Skip to main content

Infections Caused by Glycopeptide-Resistant Gram-Positive Bacteria Excluding Staphylococci

  • Chapter
Management of Multiple Drug-Resistant Infections

Part of the book series: Infectious Disease ((ID))

  • 132 Accesses

Abstract

Vancomycin and teicoplanin are the two glycopeptides in clinical use throughout the world. Vancomycin has been in clinical use since 1958, but teicoplanin only since the late 1980s. Glycopeptide resistance in Gram-positive bacteria can be either intrinsic or acquired. Although intrinsic vancomycin resistance in certain organisms predates acquired resistance in enterococci, it is the acquired resistance in enterococci that has increased so dramatically since first reported in the late 1980s by Uttley et al. (1). For instance, a 3-yr analysis of nosocomial bloodstream infections in 49 U.S. hospitals between 1997 and 1999 found that 11% of bacteremias were caused by enterococci; of these enterococci, 3% of E. faecalis and 50% of E. faecium were vancomycin resistant (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uttley AHC, Collins CH, Naidoo J, George RC. Vancomycin resistant enterococci. Lancet 1988; 331: 136.

    Article  Google Scholar 

  2. Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals—a 3-year analysis. Clin Infect Dis 1999; 29: 239 – 244.

    Article  PubMed  CAS  Google Scholar 

  3. Leclercq R, Derlot E, Weber M, Courvalin P. Transferable vancomycin and teicoplanin resistance in E. faecium. Antimicrob Agents Chemother 1989; 33: 10 – 15.

    Article  PubMed  CAS  Google Scholar 

  4. Clark NC, Teixeira L, Facklam R, Tenover FC. Detection and differentiation of vanC-1, vanC2 and vanC-3 glycopeptide resistance genes in enterococci. J Clin Microbiol 1998; 36: 2294 – 2297.

    PubMed  CAS  Google Scholar 

  5. Navarro F, Courvalin P. Analysis of genes encoding -Alanine-D-Alanine ligase related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother 1994; 38: 1788 – 1793.

    Article  PubMed  CAS  Google Scholar 

  6. Leclerq R, Dutka-Malen S, Duval J, Courvalin P. Vancomycin resistance gene vanC is specific to Enterococcus gallinarum. Antimicrob Agents Chemother 1992; 36: 2005 – 2008.

    Article  Google Scholar 

  7. Vandamme P, Veracauteren E, Lammer SC, et al. Survey of enterococcal susceptibility patterns in Belgium. J Clin Microbiol 1996; 34: 2573 – 2576.

    Google Scholar 

  8. Toye B, Shymanski J, Bobrowska M, Woods W, Ramotar K. Clinical and epidemiologic significance of enterococci intrinsically resistant to vancomycin (possessing the vanC phenotype). J Clin Microbiol 1997; 35: 3166 – 3170.

    PubMed  CAS  Google Scholar 

  9. Cartwright CP, Stock F, Fahle GA, Gill VJ. Comparison of pigment production and motility tests with PCR for reliable identification of intrinsically vancomycin resistant enterococci. J Clin Microbiol 1995; 33: 1931 – 1933.

    PubMed  CAS  Google Scholar 

  10. Facklam RR, Collins MD. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol 1989; 27: 731 – 734.

    PubMed  CAS  Google Scholar 

  11. Arthur M, Reynolds PE, Depardieu F, et al. Mechanisms of glycopetide resistance in enterococci. J Infect 1996; 32: 11 – 16.

    Article  PubMed  CAS  Google Scholar 

  12. Van Belkum A, Van der Braak N, Thomassen R, Verbrugh H, Encitz H. Vancomycinresistant enterococci in dogs and cats. Lancet 1996; 348: 1038 – 1039.

    Article  Google Scholar 

  13. Van der Braak N, Van Belkum A, Van Kculen M, V1iegenthart J, Verbrugh HA, Encitz HP. Molecular characterisation of vancomycin resistant enterococci from hospitalised patients and poultry products in the Netherlands. J Clin Microbiol 1998; 36: 1927 – 1932.

    PubMed  Google Scholar 

  14. Ruoff KL, De la Maza L, Murtagh M, Spargo JD, Ferraro MJ. Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 1990; 28: 435 – 437.

    PubMed  CAS  Google Scholar 

  15. Liassine N, Frei R, Jan I, Auckenthaler R. Characterisation of glycopeptide-resistant enterococci in a Swiss hospital. J Clin Microbiol 1998; 36: 1853 – 1858.

    PubMed  CAS  Google Scholar 

  16. Johnson AP, Uttley AH, Woodford N, George RC. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 1990; 3: 280 – 291.

    PubMed  CAS  Google Scholar 

  17. Billot-Klein D, Gutman L, Sable S, Guittet E, Van Heijenoort J. Modification of the peptidoglycan precursors is a common feature of low-level vancomycin-resistant VanB type enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides and Enterococcus gallinarum. J Bacteriol 1994; 176: 2398 – 2405.

    PubMed  CAS  Google Scholar 

  18. Reynolds PE, Snalth HA, Maguire AJ, Dutka-Malen S, Courvalin P. Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum. Biochem J 1994; 301: 5 – 8.

    PubMed  CAS  Google Scholar 

  19. Hillier SL, Moncla BJ. Peptostreptococcus, Propionobacterium, Eubacterium and other nonsporeforming anaerobic Gram-positive bacteria. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds.). Manual of Clinical Microbiology. 6th ed. Washington, DC: ASM, 1995, pp. 587 – 602.

    Google Scholar 

  20. Clarridge JE, Spiegel CA. Corynebacterium and miscellaneous irregular Gram-positive rods, Erysipelothrix and Gardnerella. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds.). Manual of Clinical Microbiology. 6th ed. Washington, DC: ASM, 1995 pp. 357 – 378.

    Google Scholar 

  21. Ruoff KL. Leuconostoc, Pediococcus, Stomatococcus and miscellaneous Gram-positive cocci that grow aerobically. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds.). Manual of Clinical Microbiology. 6th ed. Washington, DC: ASM, 1995, pp. 315 – 323.

    Google Scholar 

  22. Gold HS. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin Infect Dis 2001; 33: 210 – 219.

    Article  PubMed  CAS  Google Scholar 

  23. Shlaes DM, Etter L, Gutmann L. Synergistic killing of vancomycin-resistant enterococci of classes A, B, and C by combinations of vancomycin, penicillin, and gentamicin. Antimicrob Agents Chemother 1991; 35: 776 – 779.

    Article  PubMed  CAS  Google Scholar 

  24. Arthur M, Molinas C, Courvalin P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 1992; 174: 2582 – 2591.

    PubMed  CAS  Google Scholar 

  25. Evers S, Courvalin P. Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR(B) two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 1996; 178: 1302 – 1309.

    PubMed  CAS  Google Scholar 

  26. Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother 1997; 41: 2016 – 2018.

    PubMed  CAS  Google Scholar 

  27. Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999; 43: 2161 – 2164.

    PubMed  CAS  Google Scholar 

  28. Van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P. Vancomycindependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother 1999; 43: 41 – 47.

    Article  PubMed  Google Scholar 

  29. Brisson-Noel A, Dutka-Malen S, Molinas C, Leclereq R, Courvalin P. Cloning and heterospecific expression of the resistance determinant van-A encoding high level resistance to glycopeptides. Antimicrob Agents Chemother 1990; 34: 924 – 927.

    Article  PubMed  CAS  Google Scholar 

  30. Biavasco F, Giovanetti E, Miele A. In-vitro co-transfer of Van-A vancomycin resistance between enterococci and Listeria of different species. Eur J Clin Microbiol Infect Dis 1996; 15: 50 – 59.

    Article  PubMed  CAS  Google Scholar 

  31. Power EG, Abdulla YU, Talsania HG, French G. Van A genes in vancomycin resistant clinical isolates of Oerskovia turbata and Arcanobacterium haemolyticum. J Antimicrob Chemother 1995; 36: 595 – 600.

    Article  PubMed  CAS  Google Scholar 

  32. French G, Abdulla Y, Heathcock R, Poston S, Cameron J. Vancomycin resistance in South London. Lancet 1992; 339: 818 – 819.

    Article  PubMed  CAS  Google Scholar 

  33. Fontana R, Ligozzi M, Pedrotti C, Padovani EM, Cornaglia G. Vancomycin resistant Bacillus circulans carrying the van-A gene responsible for vancomycin resistance in enterococci. Eur J Clin Microbiol Infect Dis 1997; 16: 473.

    Article  PubMed  CAS  Google Scholar 

  34. Rolston K. The clinical significance of organisms tolerant to vancomycin. Proc Am Soc Microbiol (Atlanta) 1993. Abstract 52.

    Google Scholar 

  35. Poyeart-Salmeron C, Pierre C, Quesne G. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a Van-B transferable determinant in Streptococcus bovis. Antimicrob Agents Chemother 1997; 41: 24 – 29.

    Google Scholar 

  36. Krcmery V, Spanik S, Trupl J. First report of vancomycin resistant Streptococcus mitis bactaeremia in a patient with acute leukemia after prophylaxis with quinolones and during treatment with vancomycin. J Chemother 1996; 84: 325 – 326.

    Google Scholar 

  37. Mevius D, Devriese L, Butaye P, Vandamme P, Verschave M, Valdman K. Isolation of glycopeptide resistant Streptococcus galolyticus with Van A and Van B. J Antimicrob Chemother 1998; 42: 275 – 276.

    Article  PubMed  CAS  Google Scholar 

  38. Swenson JM, Facklam RR, Thornsberry C. Antimicrobial susceptibility of vancomycin resistant Leuconostoc, Pediococcus and Lactobacillus species. J Clin Microbiol 1992; 30: 2373 – 2378.

    PubMed  Google Scholar 

  39. Narnnyak SS, Blair ALT, Hughes DF, McElhinney P, Donnelly MR, Corey J. Fatal lung abscess due to Lactobacillus casei ss. rhamnosus. Thorax 1992; 47: 666 – 667.

    Article  Google Scholar 

  40. Venditti M, Gelfusa V, Tarasi A, et al. Antimicrobial susceptibilities of Erysipelothrix rhusiopathiae. Antimicrob Agents Chemother 1990; 34: 2038 – 2040.

    Article  PubMed  CAS  Google Scholar 

  41. Krcmery V, Sefton A. Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp. Int J Antimicrob Agents 2000; 14: 99 – 105.

    Article  PubMed  CAS  Google Scholar 

  42. Goodhart GL. In vivo versus in vitro susceptibility of enterococcus to trimethoprimsulfamethoxazole: a pitfall. JAMA 1984; 252: 2748 – 2749.

    Article  CAS  Google Scholar 

  43. Moellering RC Jr. Antimicrobial susceptibility of enterococci: in vitro studies of the action of antibiotics alone and in combination. In: Bisno AL (ed.). Treatment of Endocarditis. New York: Grune and Stratton, 1981, pp. 54 – 60.

    Google Scholar 

  44. Lautenbach E, Schuster MG, Bilker WB, Brennan Pi. The role of chloramphenicol in the treatment of bloodstream infection due to vancomycin-resistant Enterococcus. Clin Infect Dis 1998; 27: 1259 – 1265.

    Article  PubMed  CAS  Google Scholar 

  45. Linden PK. Treatment options for vancomycin-resistant enterococcal infections. Drugs 2002; 62: 425 – 441.

    Article  PubMed  CAS  Google Scholar 

  46. Beauvais P, Filipe G, Berniere J, Carlioc H. Oral prisinamycin for bone and joint infections in children. A report of 50 cases. Arch Fr Pediatr 1981; 38: 489 – 493.

    PubMed  CAS  Google Scholar 

  47. Diekema DJ, Jones R. Oxazolidinone antibiotics. Lancet 2001; 358: 1975 – 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Rybak MJ. Therapeutic options for Gram-positive infections. J Hosp Infect 2001; 49 (suppl. A): S25 – S32.

    Article  PubMed  Google Scholar 

  49. Petersen PJ, Bradford PA, Weiss WJ, Murphy TM, Sum PE, Projan SJ. In vitro and in vivo activities of tigeclycline (GAR-936), daptomycin and comparative antimicrobial agents against glycopetide-intermediate Staphylococcus aureus and other resistant Gram-positive pathogens. Antimicrob Agents Chemother 2002; 46: 2595 – 2601.

    Article  PubMed  CAS  Google Scholar 

  50. Barrett JF. Oritavancin. Eli Lilly and Company. Curr Opin Investig Drugs 2001; 2: 1039–1044.

    Google Scholar 

  51. Chopra I. Glycyclines: third-generation tetracycline antibiotics. Curr Opin Pharmacol 2001: 1: 464 – 469.

    Article  PubMed  CAS  Google Scholar 

  52. Nelson RS. Intrinsically vancomycin resistant Gram positive organisms: clinical relevance and implications for infection control. J Hosp Infect 1999; 42: 275 – 282.

    Article  PubMed  CAS  Google Scholar 

  53. Patel R. Enterococcal-type glycopeptide resistance genes in non-enterococcal organisms. FEMS Microbiol Lett 1999; 185: 1 – 7.

    Article  Google Scholar 

  54. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997; 40: 135 – 136.

    Article  PubMed  CAS  Google Scholar 

  55. Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. Emergence of vanomycin tolerance in Streptococcus pneumoniae. Nature 1999; 399: 590 – 593.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sefton, A. (2004). Infections Caused by Glycopeptide-Resistant Gram-Positive Bacteria Excluding Staphylococci. In: Gillespie, S.H. (eds) Management of Multiple Drug-Resistant Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-738-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-738-3_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-438-8

  • Online ISBN: 978-1-59259-738-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics