Skip to main content

Emerging Resistance to Vancomycin, Rifampin, and Fluoroquinolones in Streptococcus pneumoniae

  • Chapter
Management of Multiple Drug-Resistant Infections

Part of the book series: Infectious Disease ((ID))

Abstract

Antimicrobial resistance is a common global problem. During the 1970–1980s, resistance was considered a hospital-based problem mainly related to nosocomially acquired resistant organisms. Throughout the 1990s, there was recognition that many community-acquired pathogens were resistant to first-line antibiotics, thereby prompting the use (in some clinical situations) of broader spectrum agents. Toward the late 1990s and currently, the realization is that community-acquired pathogens may be multiresistant. Some patients may require hospitalization for therapy; others may be treated as outpatients. Regardless, the complexity of resistance is dictating a necessary change in the approach to therapy in patients with multiresistant pathogens. These developments have forced a reevaluation of the approach to empiric therapy—changes that have appeared in various expert working group guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blondeau JM. A review of the comparative in vitro activity of 12 antimicrobial agents with a focus on four new respiratory quinolones. J Antimicrob Chemother 1999; 43: 1 - 11.

    CAS  Google Scholar 

  2. Blondeau JM. Community-aquired respiratory tract pathogens and increasing antimicrobial resistance. J Infect Dis Pharm 2000; 4 (2): 1 - 28.

    Google Scholar 

  3. Hansman D, Bullen MM. A resistant pneumococcus. Lancet 1967; 2: 264 - 265.

    Google Scholar 

  4. Appelbaum PC, Bhamjee A, Scragg JN, Hallett AF, Bowen AJ, Cooper RC. Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet 1977; 2: 995 - 997.

    PubMed  CAS  Google Scholar 

  5. Jacobs MR, Koornhof HJ, Robins-Browne RM, et al. Emergence of multiply resistant pneumococci. N Engl J Med 1978; 299: 735 - 740.

    PubMed  CAS  Google Scholar 

  6. Evans W, Hansman D. Tetracycline-resistant pneumococcus. Lancet 1963; 1: 451.

    Google Scholar 

  7. Francis RS, May J, Spicer CC. Influence of daily penicillin, tetracycline, erythromycin and sulphamethoxypyridazine on exacerbations of bronchitis: a report to the Research Committee of the British Tuberculosis Association. BMJ 1964; 1: 728 - 732.

    CAS  Google Scholar 

  8. Kislak JW. Type 6 pneumococcus resistant to erythromycin and lincomycin. N Engl J Med 1967; 276: 852.

    PubMed  CAS  Google Scholar 

  9. Klugmam KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev 1990; 3 (2): 171 - 196.

    Google Scholar 

  10. Aseni F, Perez-Tamarit D, Otero MC, et al. Imipenem-cilastatin therapy in a child with meningitis caused by a multiply resistant pneumococcus. Pediatr Infect Dis 1989; 8: 895.

    Google Scholar 

  11. Novak R, Henriquies B, Charpentier E, Normark S, Tuomanen E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 1999; 399: 590 - 593.

    PubMed  CAS  Google Scholar 

  12. Tomasz A, Hotchkiss RD. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci 1964; 51: 480 - 487.

    PubMed  CAS  Google Scholar 

  13. Shockley TE, Hotchkiss RD. Stepwise introduction of transformable penicillin resistance in pneumococcus. Genetics 1970; 64: 397 - 408.

    PubMed  CAS  Google Scholar 

  14. Dowson CG, Barcus V, King S, Pickerill P, Whatmore A, Yeo M. Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Soc Appl Bacteriol 1997; 26: 42S - 51S.

    CAS  Google Scholar 

  15. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35: 1267 - 1272.

    PubMed  CAS  Google Scholar 

  16. Courvalin P, Carlier C. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet 1986; 205: 291 - 297.

    PubMed  CAS  Google Scholar 

  17. Felmingham D, Washington JA, Group TAP. Trends in the antimicrobial susceptibility of bacterial respiratory tract pathogens-findings of the Alexander Project 1992-1996. J Chemother 1999; 11: 5 - 21.

    PubMed  Google Scholar 

  18. Blondeau JM, Vaughan D, Group. The Canadian Antimicrobial Resistance Study Group. Surveillance of antimicrobial resistance in Streptococcus pneumoniae (SP), Haemophilus influenzae (H) and Moraxella catarrhalis (MC) in Canada: results of a multicenter study (Abstract P210). J Antimicrob Chemother 1999; 44: 86.

    Google Scholar 

  19. Nakamura S. Mechanisms of quinolone resistance. J Infect Chemother 1997; 3: 128 - 138.

    CAS  Google Scholar 

  20. Klugman KP, Feldman C. Penicillin-and cephalosporin-resistant Streptococcus pneumoniae: emerging treatment for an emerging problem. Drugs 1999; 58: 1 - 4.

    PubMed  CAS  Google Scholar 

  21. Doern GV, Brueggemann AB, Holley HP, et al. Antimicrobial resistance of S. pneumoniae recovered from outpatients in the US during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother 1996; 40: 1208 - 1213.

    PubMed  CAS  Google Scholar 

  22. Thornsbeny C, Ogilvie P, Kahn J, Mauriz Y, Group TLI. Surveillance of antimicrobial resistant in Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in the United States in 1996-1997 respiratory season. Diag Microbiol Infect Dis 1997; 29: 249 - 257.

    Google Scholar 

  23. Pfaller MA, Jones RN, Doern GV, et al. Survey of blood stream infections attributable to Gram-positive cocci: frequency of occurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada and Latin America from the SENTRY Surveillance Program. Diag Microbiol Infect Dis 1999; 33: 283 - 297.

    CAS  Google Scholar 

  24. Simor AE, Louie M, Low DE. Canadian national survey of prevalence of antimicrobial resistance among clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40: 2190 - 2193.

    PubMed  CAS  Google Scholar 

  25. Jacobs MR, Bajaksouzian S, Zilles A, Lin G, Pankuch GA, Appelbaum PC. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. Surveillance Study. Antimicrob Agents Chemother 1999; 43: 1901 - 1908.

    PubMed  CAS  Google Scholar 

  26. National Committee for Clinical Laboratory Standards (NCCLS). Performance Standards for Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically (M7-A4). Wayne, PA: National Committee for Clinical Laboratory Standards, 1997.

    Google Scholar 

  27. Hartmann G, Honikel KO, Knusel F, Nuesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 1967; 145: 843 - 844.

    PubMed  CAS  Google Scholar 

  28. Wehrli W. Rifampin: mechanisms of action and resistance. Rev Infect Dis 1983; 5: S407 - S411.

    PubMed  CAS  Google Scholar 

  29. Zillig W, Zechel K, Rabussay D, et al. On the role of different subunits of DNA-dependent RNA polymerase from E. coli in the transcription process. Cold Spring Harb Symp Quant Biol 1970; 35: 47 - 58.

    CAS  Google Scholar 

  30. Carter PE, Abadi FJR, Yakubu DE, Pennington TH. Molecular characterization of rifampin-resistant Neisseria meningitidis. Antimicrob Agents Chemother 1994; 38: 1256 1261

    Google Scholar 

  31. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the B-subunit of the RNA polymerase influence in vitro activity of rifamycins in rifampinresistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995; 35: 345 - 348.

    PubMed  CAS  Google Scholar 

  32. Kapur V, Ling-Ling L, Iordanescu S, et al. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase B-subunit in rifampinresistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 1994; 32: 1095 - 1098.

    PubMed  CAS  Google Scholar 

  33. Telenti A, Imboden P, Marchesi F, et al. Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341: 647 - 650.

    PubMed  CAS  Google Scholar 

  34. Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 1993; 37: 2054 - 2058.

    PubMed  CAS  Google Scholar 

  35. Hetherington SV, Watson AS, Patrick CC. Sequence and analysis of the rpoB gene of Mycobacterium smegmatis. Antimicrob Agents Chemother 1995; 39: 2164 - 2166.

    PubMed  CAS  Google Scholar 

  36. Levin ME, Hatfull GF. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, ac- tion of rifampin and mechanism of rifampin resistance. Mol Microbiol 1993; 8: 277 - 285.

    PubMed  CAS  Google Scholar 

  37. Honore N, Cole ST. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 1993; 37: 414 - 418.

    PubMed  CAS  Google Scholar 

  38. Heil A, Zillig W. Reconstruction of bacterial DNA dependent RNA polymerase from isolated subunits as a tool for the elucidation of the subunits in transcription. FEBS Lett 1970; 11: 165 - 168.

    PubMed  CAS  Google Scholar 

  39. Iwakura Y, Ishihama A, Yura T. RNA polymerase mutants of Escherichia coli, H. streptolydigin resistance and its relation to rifampin resistance. Mol Gen Genet 1973; 121: 181 - 196.

    PubMed  CAS  Google Scholar 

  40. Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampin resistance. J Mol Biol 1988; 202: 45 - 58.

    PubMed  CAS  Google Scholar 

  41. Lisitsyn NA, Sverdlov ED, Moiseyera EP, Danilesyskaya ON, Nikiforov VG. Mutation of rifampin resistance at the beginning of the RNA polymerase B subunit gene in Escherichia coli. Mol Gen Genet 1984; 196: 173 - 174.

    PubMed  CAS  Google Scholar 

  42. Padayachee T, Klugman KP. Molecular basis of rifampin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43: 2361 - 2365.

    PubMed  CAS  Google Scholar 

  43. Enright M, Zawadski P, Pickerill P, Dowson CG. Molecular evolution of rifampin resistance in Streptococcus pneumoniae. Microb Drug Resist 1998; 4: 65 - 70.

    PubMed  CAS  Google Scholar 

  44. Severinov K, Soushko M, Goldfarb A, Nikiforov VG. New rifampicin-resistant and streptolydigin-resistant mutants in the subunit of Escherichia coli RNA polymerase. J Biol Chem 1993; 268: 14 - 16.

    Google Scholar 

  45. Thornsberry C, Ogilvia PT, Holley HP Jr., and Sahm DF. Survey of susceptibilities of Streptococcus pnemoniae, Haemophilus influenzae, and Moraxella catarrhalis isolates to the 26 antimicrobial agents: a prospective U. S. Study. Antimicrob Agents Chemother 1999; 43: 2612 - 2623.

    CAS  Google Scholar 

  46. Benbachir M, Benredjeb S, Boye CS, Dosso M, Belabbes H, Kamoun A, Kaire O, Elmdaghri E. Two-year surveillance of antibiotic resistance in Streptococcus pneumoniae in four African cities. Antimicrob Agents Chemother 2001; 45 (2): 627 - 629.

    PubMed  CAS  Google Scholar 

  47. Woodford N. Epidemiology of the genetic elements responsible for acquired glycopeptide resistance in enterococci. Microb Drug Resist 2001; 7: 229 - 236.

    PubMed  CAS  Google Scholar 

  48. Noble WC, Virani Z, Cree RG. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Immunol Med Microbiol 1992; 72: 195 - 198.

    CAS  Google Scholar 

  49. Hoban DJ, Doern GV, Fluit AC, Roussel-Delvallez M, Jones RN. Worldwide prevalence of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001; 32: S81 - S93.

    PubMed  CAS  Google Scholar 

  50. Hsueh PR, Teng LJ, Lee LN, Yang PC, Ho SW, Luh KT. Extremely high incidence of macrolide and trimethoprim-sulfamethoxazole resistance among clinical isolates of Streptococcus pneumoniae in Taiwan. J Clin Microbiol 1999; 37: 897 - 901.

    PubMed  CAS  Google Scholar 

  51. Song JH, Lee NY, Ichiyama S, et al. Spread of drug-resistant Streptococcus pneumonia in Asian countries: Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study. Clin Infect Dis 1999; 28: 1206 - 1211.

    PubMed  CAS  Google Scholar 

  52. Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 1970; 227: 138 - 140.

    PubMed  CAS  Google Scholar 

  53. Moreillon P, Markiewicz Z, Nachman S, Tomasz A. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother 1990; 34: 33 - 39.

    PubMed  CAS  Google Scholar 

  54. Holtje JV, Tuomanen E. The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infection in vivo. J Gen Microbiol 1991; 137: 441 - 454.

    PubMed  CAS  Google Scholar 

  55. Evers S, Courvalin P. Regulation of VanB-type vancomycin resistance gene expression by the VanSB two-component regulatory system in Enterococcus faecalis V583. J Bacteriol 1996; 179: 1302 - 1309.

    Google Scholar 

  56. Liu HH, Tomasz A. Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J Infect Dis 1985; 152: 365 - 372.

    PubMed  CAS  Google Scholar 

  57. Tauber MG, Zwahlen A. Animal models of meningitis. Meth Enzymol 1994; 235: 92 - 106.

    Google Scholar 

  58. Anton N, Blazquez R, Gomez-Garces JL, Alos JI. Study of vancomycin tolerance in 120 strains of Streptococcus pneumoniae isolated in 1999 in Madrid, Spain. J Antimicrob Chemother 2001; 47: 902 - 903.

    PubMed  CAS  Google Scholar 

  59. Lesher GY, Froelich ED, Gruet MD, et al. 1,8 Naphthyridine derivatives: a new class of chemotherapeutic agents. J Med Pharmacol Chem 1962; 5: 1063 - 1068.

    CAS  Google Scholar 

  60. Gootz TD, Brighty KE. Chemistry and mechanism of action of the quinolone antibacterials. In: Andriole VT (ed.). The Quinolones. London, England: Academic, 1998, pp. 2980.

    Google Scholar 

  61. Neu HC. Major advances in antibacterial quinolone therapy. Adv Pharmacol 1994; 29: 227 - 262.

    Google Scholar 

  62. Mathai D, Lewis MT, Kugler K, Pfaller MA, Jones RN. (SENTRY). Antibacterial activity of 41 antimicrobials tested against over 2773 bacterial isolates from hospitalized patients with pneumonia: I-results from SENTRY Antimicrobial Surveillance Program (North America, 1998) Diag Microbiol Infect Dis 2001; 39: 105 - 116.

    CAS  Google Scholar 

  63. Lee HJ, Park JY, Jang SH, Kim JH, Kim EC, Choi KW. High incidence of resistance to multiple antimicrobials in clinical isolates of Streptococcus pneumoniae from a University Hospital in Korea. Clin Infect Dis 1995; 20: 826 - 835.

    PubMed  CAS  Google Scholar 

  64. Felmingham D, Brown DFJ, Soussy CJ. The European Resistance Survey Study Group. European glycopeptide susceptibility survey of gram-positive bacteria, for 1995. Diag Microbiol Infect Dis 1998; 31: 563 - 571.

    Google Scholar 

  65. Chang SC, Hsieh WC, Liu CY. (The Antibiotic Resistance Study Group of Republic of China). High prevalence of antibiotic resistance of common pathogenic bacteria in Taiwan. Diag Microbiol Infect Dis 2000; 36: 107 - 112.

    Google Scholar 

  66. Ball P. The quinolones: history and overview. In: Andriole VT (ed.). The Quinolones. London, England: Academic, 1998, pp. 1 - 28.

    Google Scholar 

  67. Sahm DF, Jones ME, Hickey ML, Diankun DR, Mani SV, Thornsberry C. Resistance surveillance of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated in Asia and Europe, 1997-1998. J Antimicrob Chemother 2000; 45: 457 - 466.

    PubMed  CAS  Google Scholar 

  68. Felmingham D. Respiratory pathogens: assessing resistance patterns in Europe and the potential role of grepafloxacin as treatment of patients with infections caused by these organisms. J Antimicrob Chemother 2000; 45 (Topic T2): 1 - 8.

    PubMed  CAS  Google Scholar 

  69. Jones ME, Staples AM, Critchley IA, et al. Benchmarking the in vitro activity of moxifloxacin against recent isolates of Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae-a European multi-centre study. Diagn Microbiol Infect Dis 2000; 37: 203 - 211.

    PubMed  CAS  Google Scholar 

  70. Kato H, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. New topoisomerase essential for chromosome segregation in E. coli. Cell 1990; 63: 393 - 404.

    PubMed  CAS  Google Scholar 

  71. Marians KJ. Replication fork progression. In: Neidhardt FC (ed.). E. coli and Salmonella Cellular and Molecular Biology. Vol. 1. Washington, DC: American Society for Microbiology, 1996, pp. 74 - 763.

    Google Scholar 

  72. Gellert M, Muzuuchi K, ODea MH, Itoh T, Tomizawa J. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci 1977; 74: 4772 - 4776.

    PubMed  CAS  Google Scholar 

  73. Sugino A, Peebles CL, Kruezer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci 1977; 74: 4767 - 4771.

    PubMed  CAS  Google Scholar 

  74. Hooper DC, Wolfson JS. Mechanisms of quinolone action and bacterial killing. In: Hooper DC, Wolfson JS (eds.). Quinolone Antimicrobial Agents. Washington, DC: American Society for Microbiology, 1993, pp. 53 - 75.

    Google Scholar 

  75. Oram M, Fisher LM. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother 1991; 35: 387 - 389.

    PubMed  CAS  Google Scholar 

  76. Maxwell A. The molecular basis of quinolone action. J Antimicrob Chemother 1992; 30: 409 - 414.

    PubMed  CAS  Google Scholar 

  77. Hallett P, Maxwell A. Novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein: enzymatic analysis of mutant proteins. Antimicrob Agents Chemother 1991; 35: 335 - 340.

    PubMed  CAS  Google Scholar 

  78. Peng H, Marians KJ. E. coli topoisomerase IV, purification, characterization, subunit structure and subunit interactions. J Biol Chem 1993; 268:24, 481-24, 490.

    Google Scholar 

  79. Kato JI, Suzuki H, Ikeda H. Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem 1992; 267:25, 676-25, 684.

    Google Scholar 

  80. Khodursky AB, Zechdiedrich EL, Cozzarelli NR. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci 1995; 92:11, 801-11, 805.

    Google Scholar 

  81. Hoshino K, Kitamura A, Morrissey I, Sato K, Kato JI, Ikeda H. Comparison of inhibition of Escherichia coli topoisomerase IV by quinolone with DNA gyrase inhibition. Antimicrob Agents Chemother 1994; 38: 2623 - 2627.

    PubMed  CAS  Google Scholar 

  82. Drlica K, Malik M. Fluoroquinolones: action and resistance. Curr Top Med Chem 2003; 3: 1349 - 1364.

    Google Scholar 

  83. Ferrero L, Cameron B, Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 1995; 39: 1554 - 1558.

    PubMed  CAS  Google Scholar 

  84. Ferrero L, Cameron B, Manse B, et al. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol 1994; 13: 641 - 653.

    PubMed  CAS  Google Scholar 

  85. Pan X, Ambler J, Mehtar S, Fisher LM. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40: 2321 - 2326.

    PubMed  CAS  Google Scholar 

  86. Gootz TD, Zaniewski L, Haskell S, et al. Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topopisomerase IV mutants of Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40: 2691 - 2697.

    PubMed  CAS  Google Scholar 

  87. Pan X, Fisher ML. Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob Agents Chemother 1997; 41: 471 - 474.

    PubMed  CAS  Google Scholar 

  88. Gootz TD, Brighty KE. Fluoroquinolone antibacterials: SAR, mechanism of action, resistance and clinical aspects. Med Res Rev 1996; 16: 433 - 486.

    PubMed  CAS  Google Scholar 

  89. Alou L, Ramirez M, Garcia-Rey C, Prieto J, de Lencastre H. Streptococcus pneumoniae isolates with reduced susceptibility to ciprofloxacin in Spain: clonal diversity and appearance of ciprofloxacin-resistant epidemic clones. Antimicrob Agents Chemother 2001; 45: 2955 - 2957.

    PubMed  CAS  Google Scholar 

  90. Friedman SM, Lu T, Drlica K. A mutation in the DNA gyrase A gene of Escherichia coli that expands the quinolone-resistance-determining region. Antimicrob Agents Chemother 2001; 45: 2378 - 2380.

    PubMed  CAS  Google Scholar 

  91. Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase. Antimicrob Agents Chemother 2002; 46: 1805 - 1815.

    PubMed  CAS  Google Scholar 

  92. Ho PL, Que TL, Tsang DN, Ng TK, Chow KH, Seto WH. Emergence of fluoroquinolone resistance among multiple resistant strains of Streptococcus pneumoniae in Hong Kong. Antimicrob Agents Chemother 1999; 43: 1310 - 1313.

    PubMed  CAS  Google Scholar 

  93. Bryan LE, Bedard J, Wong S, Chamberland S. Quinolone antimicrobial agents; mechanisms of action and resistance development. Clin Invest Med 1989; 12: 14 - 19.

    PubMed  CAS  Google Scholar 

  94. Wolfson JS, Hooper DC. Bacterial resistance to quinolones: mechanisms and clinical importance. Rev Infect Dis 1989; 11: S960 - S968.

    PubMed  CAS  Google Scholar 

  95. Kaatz GW, Seo SM, Ruble CA. Mechanisms of fluoroquinolone resistance in Staphylococcus aureus. J Infect Dis 1991; 163: 1080 - 1086.

    PubMed  CAS  Google Scholar 

  96. Kaatz GW, Seo SM. Inducible Nor-A mediated multi-drug resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1995; 39: 2650 - 2655.

    PubMed  CAS  Google Scholar 

  97. Courvalin P. Plasmid-mediated 4 quinolone resistance: a real or apparent absence. Antimicrob Agents Chemother 1990; 34: 681 - 684.

    PubMed  CAS  Google Scholar 

  98. Blondeau JM, Zhao X, Hansen G, Drlica K. Mutant prevention concentration of fluoroquinolones for clinical isolates of Streptococcus pnemoniae. Antimicrob Agents Chemother 2001; 45: 433 - 438.

    PubMed  CAS  Google Scholar 

  99. Blondeau JM, Hansen G, Zhao X, Drlica K. Comparison of gatifloxacin (GA), gemifloxacin (GM), levofloxacin (L) and moxifloxacin (M) by the mutation prevention concentration (MPC) using 160 clinical isolates of Streptococcus pneumoniae (SP). Paper presented at: 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; Chicago, IL; September 20 - 22, 2001.

    Google Scholar 

  100. Hansen JM, Drlica K, Hansen GT, Zhao X. Mutant prevention concentration of gemifloxacin for clinical isolates of Streptococcus pnemoniae. Antimicrob Agents Chemother 2003; 47 (1): 440 - 441.

    PubMed  CAS  Google Scholar 

  101. b. Blondeau JM, Hansen G. The mutant prevention concentration (MPC) for ciprofloxacin (Cpx) and levofloxacin (Lfx) against non-urinary isolates of Pseudomonas aeruginosa (PA) and the relationship to achievable serum drug concentration following IV dosing., 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 14-17, 2003. American Society of Microbiology, Washington, DC. Abstract #C2-99.

    Google Scholar 

  102. Davidson RJ, Cavalcanti R, Brunton JL, et al. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 2002; 346: 747 - 750.

    PubMed  Google Scholar 

  103. Blondeau JM, Hansen G, Zhao X, Drlica K, Borsos S. Effect of inoculum size on the determination of the mutation prevention concentration (MPC) for fluoroquinolones (FQ) against Streptococcus pneumoniae (SP). 22nd International Congress of Chemotherapy, Amsterdam, June 30-July 3, 2001. American Society of Microbiology, Washington, DC. Abstract P27. 044.

    Google Scholar 

  104. Blondeau JM, Hansen G, Metzler KL, Borsos S, Chau J. Optimal killing of Streptococcus pneumoniae by gemifloxacin, levofloxacin and moxifloxacin. R Soc Med Press 2002; 76: 15 - 26.

    CAS  Google Scholar 

  105. a. Blondeau JM, Drlica K, Hansen G, Zhao X. The relationship between the mutant prevention concentration (MPC) of fluoroquinolones (FQ) against Streptococcus pneumoniae (Sp) and the 24-hour dose response curves., 7th International Symposium of New Quinolones, Edinburgh, Scotland, June 10-12, 2001. Abstract #71.

    Google Scholar 

  106. Gillespie SH, Voelker LL, Dickens A. Evolutionary barriers to quinolone resistance in Streptococcus pneumoniae. Microb Drug Resist 2002; 8: 79 - 84.

    PubMed  CAS  Google Scholar 

  107. Dubreuil L. Concentrations preventing resistance mutations against fluoroquinolones. Presse Med 2002; 31: 1807 - 1809.

    PubMed  Google Scholar 

  108. Kishii R, Takei M, Fukuda H, Hayashi K, Hosaka M. Contribution of the 8-methoxy group to the activity of gatifloxacin against type II topoisomerase of Streptococcus pneumoniae. Antimicrob Agents Chemother 2003; 47: 77 - 81.

    PubMed  CAS  Google Scholar 

  109. Moreillon P, Wenger A, Caldelari I. Resistance aux antibiotiques chez les pneumocoques [Pneumococcal antibiotic resistance]. Rev Med Suisse Romande 2000; 120: 651 - 659.

    PubMed  CAS  Google Scholar 

  110. Blondeau JM, Drlica K, Hansen GT, Zhao X. The relationship between mutant prevention concentration (MPC) and killing by moxifloxacin (M) and levofloxacin (L) of Streptococcus pnemoniae (sp). 22nd International Congress of Chemotherapy, Amsterdam, The Netherlands, June 30-July 3, 2001. Abstract p27. 110.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blondeau, J.M. (2004). Emerging Resistance to Vancomycin, Rifampin, and Fluoroquinolones in Streptococcus pneumoniae . In: Gillespie, S.H. (eds) Management of Multiple Drug-Resistant Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-738-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-738-3_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-438-8

  • Online ISBN: 978-1-59259-738-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics