMed  CAS  Google Scholar 

  22. Beck BR, Shaw J, Snow CM. Physical activity and osteoporosis. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis, 2nd ed. Academic, San Diego, CA, 2001, vol. 1, pp. 701–720.

    Chapter  Google Scholar 

  23. Ammann P, Rizzol R, Bonjour JP. Protein malnutrition-induced bone loss is associated with alteration of growth hormone-IGF-1 axis and with estrogen deficiency in adult rats. Osteoporos Int 1998; 8(suppl 3):10.

    Google Scholar 

  24. Ammann P, Bourrin S, Bonjour JP, Meyer JM, Rizzoli R. Protein undernutrition-induced bone loss is associated with decreased IGF-1 levels and estrogen deficiency. J Bone Miner Res 1999; 15:683–690.

    Article  Google Scholar 

  25. Parfitt AM. Dietary risk factors for age-related bone loss and fractures. Lancet 1983; II:1181–1184.

    Article  Google Scholar 

  26. Schaafsma G, Van Beresteyn ECH, Raymakers JA, Duursma SA. Nutritional aspects of osteoporosis. World Rev Nutr Diet 1987; 49:121–159.

    PubMed  CAS  Google Scholar 

  27. Rapin CH, Lagier R, Boivin G, Jung A, MacGee W. Biochemical findings in blood of aged patients with femoral neck fractures: a contribution to the detection of occult osteomalacia. Calcif Tissue Int 1982; 34:465–469.

    Article  PubMed  CAS  Google Scholar 

  28. Older MWJ, Edwards D, Dickerson JWT. A nutrient survey in elderly women with femoral neck fractures. Br J Surg 1980; 67:884–886.

    Article  PubMed  CAS  Google Scholar 

  29. Bastow MD, Rawlings J, Allison SP. Benefits of supplementary tube feeding after fractured neck of femur: a randomised controlled trial. Br Med J 1983; 287:1589–1592.

    Article  CAS  Google Scholar 

  30. Delmi M, Rapin CH, Bengoa JM, Delmas PD, Vasey H, Bonjour JP. Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 1990; 335:1013–1016.

    Article  PubMed  CAS  Google Scholar 

  31. Jensen JE, Jensen TG, Smith TK, Johnston DA, Dudrick SJ. Nutrition in orthopaedic surgery. J Bone Joint Surg 1982;.64:1263–1272.

    PubMed  CAS  Google Scholar 

  32. Kanis J, Johnell O, Gullberg B, et al. Risk factors for hip fracture in men from Southern Europe: The Medos Study. Osteoporos Int 1999; 9:45–54.

    Article  PubMed  CAS  Google Scholar 

  33. Garn SM, Guzman MA, Wagner B. Subperiostal gain and endosteal loss in protein-calorie malnutrition. Am J Phys Anthropol 1969; 30:153–155.

    Article  PubMed  CAS  Google Scholar 

  34. Geinoz G, Rapin CH, Rizzoli R, et al. Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int 1993; 3:242–248.

    Article  PubMed  CAS  Google Scholar 

  35. Campbell WW, Barton ML Jr, Cyr-Campbell D, et al. Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr 1999; 70:1032–1039.

    PubMed  CAS  Google Scholar 

  36. Evans WJ. Protein nutrition and resistance exercise. Can J Appl Physiol 2001; 26(suppl):S141–S152.

    Article  Google Scholar 

  37. Haub MD, Wells AM, Tarnopolsky MA, Campbell WW. Effect of protein source on resistivetraining-induced changes in body composition and muscle size in older men. Am J Clin Nutr 2002; 76:511–517.

    PubMed  CAS  Google Scholar 

  38. Grisso JA, Kelsey JL, Strom BL, et al., and the Northeast Hip Fracture Study Group. Risk factors for falls as a cause of hip fracture in women. N Engl J Med 1991; 324:1326–1331.

    Article  PubMed  CAS  Google Scholar 

  39. Vellas B, Baumgartner RN, Wayne SJ, et al. Relationship between malnutrition and falls in the elderly. Nutrition 1992; 8:105–108.

    PubMed  CAS  Google Scholar 

  40. Vellas BJ, Albarede JL, Garry PJ. Diseases and aging: patterns of morbidity with age: relationship between aging and age-associated diseases. Am J Clin Nutr 1992; 55(suppl 6):1225S–1230S.

    Google Scholar 

  41. Schwartz A, Capezuti E, Grisso JA. Falls as risk factors for fractures. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Academic Press, San Diego, CA, 2001, pp. 795–808.

    Chapter  Google Scholar 

  42. Thiébaud D, Burckhardt P, Costanza M, et al. Importance of albumin, 25(OH)-vitamin D and IGFBP-3 as risk factors in elderly women and men with hip fracture. Osteoporos Int 1997; 7:457–462.

    Article  PubMed  Google Scholar 

  43. Tylavsky FA, Anderson JJ. Dietary factors in bone health of elderly lactoovovegetarian and omnivorous women. Am J Clin Nutr 1988; 48:842–849.

    PubMed  CAS  Google Scholar 

  44. Lacey JM, Anderson JJ, Fujita T, et al. Correlates of cortical bone mass among the premenopausal and postmenopausal Japanese women. J Bone Miner Res 1991; 6:651–659.

    Article  PubMed  CAS  Google Scholar 

  45. Michaelsson K, Holmberg L, Mallmin H, Wolk A, Bergstrom R, Ljunghall S. Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int 1995; 57:86–93.

    Article  PubMed  CAS  Google Scholar 

  46. Chiu JF, Lan SJ, Yang CY, et al. Long-term vegetarian diet and bone mineral density in postmenopausal Taiwanese women. Calcif Tissue Int 1997; 60:245–249.

    Article  PubMed  CAS  Google Scholar 

  47. Calvo MS, Barton CN, Park YK. Bone mass and high dietary intake of meat and protein: analyses of data from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–94). Bone 1998; 23(suppl):5290.

    Google Scholar 

  48. Lau EM, Kwok T, Woo J, Ho SC. Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. Eur J Clin Nutr 1998; 52:60–64.

    Article  PubMed  CAS  Google Scholar 

  49. Orwoll ES, Weigel RM, Oviatt SK, Meier DE, McClung MR. Serum protein concentrations and bone mineral content in aging normal men. Am J Clin Nutr 1987; 46:614–621.

    PubMed  CAS  Google Scholar 

  50. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DR Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 2000; 15:2504–2512.

    Article  PubMed  CAS  Google Scholar 

  51. Anderson JJB, Metz JA. Adverse association of high protein intake to bone density. Chall Mod Med 1995; 7:407–412.

    Google Scholar 

  52. Bell J, Whiting SJ. Elderly women need dietary protein to maintain bone mass. Nutr Rev 2002; 60:337–341.

    Article  PubMed  Google Scholar 

  53. Heaney RP, Recker RR. Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med 1982; 99:46–55.

    PubMed  CAS  Google Scholar 

  54. Kerstetter JE, O’Brien K, Insogna K. Dietary protein and intestinal calcium absorption. Am J Clin Nutr 2002; 73:990–992.

    Google Scholar 

  55. Heaney RP. Calcium, dairy product and osteoporosis. J Am Coll Nutr 2000; 19(suppl):835–995.

    Google Scholar 

  56. Heaney RP. Protein intake and bone health: the influence of belief systems on the conduct of nutritional science. Am J Clin Nutr 2001; 73:5–6.

    PubMed  CAS  Google Scholar 

  57. Heaney RP. Protein and calcium: antagonists or synergists? Am J Clin Nutr 2002; 75:609–610.

    PubMed  CAS  Google Scholar 

  58. Dawson-Hughes B, Harris SS. Calcium intake influences the association of protein intake with rate of bone loss in elderly men and women. Am J Clin Nutr 2002; 75:773–779.

    PubMed  CAS  Google Scholar 

  59. Freudiger H, Bonjour JP. Bisphosphonates and extrarenal acid buffering capacity. Calcif Tissue Int 1989; 44:3–10.

    Article  PubMed  CAS  Google Scholar 

  60. Schürch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fractureA randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128:801–809.

    PubMed  Google Scholar 

  61. Munger RG, Cerhan JR, Chiu BCH. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 1999; 69:147–152.

    PubMed  CAS  Google Scholar 

  62. Promislow JHE, Goodman-Gruen D, Slymen DJ, Barret-Connor E. Protein consumption and bone mineral density in the elderly. The Rancho Bernardo Study. Am J Epidemiol 2002; 155:636–644.

    Article  PubMed  Google Scholar 

  63. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR, For the Study of Osteoporotic Fractures Research Group. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in posmenopausal women. Am J Clin Nutr 2001; 73:118–122.

    PubMed  CAS  Google Scholar 

  64. Metz JA, Anderson JJB, Gallagher PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr 1993; 58:537–542.

    PubMed  CAS  Google Scholar 

  65. Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 1992; 50:14–18.

    Article  PubMed  CAS  Google Scholar 

  66. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Protein consumption and bone fractures in women. Am J Epidemiol 1996; 143:472–479.

    Article  PubMed  CAS  Google Scholar 

  67. Huang Z, Himes JH, McGovern PG. Nutrition and subsequent hip fracture risk among a national cohort of white women. Am J Epidemiol 1996; 144:124–134.

    Article  PubMed  CAS  Google Scholar 

  68. Johnell O, Gullberg B, Kanis JA, et al. Risk factors for hip fracture in European women: the MEDOS study. J Bone Miner Res 1995; 10:1802–1815.

    Article  PubMed  CAS  Google Scholar 

  69. Meyer HE, Pedersen JI, Løken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol 1997; 145:117–123.

    Article  PubMed  CAS  Google Scholar 

  70. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Milk, dietary calcium, and bone fractures in women: a 12-year prospective study. Am J Public Health 1997; 87:992–997.

    Article  PubMed  CAS  Google Scholar 

  71. Patterson BM, Cornell CN, Carbone B, Levine B, Chapman D. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip. J Bone Joint Surg 1992; 74A:251–260.

    PubMed  CAS  Google Scholar 

  72. Chevalley T, Rizzoli R, Nydegger V, et al. Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporos Int 1991; 1:147–154.

    Article  PubMed  CAS  Google Scholar 

  73. Bastow MD, Rawlings J, Allison SP. Undernutrition, hypothermia, and injury in elderly women with fractured femur: an injury response to altered metabolism? Lancet 1983; 1:143–146.

    Article  PubMed  CAS  Google Scholar 

  74. Sullivan DH, Patch GA, Walls RC, Lipschitz DA. Impact of nutrition status on morbidity in a select population of geriatric rehabilitation patients. Am J Clin Nutr 1990; 51:749–758.

    PubMed  CAS  Google Scholar 

  75. Schürch MA, Rizzoli R, Mermillod B, Vasey H, Michel JP, Bonjour JP. A prospective study on socioeconomic aspects of fracture of the proximal femur. J Bone Miner Res 1996; 11:1935–1942.

    Article  PubMed  Google Scholar 

  76. Tkatch L, Rapin CH, Rizzoli R, et al. Benefits of oral protein supplement in elderly patients with fracture of the proximal femur. J Am Coll Nutr 1992; 11:519–525.

    PubMed  CAS  Google Scholar 

  77. Auernhammer CJ, Strasburger CJ. Effects of growth hormone and insulin-like growth factor I on the immune system. Eur J Endocrinol 1995; 133:635–645.

    Article  PubMed  CAS  Google Scholar 

  78. Garnero P, Sornay-Rendu E, Delmas PD. Low serum IGF-I and occurrence of osteoporotic fractures in postmenopausal women. Lancet 2000; 355:898–899.

    Article  PubMed  CAS  Google Scholar 

  79. Chevalley T, Hoffmeyer P, Bonjour JP, Rizzoli R. A critical pathway for the medical management of osteoporotic fracture: a way to select patients for targeted optimal prevention. Osteoporos Int 2000; 11(suppl 5):S6–57.

    Google Scholar 

  80. Hammerman MR. Insulin-like growth factors and aging. Endocrinol Metab Clin N Am 1987; 16:995–1011.

    CAS  Google Scholar 

  81. Quesada JM, Coopmans W, Ruiz B, Aljama P, Jans I, Bouillon R. Influence of vitamin D on parathyroid function in the elderly. J Clin Endocrinol Metab 1992; 75:494–501.

    Article  PubMed  CAS  Google Scholar 

  82. Goodman-Gruen D, Barrett-Connor E. Epidemiology of insulin-like growth factor-I in elderly men and women. The Rancho Bernardo Study. Am J Epidemiol 1997; 145:970–976.

    Article  PubMed  CAS  Google Scholar 

  83. Langlois JA, Rosen CJ, Visser M, et al. Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. J Clin Endocrinol Metab 1998; 83:4257–4262.

    Article  PubMed  CAS  Google Scholar 

  84. Rosen CJ, Donahue LR. Insulin-like growth factors: potential therapeutic options for osteoporosis. Trends Endocrinol Metab 1995; 6:235–241.

    Article  PubMed  CAS  Google Scholar 

  85. Canalis E, Agnusdei D. Insulin-like growth factors and their role in osteoporosis. Calcif Tissue Int 1996; 58:133–134.

    PubMed  CAS  Google Scholar 

  86. Isley WL, Underwood LE, Clemmons DR. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest 1983; 71:175–182.

    Article  PubMed  CAS  Google Scholar 

  87. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocrine Rev 1994; 15:80–101.

    CAS  Google Scholar 

  88. Thissen JP, Triest S, Maes M, Underwood LE, Ketelslegers JM. The decreased plasma concentrations of insulin-like growth factor-I in protein-restricted rats is not due to decreased number of growth hormone receptors on isolated hepatocytes. J Endocrinol 1990; 124:159–165.

    Article  PubMed  CAS  Google Scholar 

  89. VandeHaar MJ, Moats-Staats BM, Davelport ML, et al. Reduced serum concentrations of insulin-like growth factor-I (IGF-I) in protein-restricted growing rats are accompanied by reduced IGF-I mRNA levels in liver and skeletal muscle. J Endocrinol 1991; 130:305–312.

    Article  PubMed  CAS  Google Scholar 

  90. Thissen JP, Davenport ML, Pucilowska J, Miles MV, Underwood LE. Increased serum clearance and degradation of (125I)-labeled IGF-I in protein-restricted rats. Am J Physiol 1992; 262:E406–E411.

    Google Scholar 

  91. Pucilowska JB, Davenport ML, Kabir I, et al. The effect of dietary protein supplementation on insulin-like growth factors (IGFs) and IGF-binding proteins in children with shigellosis. J Clin Endocrinol Metab 1993; 77:1516–1521.

    Article  PubMed  CAS  Google Scholar 

  92. Hill KK, Hill DB, McClain MP, Humphries LL, McClain CJ. Serum insulin-like growth factor-I concentrations in the recovery of patients with anorexia nervosa. J Am Coll Nutr 1993; 4:475–478.

    Google Scholar 

  93. Sullivan DH, Carter WJ. Insulin-like growth factor I as an indicator of protein-energy undernutrition among metabolically stable hospitalized elderly. J Am Coll Nutr 1994; 13:184–191.

    PubMed  CAS  Google Scholar 

  94. Clemmons DR, Seek MM, Underwood LE. Supplemental essential amino acids augment the somatomedin-C/insulin-like growth factor-I response to refeeding after fasting. Metabolism 1985; 34:391–395.

    Article  PubMed  CAS  Google Scholar 

  95. Clemmons DR, Underwood LE, Dickerson RN, et al. Use of plasma somatomedin-C/insulinlike growth factor-I measurements to monitor the response to nutritional repletion in malnourished patients. Am J Clin Nutr 1985; 41:191–198.

    PubMed  CAS  Google Scholar 

  96. Musey VC, Goldstein S, Farmer PK, Moore PB, Phillips LS. Differential regulation of IGF-I and IGF-binding protein-I by dietary composition in humans. Am J Med Sci 1993; 305:131–138.

    Article  PubMed  CAS  Google Scholar 

  97. Thissen JP, Triest S, Moats-Staats BM, et al. Evidence that pretranslational and translational defects decrease serum insulin-like growth factor-I concentrations during dietary protein restriction. Endocrinology 1991; 129:429–435.

    Article  PubMed  CAS  Google Scholar 

  98. Bourrin S, Ammann P, Bonjour JP, Rizzoli R. Dietary protein restriction lowers plasma insulinlike growth factor I (IGF-1), impairs cortical bone formation, and induces osteoblastic resistance to IGF-1 in adult female rats. Endocrinology 2000; 141:3149–3155.

    Article  PubMed  CAS  Google Scholar 

  99. Ammann P, Rizzoli R, Müller K, Slosman D, Bonjour JP. IGF-1 and pamidronate increase bone mineral density in ovariectomized adult rats. Am J Physiol 1993; 265:E770–E776.

    Google Scholar 

  100. Ammann P, Rizzoli R, Meyer JM, Bonjour JP. Bone density and shape as determinants of bone strength in IGF-1 and/or pamidronate-treated ovariectomized rats. Osteoporos Int 1996; 6:219–227.

    Article  PubMed  CAS  Google Scholar 

  101. Ammann P, Rizzoli R, Caverzasio J, Bonjour JR Fluoride potentiates the osteogenic effects of IGF-1 in aged ovariectomized rats. Bone 1998; 22:39–43.

    Article  PubMed  CAS  Google Scholar 

  102. Ammann P, Rizzoli R, Slosman D, Bonjour JP. Sequential and precise in vivo measurement of bone mineral density in rats using dual-energy X-ray absorptiometry. J Bone Miner Res 1992; 7:311–316.

    Article  PubMed  CAS  Google Scholar 

  103. Bourrin S, Toromanoff A, Ammann P, Bonjour JP, Rizzoli R. Dietary protein deficiency induces osteoporosis in aged male rats. J Bone Miner Res 2000; 15:1555–1563.

    Article  PubMed  CAS  Google Scholar 

  104. Chan J, Tian Y, Tanaka KE, et al. Effect of protein calorie malnutrition on tuberculosis in mice. Proc Natl Acad Sci USA 1996; 93:14857–14861.

    Article  PubMed  CAS  Google Scholar 

  105. Dai G, McMurray DN. Altered cytokine production and impaired antimycobacterial immunity in protein-malnourished guinea pigs. Infect Immun 1998; 66:3562–3568.

    PubMed  CAS  Google Scholar 

  106. Spaulding CC, Walford RL, Effros RB. Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B 1ORF1 mice. Mech Ageing Dey 1997; 93:87–94.

    Article  CAS  Google Scholar 

  107. Anker SD, Coats AJ. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 1999; 115:836–847.

    Article  PubMed  CAS  Google Scholar 

  108. Anker SD, Clark AL, Teixeira MM, Hellewell PG, Coast AJ. Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol 1999; 83:612–615, A10.

    Article  Google Scholar 

  109. Ammann P, Rizzoli R, Bonjour JP, et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997; 99:1699–1703.

    Article  PubMed  CAS  Google Scholar 

  110. Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 1999; 107:119–125.

    Article  PubMed  CAS  Google Scholar 

  111. Grimble RF, Jackson AA, Persaud C, Wride MJ, Delers F, Engler R. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J Nutr 1992; 122:2066–2073.

    PubMed  CAS  Google Scholar 

  112. Manary MJ, Brewster DR, Broadhead RL, et al. Whole-body protein kinetics in children with kwashiorkor and infection: a comparison of egg white and milk as dietary sources of protein. Am J Clin Nutr 1997; 66:643–648.

    PubMed  CAS  Google Scholar 

  113. Grimble RE Nutritional modulation of cytokine biology. Nutrition 1998; 14:634–640.

    Article  PubMed  CAS  Google Scholar 

  114. Jilka RL. Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 1998; 23:75–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonjour, JP., Ammann, P., Chevalley, T., Rizzoli, R. (2004). Protein Intake and Bone Health. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics