Skip to main content

Nutrition and Bone Health in Children and Adolescents

  • Chapter
Book cover Nutrition and Bone Health

Abstract

Adult skeletons evolved from a single cell with a programmed system of constraints on development and mineralization which is under strict genetic control. It has been speculated that genetics contributes about 80% of the variance in bone mass and the remaining 20% is affected by one’s environment, although the exact contribution of each major determinant of bone mass is unknown. Research data support the hypothesis that peak bone size, bone mass, and to a lesser extent the distribution of bone tissue within the bone as an organ (volumetric bone density) in young individuals are strongly influenced by genetic information by both parents (Fig. 1) (1). This indirectly suggests that bone candidate genes responsible for bone modeling drifts along the longitudinal and periosteal axes in interaction with nutritional factors and physical exercise have an important impact on skeletal development and peak bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH. Factors which influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 1990; 52:878–888.

    PubMed  CAS  Google Scholar 

  2. Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin, BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979; 32:540–549.

    PubMed  CAS  Google Scholar 

  3. Heaney RP, Abrams S, Dawson-Hughes B, et al. Peak Bone Mass. Osteopor Int 2000; 11:985–1009.

    Article  CAS  Google Scholar 

  4. Widdowson EM. Growth and body composition in childhood. In: Brunser 0, Carrazza F, Gracey M, Nichols B, Senterre J, eds. Clinical Nutrition of the Young Child. Raven, New York, 1985, pp. 1–21.

    Google Scholar 

  5. U.S. Department of Health and Human Services, Public Health Service. Healthy People 2010. Vol I. understanding and improving health. National Health Promotion and Disease Prevention Objectives. Jones and Bartlett, Boston, 2000.

    Google Scholar 

  6. Heaney RP, Matkovic V. Inadequate peak bone mass. In: Riggs BL, Melton LJ, eds. Osteoporosis: Etiology, Diagnosis and Management, 2nd ed. Lippincott-Raven, Philadelphia, 1995, pp. 115–131.

    Google Scholar 

  7. Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr 1993; 58:219–227.

    PubMed  CAS  Google Scholar 

  8. Sandler RB, Slemenda C, LaPorte RE, et al. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 1985; 42:270–274.

    PubMed  CAS  Google Scholar 

  9. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 1990; 70:1330–1333.

    Article  PubMed  CAS  Google Scholar 

  10. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73:555–563.

    Article  PubMed  CAS  Google Scholar 

  11. Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994; 93:799–808.

    Article  PubMed  CAS  Google Scholar 

  12. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA 1992; 268:2403–2408.

    Article  PubMed  CAS  Google Scholar 

  13. Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 1991; 54:245S-2605.

    Google Scholar 

  14. Matkovic V, Heaney RP. Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr 1992; 55:992–996.

    PubMed  CAS  Google Scholar 

  15. Pettifor JM, Ross FP, Moodley G, DeLuca HF, Travers R, Glorieux FH. Calcium deficiency rickets associated with elevated 1,25-dihydroxyvitamin D concentrations in a rural black population. In: Norman AW, Schaefer K, Herrath DV, et al., eds. Vitamin D, Basic Research and Its Clinical Application. Walter de Gruyter, New York, 1979, pp. 1125–1127.

    Google Scholar 

  16. Thacher TD, Fischer PR, Pettifor JM, et al. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N Engl J Med 1999; 341:563–568.

    Article  PubMed  CAS  Google Scholar 

  17. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accident fractures. Am J Dis Child 1984; 139:569–570.

    Google Scholar 

  18. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Bamed NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res 1998; 13:143–148.

    Article  PubMed  CAS  Google Scholar 

  19. Begum A, Pereira SM. Calcium balance studies on children accustomed to low calcium intakes. Br J Nutr 1969; 23:905–911.

    Article  PubMed  CAS  Google Scholar 

  20. Fleming KH, Heimbach JT. Consumption of calcium in the U.S.: food sources and intake levels. J Nutr 1994; 124:1426S-1430S.

    Google Scholar 

  21. Dietary Reference Intakes. Food and Nutrition Board, Institute of Medicine, National Academy Press, Washington, DC, 1997.

    Google Scholar 

  22. Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V. Relation of nutrition, body composition, and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr 1998; 17:136–147.

    PubMed  CAS  Google Scholar 

  23. Matkovic V, Badenhop-Stevens NE, Landoll JD, Goel P, Li B. Long term effect of calcium supplementation and dairy products on bone mass of young females. J Bone Miner Res 2002; 17:S172.

    Article  Google Scholar 

  24. Black RE, Williams SM, Jones JE, Goulding A. Children who avoid drinking cow milk have low dietary intakes and poor bone health. Am J Clin Nutr 2002; 76:675–680.

    PubMed  CAS  Google Scholar 

  25. On JB. Milk consumption and the growth of school children. Lancet 1928; 1:202–203.

    Google Scholar 

  26. Nordin BEC. Nutritional consideration. In: Nordin BEC, ed. Calcium, Phosphate and Magnesium Metabolism. Churchill Livingstone, Edinburgh, 1976, pp. 1–35.

    Google Scholar 

  27. Prentice A, Stear SJ, Ginty F, Jones SC, Mills L, Cole TJ. Calcium supplementation increases height and bone mass of 16–18 year old boys. J Bone Miner Res 2002; 17:S397.

    Google Scholar 

  28. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EME. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 2000: 71:544–549.

    PubMed  CAS  Google Scholar 

  29. Moll GW, Rosenfield RL, Fang VS. Administration of low dose estrogen rapidly and directly stimulates growth hormone production. Am J Dis Child 1986; 140;124–127.

    PubMed  Google Scholar 

  30. Ross JL, Cassorla FG, Skerda MC, Valk IG, Loriaux L, cuiter GB. A preliminary study of the effect of estrogen dose on growth in Turner’s syndrome. New Engl J Med 1983; 309:1104.

    Article  PubMed  CAS  Google Scholar 

  31. Garn SM. The Earlier Gain and the Later Loss of Cortical Bone. Charles C Thomas, Springfield, IL, 1970.

    Google Scholar 

  32. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson Sc. Eidemiology of fractures of the distal end of the radius in children as ssociated with growth. J Bone Joint Surg 1989; 71-A, 8:1225–1231.

    Google Scholar 

  33. Matkovic V, Ciganovic M, Tominac C, Kostial K. Osteoporosis and epidemiology of fractures in Croatia. An international comparison. Henry Ford Hosp Med J 1980; 28:116–126.

    PubMed  CAS  Google Scholar 

  34. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med 1984; 311:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  35. Matkovic V, Ilich JZ, Skugor M, et al. Leptin is inversely related to age at menarche in human females. J Clin Endocrinol Metab 1997; 82:3239–3245.

    Article  PubMed  CAS  Google Scholar 

  36. Matkovic V, Ilich JZ. Calcium requirements during growth. Are the current standards adequate? Nutr Rev 1993; 51:171–180.

    Article  PubMed  CAS  Google Scholar 

  37. Charles P, Taagehoj Jensen F, Mosekilde L, Hvid Hansen H. Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss. Clin Sci 1983; 65:415–422.

    PubMed  CAS  Google Scholar 

  38. Klesges RC, Ward KD, Shelton ML, et al. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA 1996; 276:226–230.

    Article  PubMed  CAS  Google Scholar 

  39. Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int 1997; 61:104–109.

    Article  PubMed  CAS  Google Scholar 

  40. Weaver CM, Martin BR, Plawecki KL. Diferences in calcium metaboilism between adolescent and adult females. Am J Clin Nutr 1995; 61:577–581.

    PubMed  CAS  Google Scholar 

  41. Matkovic V, Ilich JZ, Andon MB, et al. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 1995; 62:417–425.

    PubMed  CAS  Google Scholar 

  42. Alffram PA, Bauer GCH. Epidemiology of fractures of the forearm. J Bone Joint Surg 1962; 44A:105–114.

    PubMed  Google Scholar 

  43. Verd Vellespir S, Dominguez Sanches J, Gonzales Quintial M, et al. Asociacion entre el contenido en calcio de las aguas de consumo y las fracturas en los ninos. An Esp Pediatr 1992; 37:461–465.

    Google Scholar 

  44. Johnston CC Jr, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327:82–87.

    Article  PubMed  Google Scholar 

  45. Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270:841–844.

    Article  PubMed  CAS  Google Scholar 

  46. Lee WTK, Leung SSF, Wang SF, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60:744–750.

    PubMed  CAS  Google Scholar 

  47. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. Br Med J 1997; 315:1255–1260.

    Article  CAS  Google Scholar 

  48. Chan GM, Hoffman K, McMurray M. Effect of dairy products on bone and body composition in pubertal girls. J Ped 1995; 126:551–556.

    Article  CAS  Google Scholar 

  49. Bonjour JP, Carrie AL, Ferrarri S, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled, trial. J Clin Invest 1997; 99:1287–1294.

    Article  PubMed  CAS  Google Scholar 

  50. Nowson CA, Green RM, Hopper JL, et al. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteopor Int 1997; 7:219–225.

    Article  CAS  Google Scholar 

  51. Merriles MJ, Smart EJ, Gilchrist NL, et al. Effects of dairy food supplements on bone mineral density in teenage girls. Eur J Nutr 2000; 39:256–262.

    Article  Google Scholar 

  52. Heaney RP. Interpreting trials of bone-active agents. Am J Med 1995; 98:329–330.

    Article  PubMed  CAS  Google Scholar 

  53. Slemenda C, Reister TK, Peacock M, Johnston CC Jr. Bone growth in children following the cessation of calcium supplementation. J Bone Miner Res 1993; 8:S154.

    Google Scholar 

  54. Lee WTK, Leung SSF, Leung DMY, Cheng JCY. A follow-up study on the effects of calciumsupplement withdrawl and puberty on bone acquisition of children. Am J Clin Nutr 1996; 64:71–77.

    PubMed  CAS  Google Scholar 

  55. Dibba B, Prentice A, Ceesay M, et al. Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawl of a calcium supplement. Am J Clin Nutr 2002; 76:681–686.

    PubMed  CAS  Google Scholar 

  56. Matkovic V. Can osteoporosis be prevented? Bone mineralization during growth and development. In: Johnston FE, Zemel B, Eveleth PB, eds. Human Growth in Context. Smith-Gordon, London, UK, 1999, pp. 183–193.

    Google Scholar 

  57. Matkovic V, Badenhop NE, Ilich JZ. Trace element and mineral nutrition in healthy people: adolescents. In: Bogden JD, Klevay LM, eds. The Clinical Nutrition of the Essential Trace Elements and Minerals—The Guide for Health Professionals. Humana, Totowa, NJ, 2000, pp. 153–182.

    Google Scholar 

  58. Heaney RP, Nordin BEC. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 2002; 21:239–244.

    PubMed  CAS  Google Scholar 

  59. Garn SM, Rohmann CG, Behar M, Viteri F, Gozman M. Compact bone deficiency in proteincalorie malnutrition. Science 1964; 145:1444–1445.

    Article  PubMed  CAS  Google Scholar 

  60. NIH Consensus Conference: Optimal calcium intake. JAMA 1994; 272:1942–1948.

    Article  Google Scholar 

  61. Ilich-Ernst JZ, McKenna AA, Badenhop NE, et al. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr 1998; 68:880–887.

    PubMed  CAS  Google Scholar 

  62. Andon MB, Ilich JZ, Tzagournis MA, Matkovic V. Magnesium balance in adolescent females consuming a low or high calcium diet. Am J Clin Nutr 1996; 63:950–953.

    PubMed  CAS  Google Scholar 

  63. McKenna AA, Ilich JZ, Andon MB, Wang C, Matkovic V. Zinc balance in adolescent females consuming a low- or high-calcium diet. Am J Clin Nutr 1997; 65:1460–1464.

    PubMed  CAS  Google Scholar 

  64. Holben D, Smith AM, Ha EJ, Ilich JZ, Matkovic V. Selenium (Se) absorption, balance, and status in adolescent females throughout puberty. FASEB J 1996; 10:A532.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matkovic, V., Badenhop-Stevens, N., Ha, EJ., Crncevic-Orlic, Z., Clairmont, A. (2004). Nutrition and Bone Health in Children and Adolescents. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics